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Part I
Inferential Statistics





1
Basic concepts

1.1 Data, models, and uncertainty
Literal quote from Hand.

Read, in the book by Tarantola [1], the Preface and Chapter 1, sections 1.2.1
through 1.2.4, for some choice remarks. Read Bendat & Piersol [2] Chapter 3
and 4.

1.2 Location and scale
Location (center) and scale (spread, dispersion, ...). See Figure 1.1.

-4 -2 0 2 4 6 8

A

B

C

D

Fig. 1.1. Guess the distributions and the parameters of these distributions.
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1.3 The histogram
1.3.1 Discrete data

For a set of possible outcomes, m = 1, . . . ,M , we denote by fm the number of
times each outcome is observed in a series of N experiments. If this number is
expressed relative to the number of tries, we obtain the (relative) frequencies
fm/N of the histogram. The frequencies satisfy

M∑
m=1

fm = N and
M∑
m=1

fm
N

= 1. (1.1)

We define the distribution function as the relative number of times that the
observed outcome is smaller than one of the outcomes m′, i.e.

FN (m′) =
1
N

m′∑
m=1

fm. (1.2)

1.3.2 Continuous data
The continuous observable x is binned into a set of bins labeledm = 1, . . . ,M .
As above, the absolute number of times that the outcome of an experiment
consisting of N trials is observed to fall in a certain bin m is denoted fm, the
relative number is then fm/N , and eq. (1.2) still holds of course. Thus, fm/N
is again the (relative) frequency, but now of the observations that lie in the bin
around xm of width ∆.

Read Tarantola Chapter 1... Finiteness and continuity, smoothness, dis-
cretization, not the same thing.

1.3.3 Samples and populations
All of this is empirical, i.e. based on the finite data sample. Let us now rescale
the relative frequency by the size of the interval, i.e.

fm
N∆

→ p(x) (1.3)

such that the area of the bar,

∆
fm
N∆

(1.4)

equals the relative frequency, then let N → ∞ and ∆ → 0 and we get infor-
mation on the population: and p (x) is the probability density function:

lim
N→∞

lim
∆→0

fm
N∆

= p(x). (1.5)
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1.4 The probability density function — small p and big P
We define p(x), the probability density function, with the following properties.
All values are hit, some value had to have occurred, thus the probability density
function is normalized

+∞∫
−∞

p (x) dx = 1. (1.6)

The probability density function is positive or zero:

p (x) ≥ 0. (1.7)

And the probability of finding x in the interval [x, x+ dx] is given by

P (x′) =

x′∫
−∞

p (x) dx = Prob [x ≤ x′] (1.8)

This defines P (x), the probability distribution function,

dP (x)
dx

= p (x) (1.9)

which has the following properties:

P (−∞) = 0, P (∞) = 1 and P (a) ≤ P (b) if a ≤ b (1.10)

1.5 Two random variables — P (x), P (y) and P (x, y)

Let P (x) and P (y) be two different pdfs, then we introduce the joint proba-
bility distribution function P (x, y), with properties as follows:

P (x′, y′) = Prob[x ≤ x′ and y ≤ y′] (1.11)

P (−∞, y) = P (x,−∞) = 0 (1.12)

P (∞,∞) = 1 (1.13)

p (x, y) ≥ 0 (1.14)

Normalization
+∞∫
−∞

+∞∫
−∞

p (x, y) dx dy = 1 (1.15)

Positivity

p (x, y) ≥ 0 (1.16)
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The relation to the distribution function

P (x′, y′) =

x′∫
−∞

y′∫
−∞

p (x, y) dx dy (1.17)

∂

∂y

[
∂P (x, y)

∂x

]
= p (x, y) (1.18)

These are the marginal probabilities:

p (x) =

+∞∫
−∞

p (x, y) dy and p (y) =

+∞∫
−∞

p (x, y) dx. (1.19)

Maybe here Bayes from Tarantola’s first edition.

1.6 Statistical independence
Let’s define a notation for an “event” happening,

P (A) = P (x ∈ A) =
∫
A

p(x) dx (1.20)

What is the conditional probability, i.e. the probability that event A happens
given that event B happens:

P (A|B) (1.21)

What is the joint probability of two events?

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) (1.22)

The above is a statement of Bayes’ theorem, often written as:

P (A|B) =
P (B|A)P (A)

P (B)
. (1.23)

See this in words - e.g. posterior equals likelihood times prior. Young and
Smith (2005). Or the probability of the hypothesis given the data is the proba-
bility of the data given the hypothesis times the probability of the hypothesis.
Sivia ().

