Naval Oceanographic Office

Oceanographic Data Bases Division Stennis Space Center, Mississippi 39522-5001

OAML-DBD-72E

DATABASE DESCRIPTION FOR THE GENERALIZED DIGITAL ENVIRONMENTAL MODEL – VARIABLE RESOLUTION (GDEM-V) (U)

OCTOBER 2003

APPROVED FOR PUBLIC RELEASE: DISTRUBUTION IS

DATABASE DESCRIPTION FOR THE GENERALIZED DIGITAL ENVIRONMENTAL MODEL (GDEM-V) (U)

VERSION 3.0

OCTOBER 2003

Naval Oceanographic Office Oceanographic Data Bases Division Stennis Space Center, MS 39522-5003

This page is intentionally blank.

TABLE OF CONTENTS (U)

NAVAL OCEANOGRAPHIC OFFICEI
1.0 (U) INTRODUCTION
1.1 (U) Purpose
2.0 (U) GDEM-V 3.0
2.1 (U) Scope
FIGURE 2.4.1-1 (U) GDEM-V 3.0 COVERAGE4
2.4.2 (U) Grid
TABLE 2.7-1 (U) GDEM-V 3.0 DATABASE FILE SIZES6
2.8 (U) Parameters7
TABLE 2.8-1 (U) GDEM-V 3.0 DATABASE PARAMETERS9
TABLE 2.8-2 (U) GDEM-V 3.0 DATABASE PARAMETER UNITS AND VALUE RANGES
TABLE 2.8-3 (U) GLOBAL ATTRIBUTES STORED IN GDEM-V 3.0 DATABASENETCDF FILES
2.9 (U) Data Storage
TABLE 2.14-1 (U) CALL ARGUMENTS TO SUBROUTINE RDGDEM3S.F12
2.14.2 (U) Program rdgdem3stest.f
3.0 (U) DATABASE FORMAT AND MEDIA READ INSTRUCTIONS

iii

3.1 (U) General	18
3.2(U) Media Read Instructions	18
A.1 (Ú) Test Case 1	22
A.2 (U) Test Case 2	23
A.3 (U) Test Case 3	25
A.4 (U) Test Case 4	28
B.1 (U) CD-ROM Descriptions	33
B.1.1 (U) CD-ROM #1 Contents:	33
B.1.2 (U) CD-ROM #2 contents:	33
B.1.3 (U) CD-ROM #3 contents:	34
B.1.4 (U) CD-ROM #4 contents:	34
B.2 (U) Database and Software Extraction and Setup	34
B.3 (U) Source Description and Compilation Information	35
B.4 (U) Program Execution	36

LIST OF FIGURES (U)

LIST OF TABLES (U)

TABLE 2.7-1 (U) GDEM-V 3.0 DATABASE FILE SIZES......6

Database Description for GDEM-V 3.0

1.0 (U) INTRODUCTION

1.1 (U) Purpose

(U) The purpose of the GDEM-V database is to provide global gridded monthly means and standard deviations of ocean temperature and salinity. It is constructed with sufficiently high vertical and horizontal resolution to fill many of the Navy's requirements for ocean modeling and ocean acoustics. It is the only global ocean temperature and salinity database which includes classified profiles, measured by the Navy, in its construction.

1.2 (U) Background

(U) Master databases to support the Naval Sea Systems Command (NAVSEASYSCOM) were identified by the Chief of Naval Operations (CNO) in CNO 1tr Ser 952D/4U342023 of 23 June 1984. Requirements for subsets to be extracted from these master databases were provided in COMNAVSEASYSCOM 1tr 9460 Ser 63D3/18 of 6 March 1985. Commander, Naval Oceanography Command (COMNAVOCEANCOM) directed the Naval Oceanographic Office (NAVOCEANO) to provide the CNO standards in COMNAVOCEANCOM 1tr 9460 Ser 3/167 of 19 March 1985. These standards are available from the Oceanographic and Atmospheric Master Library (OAML).

1.3 (U) Database Changes

(U) This is version 3.0 of GDEM-V. No part of the previous versions of GDEM-V has been retained, and the techniques used to construct this new version differ considerably from those used previously. Version 3.0 of GDEM-V now includes four variables: temperature, salinity, temperature standard deviation, and salinity standard deviation. Previous versions of Generalized Digital Environmental Model (GDEM) did not contain salinity standard deviation, and the temperature standard deviation was previously included in the temperature variability (TVAR) supplement to GDEM. Although version 3.0 is a total replacement of the previous version of GDEM, it should be replaced in 2003 when a new, and significantly expanded, profile data set becomes available. Unlike the previous versions, GDEM-V 3.0 uses a single-resolution global horizontal grid (15 arc-minutes of latitude and longitude). Subsequent versions of GDEM-V will provide higher-resolution grids where required. All fields in GDEM-V 3.0 are stored in standard Network Common Data Format (NetCDF) files, whereas previous versions of GDEM were stored in binary data and pointer files designed specifically for GDEM. The software to access the GDEM-V 3.0 data sets has completely changed, but the user-interface to the software is similar to that of the previous version.

This page is intentionally blank.

2.0 (U) GDEM-V 3.0

2.1 (U) Scope

(U) The GDEM-V 3.0 database is comprised of 49 NetCDF files containing global grids of temperature, salinity, bottom depth, temperature standard deviation and salinity standard deviation. The database is accompanied by a FORTRAN subroutine to read the database, as well as two driver routines that are provided as examples for calling the reading subroutine. Several examples of output from these two driver routines are provided in Appendix A. However, each NetCDF file is internally documented in a standard manner, and should allow developers to design their own extraction software with no further information.

2.2 (U) Source

(U) The original data source for the construction of this data base is the Master Oceanographic Observation Data Set (MOODS), which now contains nearly 8 million profiles of temperature, salinity, and sound speed. The dataset used for the construction of this version of GDEM was extracted from MOODS in 1995 and edited by Naval Research Lab (NRL) personnel. Later, a small amount of data observed through 1997 was added, bringing the total number of profiles up to about 2.7 million. This dataset was used by NRL to construct the Modular Ocean Data Assimilation System (MODAS) version 2.0 global temperature and salinity climatology and "synthetic" climatology (reference a). This dataset requires further editing, but it was not performed before being used for the production of GDEM-V 3.0 since another much larger dataset is being prepared instead. The full MOODS data set (8 million profiles) is presently being edited, but will not be ready to use for building GDEM until the end of 2002. Therefore, we consider the present version of GDEM-V to be temporary, and expect to replace it in 2003 with a version that uses the full MOODS data set.

2.3 (U) Application

(U) The GDEM database provides sound speed profile input to various acoustic propagationloss models and all other applications that require a temperature, sound speed, or density profiles. The temperature and salinity standard deviations, together with the monthly mean temperatures and salinities, provide ranges of values to quality-control data at sea and in house. The GDEM-V databases do not store sound speed. Sound speed is computed by the GDEM extraction routines using either one of two possible sound speed equations.

