An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin, Morocco

Adam C. Maloof, Daniel P. Schrag, James L. Crowley, and Samuel A. Bowring

Abstract: We present a δ^{13}C record from the Anti-Atlas mountains of Morocco and place it in the context of a detailed regional tectonostratigraphy. We place the litho- and chemostratigraphic record in a temporal framework using precision U–Pb zircon geochronology of ashes interbedded with the same carbonate units that provide δ^{13}C data. The variations in δ^{13}C of carbonate occur on a wide range of time scales, suggesting that different mechanisms are involved, including non-steady state release of isotopically depleted carbon reservoirs on short (<100 000 years) time scales and changes in nutrient recycling and organic carbon burial on longer (≥1 Ma) time scales. Through a correlation with more fossiliferous, albeit condensed, sections in Siberia, we examine the pattern of cyclic δ^{13}C variation in the context of the reappearance and diversification of skeletonized metazoa during the Early Cambrian.

Résumé : Nous présentons des données δ^{13}C des montagnes de l’Anti-Atlas du Maroc et nous les examinons dans le contexte d’une tectonostratigraphie régionale détaillée. Nous insérons les données lithostратigraphiques et chimostratigraphiques dans un cadre temporel en utilisant une géochronologie U-Pb de précision sur des circes provenant de cendres interliées avec les mêmes unités de carbonates qui ont fourni les données δ^{13}C. Les δ^{13}C des carbonates varient sur une grande plage d’échelles de temps, suggérant que différents mécanismes sont en jeu, incluant le relâchement en régime variable de réservoirs de carbone épuisés sur une courte échelle de temps (<100 000 ans) et des changements dans le recyclage des nutriments et de l’enfouissement du carbone organique selon des échelles de temps plus longues (≥1 Ma). En corrélation avec des sections plus fossilifères mais condensées provenant de Sibérie, nous examinons le patron des variations cycliques des données δ^{13}C dans le contexte d’une résurgence et de la diversification de métazoaires squelettisés au cours du Cambrien précèce.

[Traduit par la Rédaction]

Introduction

Between 542 and ∼530 Ma (Nemakit-Daldyn), burrowers gradually began to dig deeper in sediment (e.g., Crimes 1987) and calcifying organisms reappeared slowly, their hardparts being preserved as small shelly fossils in the phosphatizing environments of the Early Cambrian (Porter 2004). The Nemakit-Daldyn (ND) – Tommotian (Tm) boundary (525.5 Ma, this paper) corresponded to (1) an abrupt increase in diversity and abundance of calcifying organisms, both in the form of reef-building Archaeocyatha (Debrenne 1991, Zhuravlev 1986) and small shelly fauna (Khomentovsky and Karlova 1993, Rowland et al. 1998), and (2) the first appearance of significant vertical burrowing (e.g., Skolithos and Diplocraterion) in silicilastic sediments (Bottjer et al. 2000, Orr et al. 2003, Droser et al. 1999, Droser et al. 2002). Carbon-isotopic data from Siberia suggest that the ND–Tm boundary is associated with a peak in δ^{13}C as high as 5‰ (Magaritz et al. 1986, Knoll et al. 1995a, Narbonne et al. 1994) marked the abrupt last-appearance of most, if not all, Ediacara (Jensen et al. 1998, Crimes et al. 1995, Conway Morris 1993, Hagadorn et al. 2000, Crimes and McIlroy 1999, Brasier 1995, Seilacher 1984), as well as the prominent calcified metazoa Cloudina and Namacalathus (Grotzinger et al. 2000, Watters and Grotzinger 2001, Grant 1990, Germs 1972).

Paper handled by Associate Editor G.R. Dix

Adam C. Maloof1,2 and Daniel P. Schrag, Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA.

James L. Crowley and Samuel A. Bowring, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.

1Present Address: Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.

2Corresponding author (e-mail: maloofa@mit.edu).

carbonate sediment spanning the Early Cambrian. We calibrate the peak of the Tommotian $\delta^{13}C$ high with a U–Pb zircon age of an ash fall tuff in the same section and develop a high resolution record of $\delta^{13}C$ variability through the Early Cambrian. Finally, we show that the $\delta^{13}C$ behavior of the Nemakit-Daldyn is very similar to that of the Early Triassic (Payne et al. 2004), and that fluctuations in the fractional burial of organic carbon following era-ending mass extinctions (Magaritz 1989) may have a common cause (or consequence?).

Tectonostratigraphic setting

During the Hercynian orogeny, the northern edge of the West African Craton (WAC) was warped into the broad northeast-southwest-trending anticlinorium that forms the Anti-Atlas mountains. The Anti-Atlas mountains are bounded to the south by Mesozoic cover of the cratonic Tindouf basin, and to the north by the South Atlas Fault (SAF, Fig. 1), an ancient structure active most recently as a Cenozoic thrust fault (Gomez et al. 2000, Frizon de Lamotte et al. 2000, Beauchamp et al. 1999). In the Anti-Atlas, irregular buckle folding of the contact between Precambrian basement and Paleozoic sediments stranded erosional remnants of basement culminations (boutonnières or inliers) in a sea of Paleozoic sedimentary cover (Cartig et al. 2004, Faik et al. 2001, Leblanc and Lancelot 1972). The inliers record a Precambrian history of the northern margin of the WAC and accreted Pan-African terranes, while the rims of inliers tell the tale of Earth’s transition from the Proterozoic to Paleozoic eras (Michard 1976).

Pre-600 Ma evolution of the WAC’s northern margin

South of the Anti-Atlas major fault (AAMF, Fig. 1), basement inliers are composed of 2070 Ma metasediments (Walsh et al. 2002) intruded by 2050–2032 Ma granitoids (Walsh et al. 2002, Thomas et al. 2002, Roger et al. 2001, Hassenforder et al. 2001, Mortaji et al. 2000, Ait Malek et al. 1998) similar in age to the Birimian crust that makes up most of the WAC (Boher et al. 1992). Taghdout Group (Fig. 1) basalts, quartzites, and stromatolitic–oolitic carbonates rest unconformably on the Paleoproterozoic basement and represent a platformal succession deposited on the northern margin of the WAC (Bouougri and Saquaque 2000, El Aouli et al. 2001, Thomas et al. 2002, Hafid et al. 2001). North of the AAMF in the eastern High Atlas, virtually no traces of Eburnean basement are present and the oldest intact rocks are thick piles of basalts and turbidites of the Saghro Group (Fig. 1). The Saghro Group has been interpreted as a distal-slope equivalent of the Taghdout Group, deposited between the WAC to the south and an island arc (Thomas et al. 2002, Bouougri 2003) or slivers of rifted Eburnean crust (Fekkak et al. 2000, Fekkak et al. 2002, Ouguir et al. 1996, Fekkak et al. 2001), such as Cadomia (Samson and D’Lemos 1998), to the north. Igneous zircons from the Iriri migmatite (Siroua) provide a crystallization age for northern arc rocks later accreted during the Pan-African collision and have an age of 743±13 Ma (Thomas et al. 2002). A 762±1 Ma leucogranite dyke intruded contemporaneously with gabbros of the Tasriwine ophiolite (Siroua inlier) provides a crystallization age for some of the oceanic crust later obducted during Pan-African Orogeny (Samson et al. 2004).

