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Inverting the Radon transform

R[f ](p, ξ) =

∫
L

f(x, y) dl. (1)

Reconstruct the function from its projections:

givenR[f ](p, ξ), find f(x, y).

Radon [1917] solved to this problem, giving an

expression forR−1 for straight “ray paths”.

[Radon, 1917]
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X−ray source

detectors

µ(x,y)

your body

X-ray absorption & scattering

Tissues and bones have different absorption

and scattering coefficients µ(x, y).

Recorded intensity goes as

I = I0 exp

 ∫
ray

−µ(x, y) dl

 . (2)

The exponential is linearized. Sources and

detectors rotate to achieve perfect “coverage”.
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seismometers

earthquakes

your planet

Travel-time tomography

The Earth has a heterogeneous wave-

speed structure c(r) = c0(r) + δc(r).

Ray-theoretical travel-time anomalies are

δt ≈
∫
ray

δc−1 dl ≈ −
∫
ray

δc

c2
0

dl. (3)

Fermat’s principle allows ray to be calcu-

lated in the reference model c0(r).

Usually, not exclusively, c0(r) = c0(r).



One-dimensional reference Earth models – 1 6/42

[Astiz et al., 1996]



One-dimensional reference Earth models – 2 7/42
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[Dziewoński and Anderson, 1981; Kennett and Engdahl , 1991]



Fermat’s principle 8/42

[Zhao and Lei , 2004]



Discretization and parameterization 9/42

For a set of seismic rays i = 1 → M ,

calculate the length spent in each of the

j = 1 → N grid boxes in which it accu-

mulates a proportional fraction of the total

travel-time anomaly δt, discretizing (3).

Let’s do this for slowness here.

δti = Lijδsj or δt = L · δs or indeed G ·m = d. (4)

M travel-time

anomalies


...

δti
...

 =


...

. . . Lij . . .
...

×


...

δsj

...

 N slowness

perturbations
(5)

M×N sensitivity matrix



Solving the inverse problem 10/42

We have: G ·m = d, which is linear .

You think: m = G−1 · d, but we can’t invert a non-square M ×N matrix.

You think: GT ·G is square, let’s solve GT ·G ·m = GT · d.

You try: m = (GT ·G)−1 ·GT · d.

Alas! GT ·G may be singular, ill-conditioned, under/over-

determined, have (near-)zero eigenvalues, and

thus be not-invertible . We need more tricks.

over-determined , M>N mixed-determined under-determined , M<N

[Menke, 1989; Aster et al., 2005]



Regularization and a priori information 11/42

Over-determined (more data than unknowns):

x

y

y=ax+b
Define a penalty fuction Φ on the error e,

and minimize, by least-squares:

Φ = [G ·m− d]2 = eT · e. (6)

This is a minimization in the data space.

Under-determined (more unknowns than data):

Add equations that minimize some norm in the model space:

Φ = eT · e + mT · (AT ·A) ·m. (7)

If A = I the identity matrix→ minimum model norm: norm damping .

If A = D a difference matrix→ minimum-roughness: smoothing .



Sensitivity: Coverage and resolution 12/42

Linearization and discretization produce a dependence of the model m to the

data d that can be intepreted easily: G is a sensitivity matrix .
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Resolution doesn’t only depend on path density: many criss-crossing paths are

needed. Modern global studies use hundreds of thousands of those.

[Simons et al., 2002]



Regional models 13/42

[Simons et al., 1999; Fischer and van der Hilst , 1999; Simons et al., 2002]



Global models 14/42

[Replumaz et al., 2004]



Sensitivity: Obesity and wavefront healing 15/42

After discretization, parameterization, and regularization, every geometrical ray

illuminates a “fat tube” in the model space.

But the basic premise — that a velocity anomaly sensed anywhere along the ray

shows up as a travel-time anomaly at the receiver — is wrong . Wavefronts heal .

[Hung et al., 2001]



Sensitivity: Infinite and finite frequencies 16/42

The following is only true when the wave is of an infinitely high frequency :

δt ≈
∫
ray

[
−c−1

0

](
δc

c0

)
dl. (8)

Only at ω → ∞ is the sensitivity kernel of the measurement δt to the model

perturbation δc/c0 given by c−1
0 exclusively on the geometrical ray path.

In reality, waves have a finite frequency , and measurements are at many different

frequencies at that. The wave “feels” off the ray.

δt ≈
∫∫
Earth

∫
Kδt

(
δc

c0

)
dV. (9)

Finding Kδt, a 3D Fréchet kernel , is the name of the game — for now.



What are we measuring ? – 1 17/42

A broadband travel-time anomaly is the time shift that maximizes the cross-

correlation of an observed seismogram, u(t) = u0(t)+δu(t), with the synthetic,

u0(t), computed in the reference model:

δt = arg max

∫ t2

t1

u(t− δt) u0(t) dt. (10)

The waveform perturbation δu(t) comes from perturbations in the Earth model :

ρ0 → ρ0 + δρ and C0 → C0 + δC, (11)

u0 → u0 + δu, (12)

ρ density, C the elastic tensor, the above linearization the Born approximation .