2.4 (U) Coverage

2.4.1 (U) Geographic

(U) The database covers the entire global oceans from 82°S to 90°N, but excludes freshwater lakes and completely-land-locked seas such as the Great Lakes of North America and the Caspian Sea. The gridded values extend into shallow water to a minimum bottom depth of 2 m. The bottom depth is defined as the maximum depth from the DBDBV 5-minute bathymetry found in the ¼° by ¼° geographic cell centered at each database grid position. The geographic coverage is displayed on the world map in Figure 2.4.1-1. Monthly gridded values exist at all positions colored light blue.

2.4.2 (U) Grid

(U) Each database file contains a fully populated 3-dimensional grid (longitude, latitude, and depth) for each variable and each month of the year. At grid positions and depths over land or underground, the value of each variable is set to a special value. All data values are scaled and stored as 2-byte integers, and the special value (indicating no value) is set to –32000.

2.5 (U) Resolution

(U) The latitude and longitude grid resolution is ¹/₄° over the entire database, and the depth grid is the same at each horizontal grid location.

(U) The latitude grid has 689 positions and ranges from -82.0° to 90.0° by increments of 0.25° , where negative values are in the Southern Hemisphere and positive values are Northern Hemisphere.

(U) The longitude grid has 1440 positions and ranges from 0° to 359.75° by increments of 0.25°.

(U) The depth grid has 78 nodes at the following depths (given in units of meters): 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000, 4200, 4400, 4600, 4800, 5000, 5200, 5400, 5600, 5800, 6000, 6200, 6400, 6600.

(U) The database contains one file for each variable and month of the year, i.e., one file for January temperature, one for February temperature, etc.. The time at the center of each month is defined in terms of the number of hours from the beginning of the (366-day) year as 366.0, 1096.485, 1826.97, 2557.455, 3287.94, 4018.425, 4748.91, 5479.395, 6209.88, 6940.365, 7670.85, 8401.335 hours for January, February, March, April, May, June, July, August, September, October, November, and December, respectively.

2.6 (U) Organization

(U) The database contains 48 NetCDF files containing 3-dimensional grids of the four variables, and one 2-dimensional grid of the bottom depth.

(U) The 12 monthly grids of temperature are stored in files named like tgdemv3sMM.nc, where MM represents one of the month numbers (01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, or 12).

(U) The 12 monthly grids of salinity are stored in files named like sgdemv3sMM.nc, where MM represents one of the month numbers.

(U) The 12 monthly grids of temperature standard deviation are stored in files named like tstdgdemv3sMM.nc, where MM represents one of the month numbers.

(U) The 12 monthly grids of salinity standard deviation are stored in files named like sstdgdemv3sMM.nc, where MM represents one of the month numbers.

(U) The 2-dimensional grid of bottom depth is stored in the file named dbdbvgdemv3s.nc.

(U) A FORTRAN subroutine is provided which extract profiles from the NetCDF database files. Subroutine rdgdem3s (stored in file rdgdem3s.f) extracts profiles of temperature and salinity, and optionally extracts temperature standard deviation, salinity standard deviation, and bottom depth at a single grid location. Two FORTRAN main programs, rdgdem3stest.f and rdgdem3stestm.f, provide examples for calling subroutine rdgdem3s.

2.7 (U) Size

(U) The total size of the database, including all 49 uncompressed NetCDF files is 7.27 gigabytes. The total size after optimized compression using gzip –best is 1.85 gigabytes, a 74.5% reduction.

(U) Compressed (gzipped) files have ".gz" appended to the end of the file name. The size of each file in the database in both compressed and uncompressed form is listed in Table 2.7-1.

UNCLASSIFIED				
FILE NAME	BYTES	BYTES		
	UNCOMPRESSED	COMPRESSED		
tgdemv3s01.nc	154,796,336	57,247,423		
tgdemv3s02.nc	154,796,336	57,314,278		
tgdemv3s03.nc	154,796,336	57,238,236		
tgdemv3s04.nc	154,796,336	57,284,984		
tgdemv3s05.nc	154,796,336	57,219,884		
tgdemv3s06.nc	154,796,336	57,290,378		
tgdemv3s07.nc	154,796,336	57,410,068		
tgdemv3s08.nc	154,796,336	57,456,448		
tgdemv3s09.nc	154,796,336	57,378,301		
tgdemv3s10.nc	154,796,336	57,360,926		
tgdemv3s11.nc	154,796,336	57,240,012		
tgdemv3s12.nc	154,796,336	57,213,235		
sgdemv3s01.nc	154,796,320	39,107,041		
sgdemv3s02.nc	154,796,320	39,214,712		
sgdemv3s03.nc	154,796,320	39,144,665		
sgdemv3s04.nc	154,796,320	38,813,394		
sgdemv3s05.nc	154,796,320	38,566,111		
sgdemv3s06.nc	154,796,320	38,516,674		
sgdemv3s07.nc	154,796,320	38,787,331		
sgdemv3s08.nc	154,796,320	38,980,057		
sgdemv3s09.nc	154,796,320	39,065,725		
sgdemv3s10.nc	154,796,320	39,106,083		
sgdemv3s11.nc	154,796,320	38,428,203		
sgdemv3s12.nc	154,796,320	38,891,998		
	UNCLASSIFIED			
FILE NAME	BYTES	BYTES		
	UNCOMPRESSED	COMPRESSED		

UNCLASSIFIED					
tstdgdemv3s01.nc	154,796,348	41,553,689			
tstdgdemv3s02.nc	154,796,348	41,901,294			
tstdgdemv3s03.nc	154,796,348	41,177,844			
tstdgdemv3s04.nc	154,796,348	40,576,407			
tstdgdemv3s05.nc	154,796,348	40,451,136			
tstdgdemv3s06.nc	154,796,348	39,589,455			
tstdgdemv3s07.nc	154,796,348	39,449,335			
tstdgdemv3s08.nc	154,796,348	40,001,258			
tstdgdemv3s09.nc	154,796,348	40,039,184			
tstdgdemv3s10.nc	154,796,348	40,434,769			
tstdgdemv3s11.nc	154,796,348	40,511,733			
tstdgdemv3s12.nc	154,796,348	40,896,134			
sstdgdemv3s01.nc	154,796,340	19,947,963			
sstdgdemv3s02.nc	154,796,340	20,083,355			
sstdgdemv3s03.nc	154,796,340	19,659,944			
sstdgdemv3s04.nc	154,796,340	19,063,428			
sstdgdemv3s05.nc	154,796,340	19,041,087			
sstdgdemv3s06.nc	154,796,340	18,737,429			
sstdgdemv3s07.nc	154,796,340	18,907,605			
sstdgdemv3s08.nc	154,796,340	19,076,651			
sstdgdemv3s09.nc	154,796,340	18,823,348			
sstdgdemv3s10.nc	154,796,340	18,896,712			
sstdgdemv3s11.nc	154,796,340	19,015,141			
sstdgdemv3s12.nc	154,796,340	19,251,252			
dbdbvgdemv3s.nc	2,002,552	1,069,907			
rdgdemv3s.f	54,697				
rgdemv3stest.f	3,875				
rgdemv3stestm.f	3,081				
UNCLASSIFIED					

2.8 (U) Parameters

(U) The GDEM-V 3.0 database is stored in 49 files. Of these, 48 contain profile data and one contains bottom depth data. Each file contains both geographic and profile data (or bottom depth data). Each file is written in NetCDF. NetCDF was created under contract with the Division of Atmospheric Sciences of the National Scientific Foundation and is freely available from the Unidata Program Center in Boulder, Colorado on the Internet at http://www.unidata.ucar.edu/packages/netcdf. The GDEM NetCDF files were written using the conventions outlined in the NAVO_netcdf_v1.0 standards. The conventions specify the variable names, variable storage type (float, integer, etc.), and several variable attributes, such as the long variable name, the units, and the NAVO variable code number.