The Taghdout and Saghro groups were deformed during the Pan-African orogeny, when closure of a marginal sea led to the southward obduction and sinistral translation of ophiolitic mélanges (Hurley et al. 1974, Leblanc 1976, El Boukhari et al. 1992, Thomas et al. 2002) and northern terranes along the AAMF. In the El Graaia inlier, the 650 Ma Aït Ahmane quartz diorite (unpublished U–Pb zircon age of S.D. Samson, cited in Hefferan et al. 2000) intrudes the deformed Bou Azzar ophiolite and provides a minimum age on Pan-African accretionary tectonics. Metamorphic overgrowths on zircons in the Iriri migmatite associated with the obducted ophiolite complex in Siroua inlier date Pan-African deformation at 663±13 Ma.

Post-600 Ma rifting of the WAC’s northern margin

Fanglomerates and coarse siliciclastics of the Tiddiline Group (Fig. 1) fill fault-bounded basins that rest unconformably on folded Pan-African assemblages and post-Pan-African granitic intrusions. Clasts of the 579.4±1.2 Ma Bleida granodiorite (Inglis et al. 2004, Ducrot 1979) are abundant in conglomerates and place a maximum age on the onset of Tiddiline Group deposition. The Tiddiline Group has been interpreted either as syn-collisional molasse (Saquaque et al. 1989, Hefferan et al. 1992) or rift-related fill (Piqué et al. 1999, Soulaïmani et al. 2001, Piqué 2003, Soulaïmani et al. 2003), but the latter interpretation is favored given the ~80 Ma gap between Pan-African orogenesis and Tiddiline extension.

The Ouazarzate Group (Fig. 1) reflects the onset of rift volcanism and covers the pre- and syn-Pan-African basement with a 0–2000 m thick blanket of felsic lavas, ignimbrites, and volcanioclastics. Distinctive volcanic centers intruded by high-level granites characterize the Ouazarzate Group and, in concert with rift-related normal faulting, lead to abundant lateral facies changes and internal angular discordances (Thomas et al. 2002). Although much of the Ouazarzate Group was deposited subaerially, lacustrine deposits are common around the flanks of volcanic centers and in the cores of collapsed calderas.

Ouazarzate Group volcanics and associated high-level granites fill a narrow age range between 577 and 560 Ma (Thomas et al. 2002, Walsh et al. 2002, Mifdal and Peucat 1985, Ait Malek et al. 1998). Furthermore, felsic lavas and ash flow tuffs from the uppermost Ouazarzate Group have remarkably similar ages across the Anti-Atlas, suggesting near synchronous termination of rift volcanism at ~560 Ma: 560.0±2.1 Ma for the Houssi El Gah rhyolite at Bas Drâa (Maloof 2004), 564.6±3.2 Ma for the Igherm tuff (Maloof 2004), 562.89±0.49 Ma for the Minount rhyodacite northwest of Timjich (this paper), 563±5 Ma for the Tiouine ignimbrites northeast of Siroua (Mifdal and Peucat 1985), and 565±7 Ma for the Upper Ouazarzate Group ignimbrite in Tagrara de Tata inlier (Walsh et al. 2002).

The Early Cambrian passive margin

With the cessation of volcanism and onset of thermal subsidence, the rifted Pan-African margin was flooded. The first marine transgression across the rifted Pan-African margin marks the base of the Taroudant Group, which itself is composed of the Adoudou and Lie de Vin formations.

Adoudou Formation

Traditionally, the Adoudou Formation was divided into a basal unit dubbed the Série de Base, and an upper unit called...
Fig. 1. Tectonostratigraphic map of the pre-Middle Cambrian Anti-Atlas mountains, Morocco (Saadi et al. 1985).
Fig. 2. Chemostratigraphy of the Anti-Atlas mountains, west. The sedimentology is vastly oversimplified and plotted lithofacies (see Fig. 3) are only meant to represent the lithologies that dominate a particular unit. δ¹³C data in MS-6 (Tfout) are from Tucker 1986 and Magaritz et al. 1991.
the Calcaires Supérieurs. Here, we elevate these two units to member status. We define the Tabia Member (a town in the Oulili river where the Tabia Member is developed best, MS-8, Fig. 2) as the 0–250 m of peritidal carbonates, evaporites, mudcracked siltstones, fluvial sandstones, and coarse siliciclastic debris that was deposited in a series of linked half grabens with steep bounding normal faults (Destombes et al. 1985, Benziame et al. 1983, Azizi Samir et al. 1990, Chbani et al. 1999, Algouti et al. 2000, Algouti et al. 2001, Benissaou and Hamoumi 1999c, Benissaou and Hamoumi 1999b, Benissaou and Hamoumi 1999a, Benissaou and Hamoumi 2001, Benissaou and Hamoumi 2003). Tidally dominated fine-siliciclastics of the uppermost Tabia Member often contain discoid structures of unknown affinity that superficially resemble Ediacaran fauna, such as *Aspidella* (MS-2, MS-7, Igherm (Houzay 1979), and Tioune).

The Tifnout Member of the Adoudou Formation (named after a town in the Sdas river where the Tifnout Member is thickest, MS-7, Fig. 2) reflects the end of abundant regional block faulting and the beginning of a thermal subsidence-dominated regime. Peritidal dolostones blanket virtually the entire Anti-Atlas, thinning to the east and south from 1000 m thick at Oued Sdas (MS-7), to < 300 m thick in the El Graara (MS-13-15) and Bas Drâa (MS-1) inliers, to nonexistent in Saghro (MS-15) and Ougnat inliers (Fig. 1, (Geyer and Landing 1995, Geyer 1989, Destombes et al. 1985)). Where the Tifnout Member is relatively thin, dolostones are arranged in metre-scale, shallowing-upwards parasequences that typically begin with siltstones and marls, are followed by wavy-laminated micrites and grainstones, and are capped by microbialaminites (sometimes stromatolites) often showing signs of subaerial exposure, such as pseudomorphs after gypsum, teepees (Kendall and Warren 1987), desiccation cracks, and karstic, ferruginized and (or) silified parasequence boundaries. Where the Tifnout Member is thick, individual parasequences are thicker and evidence of subaerial exposure is much less common. The rheological instability inherent in a thick stack of finely interbedded siltstones and dolostones made the Tifnout Member susceptible to slump folding and brecciation on various scales (Buggisch and Heinitz 1984).

In the El Graara inlier (Fig. 1, 3), anastistic and trachytic flows and autobreccias are interbedded with the Tifnout Member. The Jebel Boho syenite plug, which crosscuts most of the lavas, was dated at 534 ± 10 Ma (Ducrot and Lancelot 1977) and provides a minimum age for at least the lower Tifnout Member. In the southwest corner of El Graara inlier, (Buggisch and Flügel 1988) report calcified algae *Kundatia composita* KORDE in stromatolites of the lower Tifnout Member consistent with an Early Cambrian age for the dolostones. Unfortunately, the lack of suitable coarse siliciclastic facies is likely part of the reason why the Tifnout Member is barren of diagnostic trace fossils that might constrain its age more precisely.

Lie de Vin Formation

The Lie de Vin Formation reflects the stratigraphic response of seaward tilting or flexure of the Anti-Atlas margin. Similar to the Adoudou Formation, the Lie de Vin Formation thins to the east and south from 950 m at Tiout (MS-6) to <15 m in El Graara (MS-13, MS-14, MS-15) and Bas Drâa (MS-1). Landward, the Lie de Vin Formation represents a significant sea-level regression, with erosional beveling of underlying units in the far east and the progradation of the fluvial Tikirt Member sandstone westward and northward across the basin (Fig. 3b). Seaward, the Lie de Vin Formation actually records an increase in relative sea level and a switch from peritidal dolostone sedimentation to sublittoral deposition of purple argillite – biohermal limestone couplets (Monninger 1979, Destombes et al. 1985). The argillites reflect an increase in the siliciclastic sediment reaching the basin and are likely basinward equivalents of the Tikirt Member sandstone.