The seismogram u(t) is one component (vertical, radial, tangential) of the wave-

field u(r, t) measured at one particular location (the seismometer).



What are we measuring ? – 2 18/42

(a) spherical-earth synthetic seismogram and perturbed seismogram
(b) zoom on the unperturbed and perturbed S wave

(c) cross-correlogram of observed and synthetic seismogram
(d) alignment of unperturbed and perturbed seismogram after shift by δt

[Marquering et al., 1999]



Two questions (only one multiple choice) 19/42

Question 1
How does the measurement δt depend on the waveform perturbation δu?

There is only one answer, and it has been known for a long time:

δt =

∫ t2

t1

u̇0(t) δu(t) dt∫ t2

t1

ü0(t) u0(t) dt

=

∫∫
Earth

∫
Kδt

(
δc

c0

)
dV. (13)

Question 2
How does the waveform perturbation δu(t) depend on δρ and δC of the Earth?

The answer depends on how the wavefield is computed.

This time there are several approaches, each with its own advantages.

[Luo and Schuster , 1991; Zhao and Jordan, 1998; Marquering et al., 1999; Dahlen et al., 2000; Zhao et al., 2000]



Intermezzo I: Mode summation 20/42

Every seismogram is a weighted sum

of normal modes — eigensolutions

to the wave equation. In radial Earth

models, this is “easy”, and to account

for 3D perturbations, one considers their

coupling (spheroidal, toroidal, etc...)

Surface-wave modes are also solutions

to the wave equation. Whereas nor-

mal modes are standing waves that exist

at “quantized” degrees and orders (think

spherical harmonics), surface waves are

travelling waves that can be calculated at

equally spaced frequencies.

[Dahlen and Tromp, 1998]



Second approach to calculate δu 21/42

Make wavefield by surface-wave mode summation and consider their coupling.

First appearance of the apt culinary metaphor banana-donut kernel .

[Snieder and Nolet , 1987; Marquering et al., 1998, 1999; Zhou et al., 2004; Yoshizawa and Kennett , 2005]



First approach to calculate δu 22/42

Compute the wavefield by normal-mode summation and take into account the

mode coupling due to aspherical perturbations.

Normal-mode theory is complete but cumbersome numerically.

[Zhao et al., 2000; Capdeville, 2005]



Third approach to calculate δu 23/42

Ray theory is dead. Long live ray theory!

No more mode sums; use ray sums . Assume singly-scattered waves (all types).

This is more efficient than mode-coupling but requires lots of ray-tracing : need to

trace all possible rays from the source to every point in the Earth, and of all possible

rays from those points to the receiver. It breaks down for the most complex phases.

[Zhao and Dahlen, 1996; Dahlen et al., 2000; Zhao et al., 2000; Hung et al., 2000]



Fourth approach to calculate δu 24/42

The paraxial approximation, and the most widely used method today.

No more multiple ray tracing; trace only the geometrical ray ; expand travel-time

surface about it; only consider like-type scattering in the vicinity of the central ray.

This is much more efficient than the previous methods, but it breaks down some-

what earlier. However, the approximations are justifiable for common phases such

as P, PcP, PP, S, ScS, SS between 30◦ and 90◦ distance.
[Dahlen et al., 2000; Hung et al., 2000; Yoshizawa and Kennett , 2002]



Why does this work at all ? 25/42

The sensitivity kernel Kδt ≈ 0 outside of

the first Fresnel zone :

0 ≤ ω̄(T ′ + T ′′ − T ) ≤ π. (14)

Outside of the Fresnel zone, destructive interference between nearby frequencies

kills the sensitivity! This has been known since... well, Fresnel’s time (1820s).

[Dahlen et al., 2000; Nolet et al., 2005]



Worried about the hole ? 26/42

Think of the 3D Born kernels as pictures of travel-time perturbations with respect

to the travel-time of the unperturbed geometrical (Fermat) ray. The perturbations

are due to scatterers off the central ray.

Propagation from the source to a scatterer on the central ray — and from there

on to the receiver defines the central ray — there is no way that this generates a

cross-correlation travel-time shift.

The situation is different for amplitudes — and it sure is counterintuitive .

[Nolet et al., 2005]



Reduction from 3D to 2D 27/42

Long the source of heated debate... In 2D, the donut hole actually disappears...

It’s like saying the perturbations are cylindrically symmetric about the ray plane...

And what a strange Earth that would be...

[Zhao and Jordan, 1998; Marquering et al., 1999; Zhao et al., 2000]



Reduction from 3D to 1D 28/42

The area of the donut is−1/c. If the wavelength of the wave is small compared to

the scale length of the heterogeneity, we simply get ray-theory back:

∫∫
Earth

∫
Kδt

(
δc

c0

)
dV →

∫
ray

[
−c−1

0

](
δc

c0

)
dl. (15)

Thus, finite-frequency banana-donuts provide the natural extension of linearized

infinite-frequency ray theory.

[Zhao and Jordan, 1998; Marquering et al., 1999; Zhao et al., 2000]



Fourth approach: Practical aspects 29/42

It is the fourth approach that is commonly referred to as the banana-donut theory.