(U) Each NetCDF file stores coordinate variables (latitude, longitude, depth, and time) and their attributes, values (such as temperature and salinity) and their attributes, and global attributes (attributes which pertain to the entire file).

(U) Table 2.8-1 lists the parameters in the GDEM NetCDF data files. The first column lists the variable name. The second column lists the Long Name attribute for each variable. The third column lists the array size of the variable. The fourth column lists the variable type, where float is a 4-byte real number and integer*2 is a 2-byte integer. The fifth column lists the files where this variable appears. The files, A through E are identified as:

- A temperature grids (tgdemv3s01.nc, tgdemv3s02.nc, etc.)
- B salinity grids (sgdemv3s01.nc, sgdemv3s02.nc, etc.)
- C temperature standard deviation grids (tstdevgdemv3s01.nc, tstdevgdemv3s02.nc, etc.)
- D salinity standard deviation grids (sstdevgdemv3s01.nc, sstdevgdemv3s02.nc, etc.)
- E bottom depth grid (dbdbvgdemv3s.nc).

(U) Variables stored in type integer*2 (including variable botdep) have been scaled and offset. Scaled variables have the attributes, scale_factor and add_offset, which are stored in the NetCDF files. The values of these variable attributes are:

- scale_factor = 0.001
- add_offset = 15.

(U) To recover the value of a variable, V, from its integer*2 scaled value I, the following operation must be performed,

V = add_offset + scale_factor * I

(U) Values recovered by re-scaling the integer*2 values have a precision of 3 decimal places.

(U) The variable attribute, missing_value, is the value a variable takes at positions over land or underground. It is stored as the scaled form and has the value -32000 (an integer*2 type), which when re-scaled has the value -17.0.

UNCLASSIFIED					
Variable Name	Long Name Attribute	Array Size	Туре	Files	
lat	Latitude	689	real*8	A,B,C,D,E	
lon	Longitude	1440	real*8	A,B,C,D,E	
depth	Depth	78	real*8	A,B,C,D	
time		1	real*8	A,B,C,D	
water_temp	Water Temperature	(1440,689,78)	integer*2	А	
salinity	Salinity	(1440,689,78)	integer*2	В	
water_temp_stdev	Water Temperature St. Dev.	(1440,689,78)	integer*2	С	
salinity_stdev	Salinity St. Dev.	(1440,689,78)	integer*2	D	
bbotdep	Bottom Depth	(1440,689)	integer*2	E	
UNCLASSIFIED					

Table 2.8-1(U) GDEM-V 3.0 Database Parameters

(U) A units attribute is provided in the database files for each variable. The units attribute and valid range for each variable is listed in Table 2.8-2.

Table 2.8-2	(U) GDEM-V 3.0 Database Parameter Units and Value Ranges
-------------	--

UNCLASSIFIED				
Variable Name	Units	Value Range		
lat	degrees_north	-82 to 90		
lon	degrees_east	0 to 359.75		
depth	meters	0 to 6600		
time	hour (after beginning of year)	366.0 to 8401.335 (mid month)		
water_temp	degC			
salinity	psu			
water_temp_stdev	degC			
salinity_stdev	psu			
botdep	meters			
UNCLASSIFIED				

(U) Global attributes are stored in each file, which describe the entire data set. The Global attributes are listed in Table 2.8-3.

UNCLASSIFIED			
Global Attribute	Value		
CONVENTION	NAVO_netcdf_v1.0		
INSTITUTION	Naval Oceanographic Office		
CONTACT	NAVO, Code N312		
HISTORY	Created: 08-Jul-2002 10:04:56		
DESCRIPTION	GDEMV 3.0		
CLASSIFY	UNCLASSIFIED		
DISTRIBUTION	DISTRIBUTION STATEMENT A:		
	APPROVED FOR PUBLIC RELEASE:		
	DISTRIBUTION is UNLIMITED.		
DOWNGRADE	N/A		
AUTHORITY	N/A		
UNCLASSIFIED			

Table 2.8-3(U) Global Attributes Stored in GDEM-V 3.0 Database NetCDF Files

2.9 (U) Data Storage

(U) The GDEM-V 3.0 database is comprised of 49 NetCDF files that are internally documented. One file contains the 2-dimensional grid of the global bottom topography. There are twelve files each of the 3-dimensional grids of temperature, salinity, temperature standard deviation, and salinity standard deviation. The twelve files for each variable are comprised of one file for each month of the year.

2.10 (U) Data Quality

(U) GDEM-V 3.0 is a temporary product intended to fill a gap between the previous versions of GDEM-V (versions 2.x) and the version expected to be produced in 2003 from the fully edited MOODS database. No effort was made to re-edit the NRL MOODS profile dataset, even though spot checks of the database indicate that further editing is required. Examination of the GDEM-V 3.0 grids identified a few small isolated locations where gridded values of temperature or salinity are substandard. Locations of remaining bad observations can be identified by "bullseyes" in plots of the standard deviation fields. Also, lack of profile observations in the edited dataset resulted in overly-smoothed results in some regions such as in the Arabian Gulf and in the Gulf of Oman in some months. Results for these and other regions are expected to improve in the forthcoming version of GDEM-V once the newly-edited MOODS dataset is used.

2.11 (U) References.

- (a) (U) D. N. Fox, W.J. Teague, C. N. Barron, M. R. Carnes, and C. M. Lee, 2002: The Modular Ocean Data Assimilation System (MODAS), J. Atmos. Ocean. Tech., 19, 240-252.
- (b) (U) Wilson, W. D., 1960: Speed of sound in sea water as a function of temperature, pressure and salinity. J. Acoust. Soc. Am., 32, 641-644.
- (c) (U) Chen, C. T., and F. J. Millero, 1977: Sound speed in seawater at high pressures. J. Acoust. Soc. Am., 62, 1129-1135.
- (d) (U) F. J. Millero and Xu Li, 1994: Comments on "On equations for the speed of sound in seawater", J. Acoust. Soc. Am., 95, 2757-2759.

2.12 (U) Classification/Distribution

(U) The parameters and area coverage are UNCLASSIFIED. The distribution statement for the GDEM-V 3.0 database is as follows:

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED.