Out-of-phase landward versus basinward relative sea-level patterns are common on margins that developed through rifting of warm, thickened continental lithosphere (Kooi and Cloetingh 1992). Extensional thinning of lithosphere usually leads to preferential necking at a level where the lithosphere is strong (Braun and Beaumont 1989, Braun and Beaumont 1989a, Zuber and Parmentier 1986). Strength profiles of warm, thickened lithosphere suggest that this zone of maximum strength would occur at shallow to moderate intracrustal depths of 15–20 km (Braun and Beaumont 1989a). Rifted continental margins that underwent necking at 15–20 km depth commonly undergo a transition from upward-flexed rift margins in their youth to downwarped rift shoulders after sufficient cooling of the lithosphere and sediment accumulation increases the flexural load on the basin (Kooi et al. 1992). Dense dolostones of the Tifnout Member would have accumulated during the early phases of thermal subsidence with upwarped rift shoulders (Fig. 3b, middle panel). The out-of-phase relative sea-level pattern of the Lie de Vin Formation would reflect the transition to downwarped rift flanks and a seaward tilting of the margin. This transition to a downward-flexure mode also is associated with a major increase in sediment accumulation rate (Fig. 8). It is possible that the voluminous crustal melting that characterizes the Ouarzazate Group led to important basaltic underplating of zones of thinned crust. Eventual eclogitization of the underplated basalts could have added an additional flexural load to the basin, accelerating sediment accumulation rates, and assisting the transition to the downwarped rift flanks of the Lie de Vin Formation.

Cyclic alternations of burgundy colored argillite and biohermal carbonates in the Lie de Vin Formation have captured the imagination of every worker that has visited Tiout (e.g., Monninger 1979, Latham and Riding 1990, Geyer and Landing 1995). On a metre scale, as is so with the Adoudou Formation, these lithological alternations form autocyclic, shoaling-upwards parasequences. In the case of the Lie de Vin Formation, complete parasequences consist of a flooding surface, followed by interbedded argillite and wavy carbonate laminite, followed by stromatolite and (or) thrombolite bioherms that pass laterally into grainstones, followed by the next flooding surface. Many parasequences are incomplete and appear as argillite–thrombolite couplets. We counted 150 parasequences in 880 m of the Lie de Vin Formation at Oued Sdas (MS-7). Monninger (1979) found ∼180 parasequences in 940 m at Tiout (MS-6). Climatic, tectonic, and eustatic signals of various characteristic time scales modulate the total thickness of parasequences, as well as the relative proportion of biohermal carbonate to argillite in individual parasequences, to yield a pattern of cyclothem (10–20 cycles) and supercycles (20–100 cycles). Whether these cycles represent stationary periodic signals or Poisson processes is always a point of contention (Wilkinson et al. 1997, Wilkinson et al. 1999, Bailey 1998, Yang et al. 1995, Kominz and Bond 1990, Goldhammer et
Fig. 3. (A) Chemostratigraphy of the Anti-Atlas mountains, East. The sedimentology is vastly oversimplified and plotted lithofacies are only meant to represent the lithologies that dominate a particular unit; (B) Schematic evolution of the post-Pan-African margin. Top panel: Tabia Member of the Adoudou Formation is deposited in a series of link half grabens bounded by normal faults. Middle panel: Tifnout Mb of the Adoudou Fm is deposited on a broad, thermally subsiding passive margin. Bottom panel: The Lie de Vin Formation, deposited as the margin, is tilted seaward, leading to landward regression (Tikirt Member) and seaward deepening.

al. 1987, Grotzinger 1986, Goodwin and Anderson 1985). Sediment accumulation rates on shallow carbonate ramps, such as the Early Cambrian of the Anti-Atlas, vary stochastically on short time scales and preclude reliable spectral analysis. However, on a 105 year-time-scale, sediment accumulation rates may average out sufficiently to permit the recognition of coherent signals. As shown in Fig. 4, the proportion of biothermal carbonate relative to argillite oscillates with a characteristic period of \(\sim 1.2 \) Ma. In contrast, the presence of five to six parasequence-thickness cycles suggest a period of \(\sim 750 \) ka, although the signal is not obviously periodic or correlated with biothermal abundance and \(\delta^{13}C \). At Tiout, Monninger (1979) also found three “limestone-content” and five parasequence-thickness supercycles over the same interval, suggesting that these features are reproducible at least within the same basin.

An ash from the upper Lie de Vin Formation at Tiout (MS-6, Fig. 1, 2) has an age of 522.4±2.0 Ma (Landing et al. 1998, Compston et al. 1992). Carbon isotope data from Tiout (Tucker 1986) and Oued Sdas (Magaritz et al. 1991) have been coupled with magnetostratigraphic data from Tiout (Kirschvink et al. 1991) to draw correlations with the chemostratigraphy of Siberia and are not inconsistent with a Tommotian age for the Lie de Vin Formation. The limestone bioherms are stromatolitic or thrombolitic and commonly contain calcified algae, such as *Tarthinia*, *Renalcis*, and *Kordevphyton* (Latham and Riding 1990, Bertrand-Safarti 1981). Although indistinct trace fossils are common, dolostone grainstones often appear weakly bioturbated, occurrences of the vertical burrow *Diplocraterion* have been reported from Tiout (Latham and Riding 1990), and horizontal traces of *Diplichnites*-type, which are thought to be arthropod tracks, are found in the upper Tikirt Member of the Siroua area (Geyer and Landing 1995), diagnostic fossils
amenable to interregional correlation have not been described.

Tata Group

The Tata Group represents the remainder of Early Cambrian strata above the Taroudant Group and includes the Igoudine, Amouslek, and Issafene formations, and their correlatives (Geyer and Landing 1995). In general, the base of the Tata Group represents a transition to more energetic marine conditions than those found in the Lie de Vin Formation (Destombes et al. 1985, Geyer 1989, Hupé 1953). Shoaling-upwards parasequences are common, beginning with green or grey shales, followed by black limestone wavy laminates, and capped by trilobite-hash packstones, cross-bedded oolitic grainstones, or archaeocyathan–algal bioherms. Subaerial exposure, desiccation, and vadose gypsum precipitation affected the tops of some parasequences, although exposure surfaces are not nearly as common as they are in the Adoudou Formation. As with all Early Cambrian strata in the Anti-Atlas, siliciclastic sediments become more important to the east and south.

The Igoudine Formation contains the oldest known skeletal fossils from Morocco (Choubert and Hupé 1953, Choubert et al. 1975, Boudda et al. 1979). Trilobites of the *Eofallotaspis* Zone first appear in the Tiout Member (upper Igoudine Formation) (Geyer and Landing 1995), often within a few metres of the first *Erismacoscinus fasciolus – Retecosinus minutus* Zone archaeocythans (Hupé 1953, Debrenne and Debrenne 1978, Debrenne and Debrenne 1995), brachiopods, and chancelloriids. Trilobites in the uppermost Tiout Member transition into the *Fallotaspis tazemmourtensis* Zone. The Amouslek Formation is characterized by *Choubertella* and *Daguinaspis* zone trilobites (Geyer and Landing 1995) and *Erismacoscinus maro-
canus* Zone archaeocyathids (Debrenne and Debrenne 1995). Trilobites of the *Antatlasia hollardi*, *Antatlasia gutta-pluviae*, and *Sectigena* Zone appear sequentially in the Issafene Formation, coincident with the transition to the *Polystitillicidocyathus – Halysicyathus* archaeocyathid zone. An ash bed from the equivalent to the lower Issafene Formation in the Lemdad syncline of the High Atlas is dated at 517 ± 1.5 Ma (Landing et al. 1998) and is consistent with an Atdabanian–Botomian age for the Tata Group.