To recapitulate, it [1] measures δt by cross-correlation , it [2] reduces the sensi-

tivity of δt for P (or S ) “travel times” to perturbations in the P (or S ) wave speeds

(only), via 3D Fréchet kernels , as

δt ≈
∫∫
Earth

∫
Kδt

(
δc

c0

)
dV, (16)

and [3] to compute Kδt it uses dynamic ray tracing of the geometrical ray only .

Subsequently , a linear inverse problem in the sense G ·m = d is set up, where

d contains the (cross-correlation) travel times δt, m is some model parameteri-

zation and G contains the above kernels in the same model space basis .

And then the inversion is performed by a human being, with regularization .

[Montelli et al., 2004a, b; Nolet and Montelli , 2005; Nolet et al., 2005]



Banana-donut inversions: Enhanced sensitivity 30/42

The banana-donut sensitivity fattens the rays .

Much like ray theory would under a coarse parameterization, but motivated by

physics , not simply due to numerical discretization and regularization.

[Montelli et al., 2004b]



Banana-donut inversions: Plumes. Finally ? 31/42

Seems like this has been a real bone of contention...

[Montelli et al., 2004a]



Lost in the null space ? 32/42

All the theory is — basically — non-controversial and about as widely accepted

as the theory of evolution. The bananas are yummy, people had to get used to the

donut hole... but they’re there to stay .

It’s the arrows in the following that most people have difficulty digesting:

+ → →

Those reflect the fact that seismic tomography is, after all, still an art ...

unfortunately, more Pollock than Hopper .

Might there be another way out?

[de Hoop and van der Hilst , 2005; van der Hilst and de Hoop, 2005; Boschi , 2006; Boschi et al., 2006; Trampert and Spetzler , 2006]



Why a fifth approach is needed 33/42

Approaches 1–3 (normal modes, surface-wave modes, complete ray sums) are

numerically burdensome, i.e. infeasible in tomographic practice.

Approach 4 (the paraxial approximation) is inapplicable in the vicinity of any critical

refraction, diffraction, or caustic...

Look for one more way to compute δu(t) as a result of Earth model perturbations.

The answer is to go via fully numerical solutions to the wavefield.

[Nissen-Meyer et al., 2007a]



Intermezzo II: The spectral-element method 34/42

One of the most powerful contemporary grid-based methods to produce syn-

thetic seismograms in realistic 3D media (e.g. self-gravitating, rotating, anisotropic,

attenuative, heterogeneous Earth models).

Combines the geometrical flexibility of the finite-element method with the expo-

nential convergence and weak numerical dispersion of spectral methods.

[Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999, 2002a, b; Komatitsch et al., 2002; Fournier et al., 2004]



Fifth approach: Born again 35/42

Modern (e.g. SEM) methods can compute wavefields in arbitrary 3D background

models. We no longer have to assume that only P (or S ) wave speed perturbations

influence P (or S ) cross-correlation travel times of P (or S ) waveforms.

We can take one step back and restart from the Born approximation (11–12):

δu(t) =

∫∫
Earth

∫ {
Kδρ(t)

(
δρ

ρ0

)
+ KδC(t)

(
δC

C0

)}
dV, (17)

where computing 3D waveform kernels involves one forward simulation and

one backward simulation and their interaction by convolution :

Kδρ(t) = −
∫ t

0

u̇to
i (τ) u̇fro

i (t− τ) dτ, (18)

KδC(t) = −
∫ t

0

εto
ij (τ) εfro

kl (t− τ) dτ. (19)

[Marquering et al., 1998; Tromp et al., 2005; Nissen-Meyer et al., 2007a, b; Tape et al., 2007]



Fifth approach: Have you seen my phase ? 36/42

Different flavors of SEM wavefield computation can be used...

[Tromp et al., 2005; Nissen-Meyer et al., 2007a, b; Tape et al., 2007]



Extensions: Anything goes 37/42

The 3D Born waveform kernels are the basic building blocks with which the

sensitivity of anything (some observable waveform attribute) to the perturbation of

anything (some Earth parameter) can be constructed.

With the fifth approach we had gone back to square one and constructed cross-

correlation travel-time measurements. But we can think of Fréchet kernels for

amplitudes , boundary undulations , attenuation , shear-wave splitting ,

rms waveform misfits ... if you can name it, someone will make it!

A combination of some of the above approaches are currently being implemented

to enable full waveform tomography ... the F · u · t · u · r · e ! You’ll hear about

are adjoint methods (non-linear, 3D SEM-based, very expensive) and 3D-to-2D

methods (linear, axisymmetric SEM-based, with numerical shortcuts).

Is there anything simpler?

[Dahlen and Baig, 2002; Favier and Chevrot , 2003; Dahlen, 2005; Tromp et al., 2005; Dahlen and Zhou, 2006; Sigloch and Nolet , 2007]



A future for drifting seismic networks – 1 38/42

[Simons et al., 2006]



Enhanced sensitivity by adding data points 39/42

[Montelli et al., 2004b]



A future for drifting seismic networks – 2 40/42
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