2.13 (U) Point of Contact

(U) Questions relating to the GDEM-V 3.0 database should be directed to:

Commanding Officer Naval Oceanographic Office 1002 Balch Boulevard Stennis Space Center, MS 39522-5001

(U) For distribution questions: Attn: Code N641 Comm: (228) 688-5160 DSN: 828-5160 Email: <u>moskalw@navo.navy.mil</u>

(U) For technical questions: Attn: Code N312 Comm: (228) 688-5648 Email: <u>carnesm@navo.navy.mil</u>

2.14 (U) Extraction/Retrieval

(U) The GDEM-V data files are stored in standard NetCDF files. This file structure is selfdescribing and should allow users to easily design and write extraction software without any further information. However, GDEM-V 3.0 is delivered with extraction software written in FORTRAN 77 which has a user-interface similar to the software provided with the previous versions (version 2.x) of GDEM-V. Subroutine rdgdem3s.f extracts a single profile of temperature and salinity that is nearest the position and time requested by the user. The sound speed profile is computed by the requested method (either by Wilson's equation, reference b, or by the equation of Chen and Millero, reference c, including modification made later by Millero and Li, reference d). Optionally the corresponding profiles of temperature standard deviation and salinity standard deviation and bottom depth are also output. Also, if requested, each profile will be extended to the ocean bottom. The extension is performed in a manner which ensures that the extended segment is statically stable (Brunt-Vaisala frequency squared is positive). Two FORTRAN driver programs are also included as examples for calling subroutine rdgdem3s.f. Descriptions of this subroutine and the two driver programs follow.

2.14.1 (U) Subroutine rdgdem3s.f

(U) Subroutine rdgdem3(sndspdtype, getstd, getbot, depthout, tprof, sprof, sndspd, tstdprof, sstdprof, rlonin, rlatin, rdayin, rlonout, rlatout, monthout, nzout, nzoutflag, botdep, extenddepth, directory)

(U) Arguments:

Table 2.14-1 (U) Call Arguments to Subroutine rdgdem3s.f

UNCLASSIFIED			
VARIABLE	IN/OUT	ТҮРЕ	DESCRIPTION
sndspdtype	Input	Char*3	Sound speed calculation. 'cml' computes sound speed using
			the Chen, Miller, Li equation. 'wil' computes sound speed
	_		using Wilson's equation.
getstd	Input	Logical	.true. extract and return temperature and salinity std. dev.
	-		.false. do not extract standard deviations.
getbot	Input	Logical	.true. extract and return ocean bottom depth (m)
don th out	Oretrart	Deel*4	.false. do not extract and return
	Output	Real*4	Array of length result of vertical profile depths (m)
cprof	Output	Real*4	Array of length nzout of calinity profile (neu)
spion	Output	Real*4	Array of length nzout of sound speed profile (m/s)
tstdprof	Output	Real*4	Array of length nzout of temperature standard deviation
istupioi	Output	iteal 4	$(de\sigma C)$ Only output if σ etstd = true
sstdprof	Output	Real*4	Array of length nzout of salinity standard deviation (psu).
			Only ouput if getstd = .true.
	ļ	•	UNCLASSIFIED
			UNCLASSIFIED
VARIABLE	IN/OUT	ТҮРЕ	DESCRIPTION
rlonin	Input	Real*4	Requested decimal longitude of profile. Either 0.° to 360.° or
	-		–180.° to 180.°.
rlatin	Input	Real*4	Requested decimal latitude of profile, -82.° to 90.°.
rdavin	Input	Real*4	Requested decimal day of the year of profile, 0, to 366.
rlonout	Output	Real*4	Decimal longitude (0.° to 360.°) of output profile from
	-		GDEM-V grid position closest to requested longitude.
rlatout	Output	Real*4	Decimal latitude (-82.° to 90.°) of output profile from GDEM-
			V grid position closest to requested latitude.
monthout	Output	Integer	Month number (Jan = 1, Feb = 2, Dec = 12) of the month
		_	containing the user-requested day of the year (rdayin).
nzout	Output	Integer	Length of the output arrays (tprof, sprof, tstdprof, sstdprof,
			and sndspd). The total length of arrays should be set to 78 or
			greater, but on output, only the first not positions contain
ngoutflag	Output	Integer	Valid (not below ocean boltom) output profile values.
lizoutilag	Output	integer	addad
			1 extension to the bottom resulted in addition of a non-
			standard depth at the bottom of the profile
botdep	Output	Real*4	Bottom depth (m) at output profile position. Not output if
ootacp	output		getbot = .false. Extracted from file dbdbvgdemv3s.nc.
extenddepth	Input	Logical	If both extenddepth = .true. and getbot = .true., extends
1		0	profiles from the deepest standard depth (with valid values) to
			the ocean bottom depth (botdep). Typically, the ocean bottom
			depth is between the deepest standard depth with valid values
			and the next standard depth. The extension procedure is as
			follows:
			• The salinity and standard deviation profiles are extended
			downward by linear extrapolation using the gradient
			between the last two depths with valid values.

			• The temperature is extended by extrapolating the potential temperature, and then converting the potential temperature back to insitu temperature.
			• If the Brunt-Vaisala frequency squared of the extended profile segment is less than 1.5x10 ⁻⁷ /s ² , then the temperature and salinity of the extended segment are modified to produce a Brunt-Vaisala frequency squared of 1.5x10 ⁻⁷ /s ² .
directory	Input	Char*132	Name of directory containing the GDEM-V NetCDF files of temperature, salinity, temperature standard deviation, salinity standard deviation, and ocean bottom depth. Only the monthly files being accessed must be present in directory.
			UNCLASSIFIED

2.14.2 (U) Program rdgdem3stest.f

(U) Program rdgdem3stest.f is a simple driver program for subroutine rdgdem3s.f. It is compiled and linked on a Unix operating system using,

f77 –o rdgdem3stest rdgdem3stest.f rdgdem3s.f netcdfdir/libnetcdf.a -Inetcdfdir

to create an executable named rdgdem3stest. The directory netcdfdir (change this to the actual full path on your computer) is assumed to contain the files libnetcdf.a and netcdf.inc.

(U) This is an interactive program that prompts the user to input the decimal latitude, longitude, and day of the year. The GDEM-V profiles of depth, temperature, salinity, sound speed, and (optionally) the temperature standard deviation and salinity standard deviation are extracted from the GDEM-V files at the grid point location and month closest to the requested position and time. The extracted profiles are then listed to the screen and written to the ASCII file, gdemv3out.asc. Once listed, the user is prompted to enter another set of coordinates. Program execution is halted if the user inputs 0, 0, 0 at the prompt. A specific example of a short session with this program is listed in Appendix A. See Appendix B for compiling and linking on a PC using Cygwin.

(U) The specific form of the output depends upon five parameters set in rdgdem3stest.f before it is compiled and linked. These parameters are:

1) directory Name of the directory containing the GDEM-V 3.0 database files. When specifying this directory on a UNIX or PC machine include the '/' or '\\', respectively at the end of the directory name. Directory assignment examples are as follows:

directory='/home/carnesm/GDEMV3/DATABASE/' - UNIX directory='\\C:\\GDEMV3\\DATABASE\\' - PC

- 2) Sndspdtype Sets equation to use for calculation of sound speed. When set to 'cml', sound speed is computed using the Chen, Miller, Li equation, and when set to 'wil', sound speed is computed using Wilson's equation. For example, sndspdtype='cml'.
- 3) getstd If getstd=.true., temperature and salinity standard deviation profiles are extracted and printed.
- 4) getbot If getbot=.true., the ocean bottom depth at the profile location is extracted and printed.
- 5) extenddepth If extendepth=.true., the profiles are extended to the ocean bottom depth.