Chemostratigraphy

δ^{13}C methods

Carbonate samples were collected while measuring stratigraphic sections. Clean dolostones and limestones without siliciclastic components or secondary veining or cleavage were targeted. Samples were slabbed and polished perpendicular to bedding and ~5 mg of powder was micro-drilled from individual laminations for isotopic analysis. δ^{13}C and δ^{18}O were measured simultaneously on a VG Optima dual inlet mass spectrometer attached to a VG isocarb preparation device in the Harvard University Laboratory for Geochemical Oceanography, Cambridge, Massachusetts. Approximately 1 mg of the carbonate powder was reacted in a common H$_3$PO$_4$ bath at 90°C for 8–10 min. Evolved CO$_2$ was purified and collected cryogenically and then analyzed against an in-house reference gas. The analytical uncertainty (1σ) of this measurement was <±0.1‰. Samples were calibrated to VPDB (Vienna Pee Dee Belemnite) using six measurements of the Cararra Marble standard for each run of 54 samples. Memory effect associated with the common acid bath system was minimized by increasing the reaction time for
dolomite samples and monitoring the measured values of standards. Examination of the variation in standards after each run showed that the error due to memory effect was always <0.2‰.

$\delta^{13}C$ results

Chemostratigraphic plots for 15 measured sections across the Anti-Atlas mountains are presented in Figs. 2 and 3 and are summarized in Fig. 5. $\delta^{13}C$ of the Tabia Member is difficult to correlate between sections, but, in general, varies between $-4\%e$ and $0\%e$. The lower Tifnout Member shows near uniformity across the basin, descending rapidly from $-2\%e$ at the base to a low of $-6\%e$. $\delta^{13}C$ then increases in an oscillatory fashion from $-6\%e$ to a high of $+7\%e$ in the upper Tifnout Member. In the uppermost Tifnout Member (600 m, Fig. 5), $\delta^{13}C$ crashes again to $-3\%e$ and stays between $-3.5\%e$ and $0.5\%e$ for most of the Lie de Vin Formation. $\delta^{13}C$ rises to a peak of $3.5\%e$ in the uppermost Lie de Vin and lower Igoudine formations and then stabilizes at $-0.5\%e$ for the remainder of the Tata Group.

Superimposed on these broad trends is a hierarchy of $\delta^{13}C$ oscillations with different characteristic periods and amplitudes. High-frequency signals with periods $\leq 10^5$ year and amplitudes of $1\%e$–$3\%e$ are present as semi-coherent signals in the scatter from 1400–1700 m (Fig. 5) and as very well-defined excursions, such as the negative spike at 480 m (Figs. 5, 6). Even higher order variability of $<1\%e$ amplitude may be present (e.g., Fig. 6), but our sampling density was often too coarse to determine whether or not this variability reflects coherent oscillations. However, we can state with certainty that there is no simple correlation between facies and high-frequency $\delta^{13}C$ variability, either within parasequences or over the stratigraphic section as a whole. Moderate frequency oscillations with periods of $\sim 10^6$ year and amplitudes of $2\%e$–$4\%e$ characterize the entire time series (Fig. 5), and in the Lie de Vin Formation, are apparent in two different lithofacies parameters (Fig. 4). Lower order, 4–7 Ma period, $8\%e$–$11\%e$ amplitude signals are particularly obvious in the middle–upper Adoudou Formation between 300 and 800 m.

Oxygen isotopes are plotted in Fig. 5. In the Taroudant Group, few trends are discernible in the smear of very high-frequency oscillations with $\%e$ noise with a mean value of $-6\%e$ to $-7\%e$. A few hundred metres below the base of the Tata Group, mean $\delta^{18}O$ descends to $-14\%e$ and remains highly depleted until the uppermost Early Cambrian. $\delta^{13}C$ versus $\delta^{18}O$ cross plots show no statistically significant covariation of the two isotopic systems (not plotted).

Because fluids responsible for diagenetic recrystallization of carbonates may replace completely the original population of oxygen atoms in the rock, most workers discard $\delta^{18}O$ data from carbonates that have undergone significant fluid–rock interactions (Brand and Veizer 1981, Banner and Hanson 1990, Pearson et al. 2001). Furthermore, oxygen isotopic studies of Phanerozoic ophiolite complexes suggest that the $\delta^{18}O$ composition of seawater is buffered against long-term changes by hydrothermal alteration of basalt around mid-ocean ridges (Muehlenbächers and Clayton 1976, Muehlenbächers 1998, Gregory and Taylor 1981, Holmden and Muehlenbächers 1993). Nevertheless, it is worth documenting that the basic $\delta^{18}O$ signal observed in Morocco is similar to trends produced in other Neoproterozoic–Paleozoic data sets around the world. Such data sets indicate an evolving oxygen-isotopic composition of seawater, with values of $-4\%e$ to $-10\%e$ in the Neoproterozoic (Jacobsen and Kaufman 1999) dropping to a nadir in the late Early Cambrian to Late Cambrian of $-10\%e$ to $-14\%e$, and then rising through the Phanerozoic to modern values of $0\%e$ (Veizer et al. 1999).

U-Pb zircon geochronology

U–Pb methods

Zircon was extracted from samples by standard crushing, Wilfly table, heavy-liquid, and magnetic separation. Analyzed grains were selected from the least magnetic fraction based on the absence of cracks, inclusions, and surface contamination. To minimize Pb-loss, zircon was subjected to standard physical air abrasion (Krogh 1982) or a version of the chemical abrasion technique (Mattinson 2003). Grains that underwent air abrasion were ultrasonicated in 30% HNO$_3$ for 1 h, flushed in 30% HNO$_3$ at $\sim 80\^\circ C$ for 1 h, and rinsed in ultrapure acetone and H$_2$O before being loaded into 300 μL Teflon FEP microcapsules and spiked with a mixed 233U/238U/209Pb tracer. Zircon was dissolved in $\sim 120 \mu L$ 29 mol/L HF with $\pm 25 \mu L$ 30% HNO$_3$ at $\sim 210\^\circ C$ for 48 h, dried to fluorides, and then re-dissolved in 6 mol/L HCl at $\sim 180\^\circ C$ overnight. Grains that underwent chemical abrasion were placed in a muffle furnace at 900±20°C for $\sim 60 h$ in quartz beakers before being transferred to 300 μL Teflon FEP microcapsules and leached in $\sim 120 \mu L$ 29 mol/L HF $\pm 25 \mu L$ 30% HNO$_3$ for 12–14 h at $\sim 180\^\circ C$. Grains were rinsed in ultrapure H$_2$O, flushed on a hotplate at $\sim 80\^\circ C$ for 1 h in 6 mol/L HCl, ultrasonicated for 1 h, placed back on the hotplate for an additional 30 min, and rinsed in ultrapure acetone and H$_2$O. Grains were then loaded back into microcapsules, which were rinsed with ultrapure H$_2$O and flushed on a hotplate with 30% HNO$_3$ or 6 mol/L HCl, and then spiked and fully dissolved using the procedure just described. U and Pb were separated using an HCl based anion-exchange chromatographic procedure (Krogh 1973).

