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Summary 

It is possible to calculate precisely the theoretical eigen-frequencies of 
any Earth model which is non-rotating, spherically symmetric, and which 
has an isotropic static stress field and an isotropic dynamic stress-strain 
relation. In this paper Rayleigh’s principle is used to provide a formalism 
which allows the approximate computation of the normal mode eigen- 
frequencies of any Earth model which is slowly rotating and slightly 
aspherical and anisotropic. This formalism is used to compute, correct 
to second order, the effects of the Earth’s angular rotation, and correct to 
first order, the effects of the Earth’s ellipticity of figure on the normal 
mode eigenfrequencies. It is found that for an arbitrary poloidal or 
toroidal niultiplet, the central (m = 0) member of the multiplet is shifted 
slightly in frequency and that the other members of the multiplet are split 
apart asymmetrically by the effects of the Earth‘s rotation and ellipticity. 
The results may be used to make a preliminary correction for rotation 
and ellipticity to the Earth’s raw normal mode data. 

1. Introduction 

The elastic-gravitational normal modes of the Earth have been excited by major 
earthquakes and observed on various low-frequency seismological instruments. 
Records of these observations can be used to measure the angular frequencies of 
oscillation of the Earth’s normal modes. In recent years it has also become possible, 
using high-speed computers, to calculate quickly and precisely the theoretical angular 
frequencies of oscillation of the elastic-gravitational normal modes for a large class 
of Earth models; namely, for any model having the following characteristics: 

(1)  the Earth model is spherically symmetric; 

(2) the angular velocity of steady rotation is zero; 

(3) the dynamic stress-strain relation at every point is perfectly elastic, and 

(4) the static stress field in the equilibrium configuration is at every point iso- 

Any such model of the Earth will be called a SNREI (spherical, non-rotating, elastic, 
isotropic) Earth model. For the purpose of computing the theoretical eigen- 
frequencies, a SNREI Earth model of radius a can be completely characterized by 
three functions of r, the radial distance from the centre. These three functions are 
the density po(r), the bulk modulus Ic(r), and the shear modulus p(r),  the latter two 

furthermore is isotropic; 

tropic. 
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an arbitrary SNREI Earth model due to slow angular rotations and small asphericities 
and anisotropies. For the lower order fundamental normal modes, it is expected 
that the Earth's rotation and ellipticity are the dominant perturbing effects. The 
computed rotational and elliptical splitting parameters depend upon the properties 
p,,, IC, p of the unperturbed SNREI Earth model. In this paper, the eigenfrequencies 
,,to; and ,,to: and the associated 21 + 1 dimensional eigenspaces were computed for 
three different SNREI Earth models, and then Rayleigh's principle and second-order 
rotational perturbation theory were used to determine the corrections to the eigen- 
frequencies, correct to first order in the ellipticity E, and to second-order in the rota- 
tion. The degeneracy of any multiplet ,,Sl or "T, is in general completely removed; 
to zeroeth order the eigenfunctions of a rotating elliptical Earth without geographical 
variations in properties can be characterized by a single spherical harmonic r;l. 
The first-order effect of ellipticity and the second-order effect of rotation not only 
act to shift the entire multiplet but also cause the splitting of a multiplet to be asym- 
metrical. It is pointed out that another effect of rotation, ellipticity and lateral 
inhomogeneities is to give rise to the presence of small amplitude first-order dis- 
placement fields. In particular there will be poloidal fields at toroidal eigen- 
frequencies and toroidal fields at poloidal eigenfrequencies. 
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