2.14.3 (U) Program rdgdem3stestm.f

(U) Program rdgdem3stestm.f is similar to rdgdem3stest.f, but it outputs all profiles found within the user-defined geographic boundaries. It is compiled and linked on a UNIX operating system using,

f77 –o rdgdem3stestm rdgdem3stestm.f rdgdem3s.f netcdfdir/libnetcdf.a -Inetcdfdir

to create an executable named rdgdem3stestm. The directory netcdfdir (change this to the actual full path on your computer) is assumed to contain the files libnetcdf.a and netcdf.inc.

(U) This is an interactive program that prompts the user to input the decimal bottom latitude, top latitude, left longitude, right longitude, and day of the year. All GDEM-V profiles of depth, temperature, salinity, sound speed, and (optionally) the temperature standard deviation and salinity standard deviation within the boundaries defined by these latitudes and longitudes are extracted from the GDEM-V files for the month closest to the requested time. The extracted profiles are then output to the ASCII file named gdemv3out.asc. A specific example of a short session with this program is listed in Appendix A. See Appendix B for compiling and linking on a PC using Cygwin.

(U) The specific form of the output depends upon five parameters set in rdgdem3stest.f before it is compiled and linked. These are the same parameters specified in program rdgdem3test.f above.

This page is intentionally blank.

3.0 (U) DATABASE FORMAT AND MEDIA READ INSTRUCTIONS

3.1 (U) General

(U) The database is provided on four CD-ROMs. Each is labeled with the appropriate classification statement. The contents of the CD-ROMs are as follows:

- CD-ROM 1 FORTRAN extraction software, Readme file, this database description document, NetCDF library for Cygwin, 12 monthly files of temperature, bottom depth file.
- CD-ROM 2 12 monthly files of salinity.
- CD-ROM 3 12 monthly files of temperature standard deviation.
- CD-ROM 4 12 monthly files of salinity standard deviation.

(U) All files except the FORTRAN extraction software were compressed using gzip. Before being used, the required files (only the months being accessed) must be copied to a hard disk and uncompressed. On a UNIX system, the files can be uncompressed using the command gunzip or gzip –d. On a Windows operating system, the files can be uncompressed using commercial packages such as Winzip.

(U) All data files are binary NetCDF files. Since this is a well-known standard format, many free software packages are available for viewing and manipulating these files on machines with either UNIX or WINDOWS operating systems. Among these are ferret, available on the web at http://ferret.wrc.noaa.gov/Ferret/, and ncbrowse, available at http://ferret.wrc.noaa.gov/Ferret/, and ncbrowse, available at http://www.epic.noaa.gov/java/ncBrowse/. Other packages can be found at http://www.epic.noaa.gov/java/ncBrowse/. Other packages can be found at http://www.unidata.ucar.edu/packages/netcdf/software.html. Software is also available to read NetCDF files using FORTRAN, C, Matlab, Perl, Java, and Python.

(U) The FORTRAN extraction software supplied with GDEM-V 3.0 must be compiled and linked with the NetCDF software library. Source code as well as compiled binaries of the NetCDF package can be found at <u>http://www.unidata.ucar.edu/packages/netcdf/index.html</u>. On a UNIX platform, the only two files needed are the NetCDF library archive, libnetcdf.a, and the associated include file, netcdf.inc.

3.2 (U) Media Read Instructions

(U) The database files are stored on four CD-ROMS in compressed (gzipped) NetCDF (binary) files. These files should be transferred from media to hard disk using a current operating system file transfer routine. Once transferred, each file should be uncompressed using gunzip (or gzip –d) on a UNIX system or Winzip on a PC.

This page is intentionally blank.

APPENDIX A

Test Cases

This page is intentionally blank.

(U) APPENDIX A – Test Cases

(U) Test Cases 1 and 2 show examples of output from rdgdem3stest.f and test cases 3 and 4 show examples of output from rdgdem3stestm.f

A.1 (U) Test Case 1

(U) In file rdgdem3stest.f, set

- sndspdtype = 'wil'
- getstd = .false.
- getbot = .false.
- extenddepth = .false.

(U) Then compile and link, and then run rdgdemvstest.

At the prompt, ➤ Enter: lat, lon, day (0,0,0 to quit) enter, 29.6, -88.1, 360.2

At the next prompt, ➤ Enter: lat, lon, day (0,0,0 to quit) enter, 33.1, 125.2, 185.5

At the next prompt,
➢ Enter: lat, lon, day (0,0,0 to quit) enter,
0,0,0
which will end the program run.

(U) The output in file gdemv3out.asc should contain,

```
271,900
          29.600 360.2 Requested lon, lat, day
 272.000 29.500 12
                     Extracted lon, lat, month
 21 0 Num depths, flag(1=extended)
depth(m) temp(C) salin sspd(m/s)
   0.0
        21.480
               35.046
                        1525.97
   2.0
        21.498
                35.137
                        1526.16
   4.0
        21.516
               35.229
                        1526.34
                        1526.53
        21.537
                35.316
   6.0
        21.584
                35.419
                        1526.81
   8.0
        21.635
  10.0
               35.541
                        1527.11
  15.0
        21.827
                35.719
                        1527.90
  20.0
        21.968
               35.909
                        1528.56
  25.0
        22.049
               35.991
                        1528.94
        22.146
  30.0
               36.055
                        1529.34
```

35.0	22.160	36.074	1529.48
40.0	22.146	36.092	1529.55
45.0	22.079	36.180	1529.56
50.0	22.040	36.185	1529.55
55.0	21.919	36.282	1529.43
60.0	21.748	36.287	1529.08
65.0	21.356	36.284	1528.14
70.0	21.016	36.286	1527.33
75.0	20.729	36.295	1526.66
80.0	20.389	36.307	1525.84
85.0	19.958	36.323	1524.77
125.200	9 33.100	9 185.5	Requested lon, lat, day
125.250	9 33.000	9 7 Ex ⁻	tracted lon,lat,month
23 0 Ni	um depths	s, flag(:	1=extended)
depth(m)) temp(C)) salin	sspd(m/s)
0.0	24.537	31.082	1529.19
2.0	24.261	31.149	1528.62
4.0	23.986	31.216	1528.05
6.0	23.671	31.289	1527.39
8.0	23.272	31.377	1526.52
10.0	22.819	31.474	1525.51
15.0	20.173	31.986	1519.16
20.0	17.603	32.422	1512.41
25.0	15.723	32.827	1507.25
30.0	14.191	33.156	1502.84
35.0	13.627	33.328	1501.28
40.0	13.263	33.463	1500.31
45.0	12.959	33.580	1499.52
50.0	12.699	33.683	1498.85
55.0	12.656	33.714	1498.82
60.0	12.633	33.730	1498.84
65.0	12.610	33.749	1498.87
70.0	12.591	33.779	1498.92
75.0	12.570	33.826	1498.99
80.0	12.551	33.866	1499.05
85.0	12.542	33.864	1499.10
90.0	12.522	33.888	1499.14
95.0	12.507	33.945	1499.24

A.2 (U) Test Case 2

(U) In file rdgdem3stest.f, set

- sndspdtype = 'cml'
- getstd = .true.
- getbot = .true.
- extenddepth = .true.