U and Pb isotopic measurements were performed on a VG Sector-54 multi-collector thermal-ionization mass spectrometer at MIT, Cambridge, Massachusetts. Pb and U were loaded together on a single Re filament in a silica-gel–phosphoric acid mixture (Gerstenberger and Haase 1997). Pb was measured by peak-hopping on a single Daly detector and U isotopic measurements were made in static Faraday mode. Mass fractionation on the Daly detector was determined to be 0.25 ± 0.04%/amu (atomic mass unit) over a wide temperature range based on analysis of the NBS-981 common Pb standard and spiked aliquots of NBS-983. U mass fractionation was calculated in real-time using a double spike. All common Pb was attributed to procedural blank. A sensitivity test shows that the composition of the common Pb has no effect on the calculated dates. U blanks were <0.1 pg. Data reduction, age calculation, and the generation of concordia plots were done using the algorithms of (Ludwig 1980), and (or) using the statistical reduction and plotting program ISOPLOT (Ludwig 1991).

In the past few years, it has become evident that zircons that yield high-precision statistically equivalent data sets often have slight age discordance (206Pb/208Pb dates are a minimum of 0.2% older than the U–Pb dates), likely due to imprecision in one or both of the U decay constants (Mattinson 2000). In many previous studies of lower Paleozoic zircon plagued with Pb loss that is inferred to have occurred in recent times, 207Pb/206Pb
Fig. 5. Summary of δ¹³C and δ¹⁸O versus stratigraphic height for MS-3, MS-4, MS-6 (data from Tucker (1986) and Magaritz et al. (1991)), MS-7, MS-8, and MS-10 to MS-12 (see Figs. 1–3 for measured section locations and stratigraphic detail). Ages along the right edge of the graph are U–Pb zircon ages from Morocco, except for the 542.0 date which is based on correlation of the −6‰ δ¹³C nadir with the Precambrian-Cambrian boundary carbon isotope excursion observed worldwide (Amthor et al. 2003, Grotzinger et al. 1995, Knoll and Carroll 1999, Kimura and Watanabe 2001). Age transitions highlighted in yellow are based on global correlation of δ¹³C and fossil zonation.

dates have been considered the best estimate of the age of a discordant population. In this case, uncertainties in the decay constants could be ignored if the dates are not compared with other chronometers. However, as it now appears that discordance related to radiation damage and Pb loss can be eliminated through the chemical abrasion technique (Mattinson 2003), we suggest that the concordia age (Ludwig 1998) may be the best estimate of the crystallization age of the zircons in our volcanic samples, and by inference, the depositional age.

U–Pb age errors are reported as follows: ±X/Y/Z, where X is the internal error in absence of all systematic errors, Y includes the tracer calibration error (using 2σ standard deviation of the Pb/U in the tracer = 0.05 %), and Z includes the tracer calibration and decay constant errors of (Jaffey et al. 1971) (external errors). For ⁴⁰⁷Pb/⁴⁰⁶Pb dates, tracer errors are negligible and Y is not reported (so it reads ±X/Z). The MSWD (mean square of the weighted deviates (York 1966, York 1967)) of the concordia age (Ludwig 1998) and weighted mean dates is calculated prior to the addition of systematic errors. Concordia diagrams are shown in Fig. 7 and data are presented in Table 1.

U–Pb results

Minount rhyodacite

The Minount rhyodacite (M1149) is the second youngest lava flow associated with a volcanic center to the northwest of Timjich in the uppermost Ourarzate Group. The felsic lavas sit with angular discordance immediately below the Tabia Member at MS-10 (Fig. 3). Four of five chemically abraded grains form a statistically significant cluster (MSWD of equivalence = 0.5) that is concordant within the uncertainties of the U decay constants (Fig. 7a). The weighted mean ⁴⁰⁷Pb/⁴⁰⁶Pb date is 563.84 ± 0.66/4.61 Ma (MSWD = 1.0), the weighted mean ⁴⁰⁷Pb/²³⁵U date is 563.02 ± 0.23/0.51/1.27 Ma (MSWD = 0.3), the weighted mean ⁴⁰⁷Pb/²³⁸U date is 562.81 ± 0.15/0.43/
| Sample | Weight (µg) | U (ppm) | Pb (ppm) | Pb* (pg) | Th (U) | 206²⁰⁴²⁰⁸²³⁵ | 208²⁰⁴²⁰⁶²³⁵ | 207²⁰⁶²³⁵ | %err. | 206²⁰⁷²³⁵ | %err. | 207²⁰⁷²³⁵ | %err. | cor. | 238²³⁵ | 214²³⁵ | ²⁰⁶²³⁵ | %dis. | Age (Ma) |
|--------|------------|---------|----------|---------|--------|----------------|----------------|----------------|-------|-----------|-------|----------------|-------|-------|-------|-------|-------|
| M1149 | | | | | | | | | | | | | | | | | |
| Z5* | n.a. | n.a. | n.a. | 269.0 | 0.45 | 0.29 | 17176 | 0.091 | 0.059 | 0.29 | 17176 | 0.091 | 0.059 | 0.29 | 17176 | 0.091 | 0.28 |
| Z6* | n.a. | 91.2 | 1.11 | 5945 | 0.070 | 0.091220 | 0.05892 | 0.613 | 0.059 | 0.29 | 17176 | 0.091 | 0.059 | 0.29 | 17176 | 0.091 | 0.28 |
| Z7* | n.a. | 135.5 | 0.25 | 8739 | 0.081 | 0.091232 | 0.05890 | 0.667 | 0.059 | 0.29 | 17176 | 0.091 | 0.059 | 0.29 | 17176 | 0.091 | 0.28 |
| Z8* | n.a. | 734.9 | 0.25 | 48269 | 0.058 | 0.091232 | 0.05890 | 0.667 | 0.059 | 0.29 | 17176 | 0.091 | 0.059 | 0.29 | 17176 | 0.091 | 0.28 |
| Z9* | n.a. | 241.8 | 0.45 | 15730 | 0.070 | 0.091236 | 0.05890 | 0.667 | 0.059 | 0.29 | 17176 | 0.091 | 0.059 | 0.29 | 17176 | 0.091 | 0.28 |
| Z10 | n.a. | 9.2 | 407.2 | 34.2 | 133.1 | 2.36 | 562.18 | ±0.27 | 525.63 | ±0.40 | 527.47 | ±1.22 | 0.43 |
| Z11 | n.a. | 7.4 | 460.7 | 39.0 | 437.3 | 0.33 | 525.17 | ±0.32 | 525.68 | ±0.40 | 527.90 | ±1.00 | 0.52 |
| Z12 | n.a. | 4.3 | 313.0 | 26.5 | 5945 | 0.070 | 525.17 | ±0.32 | 525.68 | ±0.40 | 527.90 | ±1.00 | 0.52 |
| Z13 | n.a. | 3.8 | 200.3 | 16.9 | 54.7 | 0.11 | 525.38 | ±0.41 | 525.64 | ±0.58 | 526.79 | ±1.66 | 0.27 |
| Z14 | n.a. | 1.8 | 302.1 | 25.3 | 70.8 | 0.64 | 525.11 | ±0.47 | 525.60 | ±0.80 | 527.55 | ±2.63 | 0.46 |

*Z1, Z2, etc. are labels for fractions composed of single zircon grains. *denotes grains that were subjected to the chemical abrasion technique (all others underwent mechanical abrasion). Sample weights, are estimated to within 40% using measured grain dimensions and density. Weights could not be visually estimated for grains subjected to the chemical abrasion technique. Concentrations cannot be estimated for grains that were subjected to the chemical abrasion technique. Ratio of radiogenic Pb to common Pb. Model Th/U ratio calculated from radiogenic ²⁰⁸²⁰⁶²³⁵ and ²⁰⁷²⁰⁶²³⁵ ratio. Measured ratio corrected for fractionation only. Mass fractionation corrections were based on analysis of NBS-981 and NBS-983. Correction of (²⁰⁶²³⁵/²³⁵²³⁵) = (²⁰⁶²⁰⁶²³⁵/²³⁵²³⁵) and (²⁰⁷²³⁵/²³⁵²³⁵) = (²⁰⁷²⁰⁶²³⁵/²³⁵²³⁵) was applied to single-collector Daly analyses performed on the Sector-54 mass spectrometer. Corrected for fractionation, spike,blank, and initial common Pb. All common Pb was assumed to be procedural blank. U blank was <0.1 pg. Measured laboratory blank composition: ²⁰⁶²³⁵ = 18.271±0.05, ²⁰⁷²³⁵ = 15.587±0.05, ²⁰⁸²³⁵ = 38.119±0.05 (2σ). Errors are 2σ. Age calculations are based on the decay constants of (Jaffey et al. 1971). Errors (%err.) are 2σ. % discordance (%dis.) = 100 − (100 × (²⁰⁶²³⁵/²³⁵²³⁵)date / (²⁰⁶²³⁵/²³⁵²³⁵)theory)
Maloof et al. 2205

Fig. 6. δ^{13}C record from MS-7 plotted against detailed physical stratigraphy (see Fig. 1 for key to lithofacies and measured section location). The 4‰ spike-like drop at 480 m is superimposed on an 8‰ negative δ^{13}C excursion that likely lasted 1–2 million years.

1.03 Ma (MSWD = 0.1), and the concordia age is 562.89 ± 0.49 Ma (MSWD of concordance = 0.2) (Table 1). We interpret the concordia age as the best estimate of the age of the felsic lava flow.

Upper Adoudou Formation ash

The upper Adoudou Formation ash (M223) is 60 cm thick, located at a stratigraphic height of 625 m in MS-7, and is one of at least 20 different ashes that bury stromatolitic bioherms within a 250 m interval of upper Adoudou Formation carbonates. The ashes are 1–60 cm thick, greenish, and speckled with euhedral feldspar phenocrysts. Zircons from M223 are large (150–400 μm long) and doubly terminated. Five air-abraded zircon grains and three chemical-abraded grains form a statistically significant cluster (MSWD of equivalence = 0.4) that is concordant within the uncertainties of the U decay constants (Fig. 7b). The weighted mean 207Pb/206Pb date is 527.28 ± 0.53/4.57 Ma (MSWD = 0.5), the weighted mean 207Pb/235U date is 525.60 ± 0.18/0.44/1.16 Ma (MSWD = 0.1), the weighted mean 206Pb/238U date is 525.23±0.12/0.38/0.94 Ma (MSWD = 0.3), and the concordia age is 525.38 ± 0.46 Ma (MSWD of concordance = 0.7) (Table 1). We interpret the concordia age as the best estimate of the age of the upper Adoudou ash. It is noteworthy that the strongly abraded grains and the chemically treated grains yield identical results.

Discussion

Age model

The lack of Treptichnus and other diagnostic earliest Cambrian trace fossils in the Adoudou Formation (likely due to the dearth of suitable marine siliciclastic facies) prevents an exact correlation with the stratotype section in Newfoundland, where the Precambrian–Cambrian boundary is defined. However, the δ^{13}C excursion to –6‰ coincident with the first appearance of
In Fig. 8, we assume constant sediment accumulation rates between the 542 Ma −6‰ nadir and 525.4, 522, and 517 Ma U–Pb zircon tie points. Admittedly, this age model is oversimplified and likely incorrect in detail. However, after applying similarly conservative linear stretches of individual Siberian sections below and above the sub-Tommotian unconformity, we find that the Siberian and Moroccan records may be correlated even down to the level of individual δ13C oscillations.

δ13C variability

One of the most striking features in the carbon isotope record from the Anti-Atlas is the coherent, cyclic variation of δ13C over various amplitudes and model time scales.

T≤10^5 years

At periods ≤10^5 years, 1‰–3‰ variability is common in the record. Although this variability resembles scatter in summary diagrams like Fig. 8, structured cycles are common where sampling resolution is high enough (Fig. 6). Similar δ13C cycles of 1‰–2‰ amplitude occurred in response to glacial–interglacial fluctuations in productivity (Broecker and Peng 1982) and pCO2 (Spero et al. 1997) during the Pleistocene. However, ice-age variability is not expected during the Early Cambrian because no glacial deposits have been recorded from any continents of that age (Hambrey and Harland 1981). Furthermore, the ~5‰ weaker sun at ~530 Ma (e.g., Bahcall et al. 2001) and associated higher pCO2 during the Cambrian would have created a larger marine reservoir of dissolved inorganic carbon (DIC), both dampening and delaying the response of δ13C to changes in productivity and pCO2 (Barley and Kah 2004) and making it even more difficult to explain this variability. Nevertheless, even with a larger DIC pool and the absence of some of the climatic amplifiers associated with the growth and decay of ice, wet–dry and (or) warm–cool cycles could have caused short-term variability in nutrient delivery, primary productivity, and δ13C.

An apparently isolated, or at least amplified δ13C negative spike at ca. 529 Ma (Fig. 8; or 480 m, Fig. 6) is reminiscent of the Paleocene–Eocene thermal maximum (PETM). The PETM δ13C excursion has been modeled as an abrupt release of 1100–2100 Gt of continental slope methane hydrates (δ13Cmethane ≈ −60‰) to the water column (e.g., Dickens et al. 1995). However, recent work has suggested that the volume of methane necessary to explain the PETM δ13C data (a) may not have been available during the late Paleocene (Buffett and Archer 2004), and (b) may not have been sufficient to cause the prolonged (~50–200 ka) global warming and deep ocean acidification observed at the PETM (Zachos et al. 2003, Zachos et al. 2004). Higgins and Schrag (2001) suggest that a rapid release of 5000 Gt of organic carbon (δ13Corg ≈ −25‰) from a suddenly isolated and desiccated epicontinental seaway could better explain observations at the PETM. Whether the source is methane or organic carbon, marine or terrestrial, the dynamic release of large volumes of isotopically depleted carbon seems to be required to explain PETM-like δ13C excursions.

$T \geq 10^6$ years

On >100 ka time scales, negative shifts of even a few per mil are difficult to explain with the methane or organic carbon release scenarios because finite reservoirs are quickly depleted. For intervals significantly greater than the relaxation time of the ocean–atmosphere carbon cycle (presently $\sim 10^5$ years (Des Marais 1997, Holser et al. 1988)), a carbon-isotopic mass balance for the bulk Earth can be written

$$\delta^{13}C_e = (1 - f_{org}) \delta^{13}C_c + (f_{org}) \left(\delta^{13}C_c - \epsilon \right)$$

where $\delta^{13}C_c$ is the isotopic composition of the mantle, $\delta^{13}C_c$ is the isotopic composition of the inorganic carbon pool in the ocean derived from silicate weathering, ϵ is the fractionation between DIC and dissolved organic carbon (DOC) (mostly due to the kinetic isotope effect associated with the uptake of carbon by photoautotrophs), and $f_{org} = \frac{C_{org}}{C_{org} + C_{inorg}}$ is the fraction of carbon buried that is organic (Kump 1991, Hayes et al. 2001). Changes in f_{org} will cause shifts in $\delta^{13}C$ by relying on changes in the fluxes, rather than changes in finite reservoirs. Some authors have suggested that methane hydrates also may play a role in such long-term $\delta^{13}C$ variability (Dickens 2003). However, the production of methane hydrate from organic carbon in sediments always will be small relative to the organic matter burial needed to sustain such methanogenesis, so the isotopic budget on long timescales will be dominated by organic matter burial.