(U) Then compile and link, and then run rdgdem3stest.

At the prompt, > Enter: lat, lon, day (0,0,0 to quit) enter, 29.6, -88.1, 360.2 At the next prompt, > Enter: lat, lon, day (0,0,0 to quit) enter, 33.1, 125.2,185.5 At the next prompt, > Enter: lat, lon, day (0,0,0 to quit) enter, 0,0,0 which will end the program run.

(U) The output in file gdemv3out.asc should contain,

360.2	Requested	lon,lat,	day	
12 87	7. Extract	ed lon,	Lat, month, bot	dep
, flag(1	L=extended)			
salin	<pre>sspd(m/s)</pre>	tstdev s	sstdev	
35.046	1525.53	2.239	1.614	
35.137	1525.71	2.212	1.427	
35.229	1525.89	2.196	1.256	
35.316	1526.08	2.194	0.989	
35.419	1526.35	2.173	0.887	
35.541	1526.65	2.162	0.798	
35.719	1527.43	2.099	0.572	
35.909	1528.09	2.047	0.482	
35.991	1528.48	2.032	0.480	
36.055	1528.88	2.058	0.444	
36.074	1529.02	2.096	0.448	
36.092	1529.09	1.842	0.483	
36.180	1529.09	1.932	0.355	
36.185	1529.08	1.899	0.419	
36.282	1528.95	1.842	0.153	
36.287	1528.59	1.690	0.121	
36.284	1527.63	1.509	0.099	
36.286	1526.81	1.496	0.093	
36.295	1526.13	1.463	0.090	
36.307	1525.30	1.438	0.091	
36.323	1524.22	1.371	0.090	
36.329	1523.78	1.371	0.090	
185.5	Requested	lon,lat,	day	
	360.2 12 87 , flag(1 salin 35.046 35.137 35.229 35.316 35.419 35.541 35.719 35.909 35.991 36.055 36.074 36.092 36.185 36.282 36.287 36.284 36.284 36.285 36.285 36.285 36.329 185.5	360.2 Requested 12 87. Extract , flag(1=extended) salin sspd(m/s) 35.046 1525.53 35.137 1525.71 35.229 1525.89 35.316 1526.08 35.419 1526.35 35.541 1526.65 35.719 1527.43 35.909 1528.09 35.991 1528.48 36.055 1528.88 36.074 1529.02 36.092 1529.09 36.180 1529.09 36.185 1529.09 36.287 1528.95 36.287 1528.59 36.284 1527.63 36.286 1526.81 36.295 1526.13 36.307 1525.30 36.323 1524.22 36.329 1523.78 185.5 Requested	360.2 Requested lon,lat, 12 87. Extracted lon, , flag(1=extended) salin sspd(m/s) tstdev s 35.046 1525.53 2.239 35.137 1525.71 2.212 35.229 1525.89 2.196 35.316 1526.08 2.194 35.419 1526.35 2.173 35.541 1526.65 2.162 35.719 1527.43 2.099 35.909 1528.09 2.047 35.991 1528.48 2.032 36.055 1528.88 2.058 36.074 1529.02 2.096 36.092 1529.09 1.842 36.180 1529.09 1.842 36.185 1529.08 1.899 36.282 1528.95 1.842 36.287 1528.59 1.690 36.284 1527.63 1.509 36.284 1527.63 1.509 36.286 1526.13 1.463 36.307 1525.30 1.438 36.323 1524.22 1.371 36.329 1523.78 1.371 185.5 Requested lon,lat,	360.2 Requested lon, lat, day 12 87. Extracted lon, lat, month, bot , flag(1=extended) salin sspd(m/s) tstdev sstdev 35.046 1525.53 2.239 1.614 35.137 1525.71 2.212 1.427 35.229 1525.89 2.196 1.256 35.316 1526.08 2.194 0.989 35.419 1526.35 2.173 0.887 35.541 1526.65 2.162 0.798 35.719 1527.43 2.099 0.572 35.909 1528.09 2.047 0.482 35.991 1528.48 2.032 0.480 36.055 1528.88 2.058 0.444 36.074 1529.02 2.096 0.448 36.092 1529.09 1.842 0.483 36.180 1529.09 1.932 0.355 36.185 1529.08 1.899 0.419 36.282 1528.95 1.842 0.153 36.287 1528.59 1.690 0.121 36.284 1527.63 1.509 0.099 36.286 1526.81 1.496 0.093 36.295 1526.13 1.463 0.090 36.307 1525.30 1.438 0.091 36.323 1524.22 1.371 0.090 36.329 1523.78 1.371 0.090 185.5 Requested lon, lat, day

	125.250	9 33.00	079	5. Extrac	ted lon,	lat, month, bot	dep
	23 0 Ni	um depth:	s, flag(1=extended)		
1	depth(m)) temp(C) salin	sspd(m/s)	tstdev	sstdev	
	0.0	24.537	31.082	1529.04	3.129	1.427	
	2.0	24.261	31.149	1528.46	3.091	1.317	
	4.0	23.986	31.216	1527.88	3.093	1.222	
	6.0	23.671	31.289	1527.20	3.142	1.145	
	8.0	23.272	31.377	1526.31	3.276	1.092	
	10.0	22.819	31.474	1525.28	3.456	1.067	
	15.0	20.173	31.986	1518.82	3.395	0.820	
	20.0	17.603	32.422	1512.00	3.590	0.734	
	25.0	15.723	32.827	1506.82	3.107	0.641	
	30.0	14.191	33.156	1502.41	2.721	0.619	
	35.0	13.627	33.328	1500.85	2.392	0.563	
	40.0	13.263	33.463	1499.89	2.102	0.534	
	45.0	12.959	33.580	1499.10	1.822	0.465	
	50.0	12.699	33.683	1498.43	1.601	0.462	
	55.0	12.656	33.714	1498.41	1.463	0.434	
	60.0	12.633	33.730	1498.43	1.383	0.414	
	65.0	12.610	33.749	1498.46	1.312	0.409	
	70.0	12.591	33.779	1498.51	1.292	0.410	
	75.0	12.570	33.826	1498.58	1.273	0.377	
	80.0	12.551	33.866	1498.64	1.193	0.341	
	85.0	12.542	33.864	1498.69	1.105	0.319	
	90.0	12.522	33.888	1498.74	1.030	0.299	
	95.0	12.507	33.945	1498.84	1.110	0.305	

(U) Test Case 3 A.3

(U) In file rdgdem3stestm.f, set

- sndspdtype = 'wil'
 getstd = .false.
- getbot = .false.
- extenddepth = .false.

(U) Then compile and link, and then run rdgdem3stestm.

At the prompt, Enter: lat_bot,lat_top,lon_left,lon_right,day enter, 54.4,54.8,13.6,14.1,17.3

(U) The program will extract the profiles within the specified latitude/longitude boundaries and then write the results to file gdemv3out.asc and then stop without further prompting.