Over the ≥ 200000 years time scale required to achieve carbon-isotopic steady state, phosphate (PO$_4^{3-}$) is likely to be the limiting nutrient for primary productivity (Broecker and Peng 1982, Smith 1984, Lenton and Watson 2000, Tyrrell 1999, Schrag et al. 2002). It follows that the burial of organic carbon is controlled by the riverine flux of PO$_4^{3-}$ to the ocean and the carbon to phosphorus (C:P) ratio of organic carbon that is buried (Kump 1988, Schrag et al. 2002). As pointed out by (Schrag et al. 2002) and (Junge et al. 1975), an increase in silicate weathering would lead to an increase in the flux of both riverine PO$_4^{3-}$ and alkalinity to the oceans, enhancing the burial of organic and carbonate carbon in approximately equal proportions and keeping f_{org} the same. This argument suggests that positive $\delta^{13}C$ swings in the Early Cambrian ocean must have been driven by increasing the C:P ratio in buried organic matter. Barring large fluctuations in the Redfield ratio (C:P in marine organic matter today is 106:1) of primary organic matter, the C:P ratio of buried C$_{org}$ depends sensitively on the state of oxygenation at the burial site, with local anoxia favoring remobilization of PO$_4^{3-}$ and efficient burial of low C:P organic carbon (Inglall and VanCappellen 1990, Inglall et al. 1993, VanCappellen and Inglall 1996, Inglall and Jahnoke 1997). In order to change f_{org}, coupled sites of rapid organic carbon burial and local anoxia are needed to lower C:P substantially in globally averaged sedimentary organic carbon.

Today, $\sim 70\%$ of the total organic carbon removed from the global ocean–atmosphere–terrestrial biosphere system is buried in the sediments of large tropical river deltas, such as the Amazon and those in southeast Asia (Hedges and Keil 1995, Berner 1982). Although some of the organic carbon that is buried was derived as particulate terrestrial organic matter carried as suspended load to the ocean, much of the organic carbon that is buried is marine in origin (Aller et al. 1996). Tropical river systems drain catchments undergoing rapid silicate weathering due to the positive temperature and moisture dependence of chemical weathering rates (Berner et al. 1983). These rivers deliver abundant nutrients to the ocean assuring high productivity. The same rivers also provide huge volumes of physically weathered sediment, some of which adsorbs to particulate organic matter in the water column (Keil et al. 1994, Mayer 1999) and buries it before it can be oxidized. Even in the absence of a substantial terrestrial biosphere during the Early Cambrian, tropical river deltas would still have been a dominant site for organic carbon burial.

Consider a tropical river delta emptying into a restricted, Tethys-like basin. When the bottom water is anoxic, C:P in buried sediments will be very high, PO$_4^{3-}$ will be recycled into the water column allowing primary productivity to increase until some other nutrient, such as iron or nitrate becomes limiting, and atmospheric pO$_2$ will rise as photosynthesis continues without fully balanced reoxidation of organic carbon. Eventually, atmospheric oxygen rises to levels sufficient to ventilate bottom waters, increase C:P in buried sediments, and reinitiate PO$_4^{3-}$ as the limiting nutrient (VanCappellen and Ingall 1996).

During high C:P times, $\delta^{13}C$ is high and phosphorites are deposited around the world. During low C:P intervals, $\delta^{13}C$ is low and PO$_4^{3-}$ is scarce. C:P switching appears to have controlled f_{org} on different time scales, cycling with a period of 1–1.5 million years at 543–535 Ma and 525–520 Ma, but dominated by larger amplitude fluctuations with a period of 4–7 million years at 535–526 Ma (Fig. 8). In addition to the pO$_2$ negative feedback, f_{org} may be modulated by a variety of processes, such as climate, biological activity, and the quantity and type of clay entering the basin (Kennedy et al. 2002), perhaps explaining the presence of multiple characteristic time scales in the $\delta^{13}C$ record.

Although C:P switching could be a plausible mechanism for changing $\delta^{13}C$ on million year time scales, large swings in f_{org} may be linked to changes in F_{org} (the burial rate of organic carbon), which is in turn coupled to atmospheric pCO$_2$ and climate. During the End-Ordovician and Silurian, a series of positive $\delta^{13}C$ excursions (e.g., Saltzman and Young 2005, Cramer and Saltzman 2005, Saltzman 2002, Saltzman 2001, Marshall et al. 1997, Long 1993) superficially resemble the Early Cambrian $\delta^{13}C$ excursions from Morocco. Saltzman et al. (2005) proposed that these Ordovician–Silurian positive $\delta^{13}C$ excursions are coincident with warm intervals and are sandwiched between ice age periods with $\delta^{13}C \approx 0$. If the association between $\delta^{13}C$ and cool–warm intervals is correct, positive $\delta^{13}C$ shifts may be accompanied by increasing F_{org}, decreasing pCO$_2$, and increasing pO$_2$ until the climate cools sufficiently for glaciers to advance. Saltzman et al. (2005) suggest that cooling could cause an invigoration of the thermohaline circulation and the ventilation of bottom waters, decreasing C:P in sediments and driving F_{org}, F_{org} and $\delta^{13}C$ down, as part of a negative feedback between pCO$_2$ and the C:P switch (Kump et al. 1999) suggest an alternative scenario for the End-Ordovician glaciation, where the positive $\delta^{13}C$ excursion is caused by increased weathering of shelf–carbonate rocks during syn-glacial sea-level lowstand (increased weathering of shelf carbonates could also occur in response to tectonic uplift of carbonate platforms). Furthermore, Kump (1993) found that large positive shifts in $\delta^{13}C$ are most likely to occur when total carbon throughput and F_{org} are low, but F_{org} is high. Under these conditions, Kump (1993) showed...
that changes in pCO$_2$ during positive shifts in δ^{13}C may be small, and pCO$_2$ might not act as a strong negative feedback on C:P switching. When searching for models to explain the Moroccan δ^{13}C data, it is important to remember that, in the Early Cambrian, there is no evidence for glaciation, so F_{org} must have been constrained to vary within certain limits that never led to pCO$_2$ decreases sufficient to plunge the Earth into an ice age.