(U) The output in file gdemv3out.asc should contain,

13.750	54.500	1 lor	n,lat,month
8 0 Nur	n depths,	flag(1	1=extended)
depth(m)	temp(C)	salin	sspd(m/s)
0.0	2.739	8.390	1426.14
2.0	2.750	8.431	1426.28
4.0	2.762	8.471	1426.41
6.0	2.764	8.495	1426.49
8.0	2.767	8.528	1426.57
10.0	2.771	8.557	1426.66
15.0	2.797	8.669	1427.00
20.0	2.873	8.817	1427.62
13.750	54.750	1 lor	n.lat.month
9 0 Nur	n depths.	flag(1	1=extended)
denth(m)	temp(C)	salin	ssnd(m/s)
0.0	2 908	8 402	1426 94
2.0	2 915	8 437	1427 04
2.0 4 0	2 922	8 472	1427 15
4.0 6.0	2.025	8 /00	1/27 23
8.0	2.925	0.499 8 528	1/27 22
10.0	2.929	8 572	1427.33
10.0	2.934	0.072	1427.43
15.0	2.902	0.090	1427.00
20.0	3.034	0.001	1420.42
25.0	3.130	9.100	1429.33
	54.500 dontho		1, Lat, month
9 0 NUI	i depths,	llag(.	
deptn(m)	$\operatorname{Lemp}(\mathbf{C})$		sspu(m/s)
0.0	2.917	8.215	1426.74
2.0	2.929	8.252	1426.87
4.0	2.942	8.289	1427.01
6.0	2.944	8.309	1427.08
0.8	2.945	8.332	1427.14
10.0	2.949	8.354	1427.22
15.0	2.973	8.442	1427.53
20.0	3.048	8.556	1428.09
25.0	3.163	8.863	1429.09
14.000	54.750	1 lor	n,lat,month
9 0 Nur	n depths,	flag(1	1=extended)
depth(m)	temp(C)	salin	sspd(m/s)
0.0	3.100	8.234	1427.60
2.0	3.107	8.262	1427.70
4.0	3.114	8.291	1427.81
6.0	3.115	8.311	1427.87
8.0	3.118	8.336	1427.94
10.0	3.122	8.360	1428.03
15.0	3.148	8.453	1428.34
		-	

25.0 3.323 8.870 1429.83

A.4 (U) Test Case 4

(U) In file rdgdem3stestm.f, set

- sndspdtype = 'cml'
- getstd = .true.
- getbot = .true.
- extenddepth = .true.

(U) Then compile and link, and then run rdgdem3stestm.

At the prompt, Enter: lat_bot,lat_top,lon_left,lon_right,day enter, 54.4,54.8,13.6,14.1,17.3

(U) The program will extract the profiles within the specified latitude/longitude boundaries and then write the results to file gdemv3out.asc and then stop without further prompting.

(U) The output in file gdemv3out.asc should contain,

13.750	54.500	1 23	3. lon,lat	,month,h	oot dep
9 1 Nun	n depths,	flag(1	L=extended))	
depth(m)	temp(C)	salin	<pre>sspd(m/s)</pre>	tstdev s	sstdev
0.0	2.739	8.390	1426.78	2.019	0.978
2.0	2.750	8.431	1426.91	1.999	1.099
4.0	2.762	8.471	1427.05	1.989	1.113
6.0	2.764	8.495	1427.12	2.010	0.778
8.0	2.767	8.528	1427.21	2.011	0.815
10.0	2.771	8.557	1427.30	2.007	0.873
15.0	2.797	8.669	1427.64	2.015	0.973
20.0	2.873	8.817	1428.26	2.011	1.138
23.0	2.919	8.906	1428.63	2.011	1.138
13.750	54.750	1 29). lon,lat	:,month,k	ot dep
10 1 Nun	ı depths,	flag(1	L=extended))	
depth(m)	temp(C)	salin	sspd(m/s)	tstdev s	sstdev
0.0	2.908	8.402	1427.57	2.008	1.053
2.0	2.915	8.437	1427.68	1.990	1.151
4.0	2.922	8.472	1427.79	1.982	1.174
6.0	2.925	8.499	1427.87	2.006	0.814
8.0	2.929	8.538	1427.97	2.007	0.850
10.0	2.934	8.572	1428.07	2.002	0.910
15.0	2.962	8.698	1428.44	2.011	1.008
20.0	3.034	8.861	1429.06	2.009	1.169
25.0	3.130	9.166	1429.97	1.990	1.248
29.0	3.207	9.410	1430.70	1.990	1.248
14.000	54.500	1 25	5. lon,lat	:,month,b	ot dep
9 0 Nun	ı depths,	flag(1	L=extended))	

depth(m)	temp(C)	salin	sspd(m/s)	tstdev	sstdev
0.0	2.917	8.215	1427.37	2.030	0.806
2.0	2.929	8.252	1427.50	2.011	0.912
4.0	2.942	8.289	1427.64	1.999	0.921
6.0	2.944	8.309	1427.71	2.015	0.703
8.0	2.945	8.332	1427.78	2.015	0.736
10.0	2.949	8.354	1427.85	2.011	0.788
15.0	2.973	8.442	1428.16	2.016	0.883
20.0	3.048	8.556	1428.73	2.012	1.047
25.0	3.163	8.863	1429.73	1.995	1.121
14.000	54.750	1 29). lon,lat	,month,	bot dep
10 1 Nun	n depths,	flag(1	L=extended))	
depth(m)	temp(C)	salin	sspd(m/s)	tstdev	sstdev
0.0	3.100	8.234	1428.24	2.019	0.849
2.0	3.107	8.262	1428.34	2.003	0.932
4.0	0 111				
60	3.114	8.291	1428.44	1.994	0.945
0.0	3.114 3.115	8.291 8.311	1428.44 1428.50	1.994 2.012	0.945 0.712
8.0	3.114 3.115 3.118	8.291 8.311 8.336	1428.44 1428.50 1428.58	1.994 2.012 2.012	0.945 0.712 0.745
8.0 10.0	3.114 3.115 3.118 3.122	8.291 8.311 8.336 8.360	1428.44 1428.50 1428.58 1428.66	1.994 2.012 2.012 2.007	0.945 0.712 0.745 0.797
8.0 10.0 15.0	3.114 3.115 3.118 3.122 3.148	8.291 8.311 8.336 8.360 8.453	1428.44 1428.50 1428.58 1428.66 1428.97	1.994 2.012 2.012 2.007 2.013	0.945 0.712 0.745 0.797 0.891
8.0 10.0 15.0 20.0	3.114 3.115 3.118 3.122 3.148 3.221	8.291 8.311 8.336 8.360 8.453 8.577	1428.44 1428.50 1428.58 1428.66 1428.97 1429.55	1.994 2.012 2.012 2.007 2.013 2.009	0.945 0.712 0.745 0.797 0.891 1.052
8.0 10.0 15.0 20.0 25.0	3.114 3.115 3.118 3.122 3.148 3.221 3.323	8.291 8.311 8.336 8.360 8.453 8.577 8.870	1428.44 1428.50 1428.58 1428.66 1428.97 1429.55 1430.47	1.994 2.012 2.012 2.007 2.013 2.009 1.993	0.945 0.712 0.745 0.797 0.891 1.052 1.142

This page is intentionally blank.

APPENDIX B

Distribution Information

This page is intentionally blank.

(U) APPENDIX B – Distribution Information

B.1 (U) CD-ROM Descriptions

(U) This four CD-ROM set contains the GDEM-V 3.0 model databases and extraction software, including all required supporting libraries and four sample test runs.

B.1.1 (U) CD-ROM #1 Contents:

	dbdbvgdemv3s.nc.gz	Digital
	Bathymetry Data	
	GDEMV_3.0_DBD.doc	GDEM-V 3.0
	Database Design Description	
	rdgdem3s.f.gz	Extraction
	Routine	
	rdgdem3stest.f.gz	Point
	Extraction Driver Routine	
	rdgdem3stestm.f.gz	Area
	Extraction Driver Routine	
	libnetcdf.a.gz	NetCDF
	Library for Cygwin	
	netcdf.inc.gz	NetCDF
	Include File for Cygwin	
	Readme.txt	This Readme
	File	
	GDEM-V3pt0-QAV-2003.doc	GDEM-V
	Version 3.0Quality Assurance Ve	rification Report
mperature Files		
sol.nc.gz	January	
3s02.nc.gz	February	
3s03.nc.gz	March	
3s04.nc.gz	April	
3s05.nc.gz	Mav	

(U) NetCDF Temperature Files tgdemv3s01.nc.gz tgdemv3s02.nc.gz tgdemv3s03.nc.gz tgdemv3s04.nc.gz tgdemv3s05.nc.gz tgdemv3s06.nc.gz tgdemv3s06.nc.gz tgdemv3s07.nc.gz tgdemv3s08.nc.gz tgdemv3s09.nc.gz tgdemv3s11.nc.gz tgdemv3s12.nc.gz

B.1.2 (U) CD-ROM #2 contents:

sgdemv3s01.nc.gz

sgdemv3s02.nc.gz

(U) NetCDF Salinity Files

January

June

July

August

October

September

November

December

February

sgdemv3s03.nc.gz	March
sgdemv3s04.nc.gz	April
sgdemv3s05.nc.gz	May
sgdemv3s06.nc.gz	June
sgdemv3s07.nc.gz	July
sgdemv3s08.nc.gz	August
sgdemv3s09.nc.gz	September
sgdemv3s10.nc.gz	October
sgdemv3s11.nc.gz	November
sgdemv3s12.nc.gz	December

B.1.3 (U) CD-ROM #3 contents:

(U) NetCDF Temperature Standard Deviation Files

tstgdemv3s01.nc.gz	January
tstgdemv3s02.nc.gz	February
tstgdemv3s03.nc.gz	March
tstgdemv3s04.nc.gz	April
tstgdemv3s05.nc.gz	May
tstgdemv3s06.nc.gz	June
tstgdemv3s07.nc.gz	July
tstgdemv3s08.nc.gz	August
tstgdemv3s09.nc.gz	September
tstgdemv3s10.nc.gz	October
tstgdemv3s11.nc.gz	November
tstgdemv3s12.nc.gz	December

B.1.4 (U) CD-ROM #4 contents:

(U) NetCDF Salinity Standard Deviation Files

sstgdemv3s01.nc.gz	January
sstgdemv3s02.nc.gz	February
sstgdemv3s03.nc.gz	March
sstgdemv3s04.nc.gz	April
sstgdemv3s05.nc.gz	May
sstgdemv3s06.nc.gz	June
sstgdemv3s07.nc.gz	July
sstgdemv3s08.nc.gz	August
sstgdemv3s09.nc.gz	September
sstgdemv3s10.nc.gz	October
sstgdemv3s11.nc.gz	November
sstgdemv3s12.nc.gz	December

B.2 (U) Database and Software Extraction and Setup

1. (U) Extract NetCDF files (extension "nc") from archives to the desired directory (NetCDF_files).

- 2. (U) Extract the driver and extraction routines from their respective archives to another directory for compilation, linking, and execution.
- 3. (U) Change the directory name in the driver routines to agree with the one containing GDEM-V 3.0 NetCDF files.
 - (U) Note: Remember in FORTRAN use "\\" instead of "\" when naming the NetCDF files directory on the PC. Do not forget to include the final "/" or "\\" it is needed for the software to work correctly.
- (U) Example directory names for GDEM-V 3.0 NetCDF data files are:

directory='/opt/home/NetCDF_files/' Unix version directory='c:\\NetCDF_files\\' PC version

B.3 (U) Source Description and Compilation Information

1. (U) Programs rdgdem3stest.f and rdgdem3stestm.f are simple driver programs for subroutine rdgdem3s.f. To create executables named rdgdem3stest and rdgdem3stestm on a Unix operating system, they are compiled and linked using,

f77 -o rdgdem3stest rdgdem3stest.f rdgdem3s.f netcdfdir/libnetcdf.a -Inetcdfdir

f77 -o rdgdem3stestm rdgdem3stestm.f rdgdem3s.f netcdfdir/libnetcdf.a -Inetcdfdir

- 2. (U) The directory netcdfdir (change this to the actual full path of the NetCDF library on your computer) is assumed to contain the files libnetcdf.a and netcdf.inc. The g77 compiler can be used by changing f77 to g77.
- 3. (U) These programs can be compiled under Cygwin (Unix emulation interface) by substituting g77 for f77 and using the supplied libnetcdf.a library. The sound speed can be calculated using the Chen-Millero-Li formulation (OAML standard) or Wilson's Equation by editing the driver routine. Other options are available for extraction by editing the driver routine as desired. Appendix A contains four FORTRAN Test Cases to verify the correct installation of the database and describes the options.
- 4. (U) NetCDF binary libraries and source may be downloaded from the following URL

http://www.unidata.ucar.edu/packages/netcdf/

for your particular Unix machine or PC development configuration - the binary library for Solaris 5.7 worked flawlessly with the g77 compiler. Make sure that netcdf.inc is downloaded with the NetCDF library.

5. (U) Cygwin may be downloaded from the following URL

http://www.cygwin.com/

and make sure the gcc compiler is downloaded.

6. (U) The NetCDF Library for Cygwin is provided in an archive (libnetcdf.a.gz). The NetCDF Include File for Cygwin is provided in an archive (netcdf.inc.gz). Unzip these files to the same directory as the rdgdem3s.f, rdgdem3stest.f, and rdgdem3stestm.f source code or the directory netcdfdir identified above.

B.4 (U) Program Execution

- 1. The rdgdem3stest program is an interactive program that prompts the user to input the decimal latitude, longitude, and day of the year.
- 2. The rdgdem3stestm program is an interactive program that prompts the user to input the decimal lower latitude, upper latitude, left longitude, right longitude, and day of the year.
- 3. The GDEM-V profiles of depth, temperature, salinity, sound speed, and (optionally) the temperature standard deviation and salinity standard deviation are extracted from the GDEM-V files at the grid point location and month closest to the requested position and time.
- 4. The extracted profiles are then listed to the screen and written to the ASCII file, gdemv3out.asc. Once listed, the user is prompted by rdgdem3stest to enter another set of coordinates program execution is halted if the user inputs 0, 0, 0 at the prompt.
- 5. Since rdgdem3stestm is an area extraction, the extracted profiles are written to the ASCII file, gdemv3out.asc, and the program terminates.