Another puzzling aspect of the 106 year variability in δ^{13}C is that the isotope shifts are often extremely rapid, sometimes appearing to take place in just a few hundred thousand years. The most conspicuous example is the 6% rise at 529 Ma that spans just 20 m of stratigraphy in three different sections (MS-7, MS-11, and MS-12) and is not associated with any evidence for significant erosion or depositional hiatus. Rothman et al. (2003) suggested that large fluctuations in δ^{13}C observed in the Neoproterozoic could be attributed to non-steady-state (dynamic) interactions between the marine DIC pool and an unusually large, deep ocean DOC reservoir that was mixed periodically with the surface ocean (e.g., Grotzinger and Knoll 1995). This mechanism is analogous to the non-steady state methane or C_{org} release scenarios discussed above for 106 year time scales, but potentially could explain large and repeated negative excursions in δ^{13}C because of the huge size of the proposed DOC pool. However, it is more difficult to explain rapid positive δ^{13}C excursions because there are no large reservoirs with very high δ^{13}C that can be released and allowed to equilibrate with the water column. Dynamic positive excursions possibly could be achieved if primary productivity were allowed to greatly exceed respiration, if ε itself were allowed to fluctuate under the influence of different biological pathways, or if short pulses of carbonate weathering were allowed to modify the isotopic composition of the ocean. Another complication is that, given the existing global database of coupled δ^{13}C$_{carbonate}$ and δ^{13}C$_{organic}$ measurements, Rothman et al. (2003) has suggested that the very large Neoproterozoic DOC pool was destroyed by ~542 Ma, rendering the Early Cambrian world less susceptible to dynamic DOC–DIC interactions.

δ^{13}C and biodiversity
The only other time in Earth history that is characterized by million year δ^{13}C variability of such large amplitude is the Early Triassic (Payne et al. 2004). In the ca. 4.4 million year period immediately following the most severe extinction in the Phanerozoic, four δ^{13}C cycles of 4% to 10% amplitude coincide with an extreme reduction in the size of carbonate secreting metazoa (Payne et al. 2004). The return to flatline δ^{13}C corresponds neatly to the first appearance of large calcified gastropods. What is the link, if any, between the abundance of skeletal organisms and the stability of the global carbon cycle? The Ediacaran–Cambrian extinction also involves the last appearance of a group of weakly calcifying metazoa (Amthor et al. 2003), which, although low in diversity, are locally abundant and may or may not have been important to the global carbon cycle. Furthermore, although the Nemakit-Daldyn, Tommotian, and Adtabanian all witness increases in the size and diversity of carbonate secreting organisms (Fig. 8), it may not have been until the end of the Early Ordovician that metazoa began to account for a large fraction of the ocean’s carbonate burial.

Damping of the δ^{13}C oscillations in the Early Cambrian (see also, Brasier and Sukhov 1998, Brasier et al. 1994) also coincides with the first appearance of abundant deep burrowing and well-developed ichnofacies (Bottjer et al. 2000, Orr et al. 2003, Droser et al. 1999, Droser et al. 2002). However, C:P switching requires anoxic bottom waters, not just anoxic sediments, so the link between bioturbators in oxic–suboxic environments and their effect on redox conditions in the water column and C:P switching is not straight forward. Furthermore, an explanation for the apparent lack of 1 million year cyclic δ^{13}C oscillations in the Precambrian must be sought. Could the existence of a much larger DIC pool in the past (when elevated atmospheric pCO$_2$ was required to combat the faint young sun) have increased the residence time of carbon in the ocean sufficiently to dampen the δ^{13}C response to C:P switching on the 1 million year time scale? Would reduced Precambrian atmospheric pO$_2$ have increased the characteristic time scales for C:P switching or even made C:P switching impossible? Much longer period shifts (10–100 million years) in δ^{13}C during the late Proterozoic also are thought to be related to nutrient cycling, but are probably modulated by changes in paleogeography (Maloo 2004, Schrag et al. 2002). Perhaps one of the more fundamental characteristics of erasure mass extinctions (Ediacaran–Cambrian, Permian–Triassic, and Cretaceous–Tertiary) is that the biotic crises represent full ecological resets and permanent reductions in the proportion of metazoan that are incapable of buffering their own internal fluids against environmental change (Bambach et al. 2002). What specific role do physically unbuffered taxa play in the global carbon cycle, and is their stepwise decrease in relative abundance through the Phanerozoic linked to the reduction in magnitude and length of associated δ^{13}C disturbances? Does the ecological freedom transiently present in the
aftermath of mass extinctions exert any control on the volatility of the carbon cycle? δ13C excursions during intervals of low biotic diversity commonly are thought to reflect environmental perturbations that inhibited biotic recovery. However, the similarity between Early Cambrian and Early Triassic δ13C records suggests that perhaps biology plays a more direct roll in controlling the carbon cycle. Calibrating fossiliferous Early Cambrian records with the Moroccan δ13C curve could help determine the importance of ecological controls on fractional organic carbon burial and the redox state of the ocean.

Conclusions

In this contribution, a new tectonostratigraphic and isotopic record of the evolution of the Ediacaran – Early Cambrian Anti-Atlas margin was presented. A detailed δ13C curve from fifteen measured stratigraphic sections was placed in a temporal framework by using high-precision U–Pb zircon geochronology of ash beds in the same sections. By sampling carbonate sediments at very high resolution (0.2–1.5 m intervals), coherent δ13C variability with characteristic time scales <106 years was observed. Variations in the δ13C of carbonate were shown to occur on a wide range of time scales, suggesting that different mechanisms are involved, including, but not restricted to, non-steady state processes, such as methane hydrate and organic carbon release on short (<100,000 year) time scales and steady state changes in nutrient recycling and organic carbon burial on longer (>1,000,000 year) time scales. Through a correlation with more fossiliferous, albeit condensed, sections in Siberia, the pattern of cyclic δ13C variation was discussed in the context of the reappearance and diversification of carbonate secreting metazoa during the Early Cambrian. It is encouraging for studies of climate variability and metazoan evolution that, with high resolution sample collection strategies, coherent, very short-lived δ13C events are recoverable in detail from Cambrian sediments.

Acknowledgments

Field and stable isotope work was supported by National Science Foundation (NSF) Geology & Paleontology Program grant EAR-0417422 and Earth System History Program (ESHP) grant EAR-9905495 to P.F. Hoffman, the NASA Astrobiology Institute, the Canadian Institute for Advanced Research (Earth System Evolution Project), and NSF grant EAR-9725577 to J.L. Kirschvink. Geochronology was supported by ESHP grant EAR-9905478 to S.A. Bowring and the NASA Astrobiology Institute. The manuscript benefited from useful discussions with David Barbeau, Michael Bender, David Evans, Charles Ferguson, David Fike, Woody Fisher, Pieter Gresse, John Grotzinger, Galen Halverson, Paul Hoffman, Matt Hurtgen, Hiroto Kimura, Joe Kirschvink, Andy Knoll, Ed Landing, Jonathon Payne, Susannah Porter, Tim Raub, Daniel Rothman, Matthew Saltzman, and Danny Simgan. Thoughtful reviews were provided by Lee Kump and Martin Brasier. Pascale Poussart assisted with Fig. 1. Mohamed Mazouad, Miloud Aarar, Rashid Adil, Jay Ewing, Ryan Ewing, and Matt Kuharic provided assistance in the field. Mohammed Laami, Allel Masbah, Driss Najid and family, Mohammed Saghji, and many others at l’Institute Scientifique, along with Mohammed Boutakiout at l’Université Mohammed V, provided political and logistical support in Rabat. Pascale Poussart, Patrice Lannez, and Anne Bozjon assisted with logistics in France. Heather Borkowski, Lauren Chetel, Chris Deely, Jay Ewing, Anna Graefe, Guy Hoffman, Karla Knudsen, and Devin McPhillips helped with sample preparation, while Ethan Goddard and Greg Eischeid supervised laboratory work at Harvard University. Jahan Ramezani and Mark Martin of the Radiogenic Isotope Lab at MIT did some of the initial work on the ashes from Morocco. Louise Ragno helped find obscure references in international libraries. John Kovacs supplied photographic equipment and advice. Paul Hoffman provided inspiration.

References

© 2005 NRC Canada