Independence of both events means

P (A|B) = P (A) (1.24)

P (A ∩B) = P (A)P (B) (1.25)
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The equivalent for the probability density and distribution functions for inde-
pendently distributed variables:

p (x, y) = p (x) p (y) (1.26)

P (x, y) = P (x)P (y) (1.27)

Illustrate using Strogatz’ thing. Distinguish “events-type” Bayes theorem
from “pdf-type Bayes theorem”? Tarantola between editions changes his mind
on the presentation.

Fig. 1.2. As read online: “Albert, Bernard and Cheryls threesome sets the web aflutter”.

1.7 Expectation

I am going to define the expectation via an intermediary which is most certainly
NOT the expectation, purely for didactical reasons.

Now, let xi be the i = 1, . . . , N observations in some experiment, and define
the arithmetic mean of the data as given by

x̄ =
1
N

∑
i

xi. (1.28)

Suppose x was not a continuous variable but rather could take on only the dis-
crete values m = 1, . . . ,M , then we would formulate an alternative whereby
for every such outcome m we add up the relative number of times that it has
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occurred in our experiment:

x̄ =
1
N

∑
m

m fm, (1.29)

and if the data were binned with bin width ∆ we would define

x̄ =
1
N

∑
m

m
fm
∆

∆. (1.30)

Make next thing intuitive by saying that in the limit thatN →∞ and ∆→ 0
you now have the population mean or expected or average value:

E{x} = 〈x〉 =

+∞∫
−∞

x p (x) dx = µx (1.31)

What is the expected value of a function of x?

E{g(x)} = 〈g(x)〉 =

+∞∫
−∞

g(x) p(x) dx (1.32)

Further properties for two random variables:

E {x+ y} = E {x}+ E {y} (1.33)

which we derive using the joint and the marginal distributions.
Small aside.

E {x+ y} =
∫ ∫

(x+ y)p(x, y) dx dy (1.34)

=
∫ ∫

xp(x, y) dx dy +
∫ ∫

yp(x, y) dx dy (1.35)

=
∫
x

[∫
p(x, y) dy

]
︸ ︷︷ ︸

p(x)

dx+
∫
y

[∫
p(x, y) dx

]
︸ ︷︷ ︸

p(y)

dy (1.36)

= E {x}+ E {y} (1.37)

In the above I talk about linearity and this being a moment.
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1.8 Variance

Again, I start by writing something that it isn’t, but which makes sense. What
is the mean-squared value of x?

E{x2} =
〈
x2
〉

=

+∞∫
−∞

x2 p(x) dx. (1.38)

Now define the variance, the mean-squared variation of x about the mean?

E{(x− E{x})2} =
〈

(x− 〈x〉)2 〉 =

+∞∫
−∞

(x− µx)2
p(x) dx = σ2

x (1.39)

This is the variance, the square of the standard deviation. Now of course〈
(x− 〈x〉)2 〉 =

〈
x2 + 〈x〉2 − 2x 〈x〉

〉
(1.40)

=
〈
x2
〉

+ 〈x〉2 − 2 〈x〉 〈x〉 (1.41)

=
〈
x2
〉
− 〈x〉2 (1.42)

And thus

var{x} = E{x2} − E2{x} (1.43)

Now: properties of the mean and variance:

E {a+ g(x) + h(x)} = a+ E {g(x)}+ E {h(x)} (1.44)

E {a g(x)} = aE {g(x)} (1.45)

var {ax+ b} = a2var {x} (1.46)

The last thing defines a standardized variable of mean zero and variance one.

E {x− E {x}} = 0 (1.47)

var

{
x− E{x}√

var{x}

}
= 1 (1.48)

And THAT is when I draw a picture of why everyone, all the time, should
refer all things to their “location” and scale by their “spread”... not distin-
guishing for now population vs sample, just driving the point home that the
units should be shifted and scaled to start noticing things. I draw some crosses
on an axis, and then redraw the axis once after shifting, once after shifting and
scaling. This is not captured in my Blackboard picture, which I erased before
taking a picture.
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Fig. 1.3. How you can be wrong about correlation and dependence. From the
Wikipedia: The correlation reflects the noisiness and direction of a linear relationship
(top row), but not the slope of that relationship (middle), nor many aspects of nonlinear
relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case
the correlation coefficient is undefined because the variance of Y is zero.

1.9 Covariance

E{(x− E{x}) (Y − E{y})} = 〈(x− 〈x〉) (y − 〈y〉)〉
= 〈xy − x 〈y〉 − 〈x〉 y + 〈x〉 〈y〉〉
= 〈xy〉 − 〈x〉 〈y〉 (1.49)

= cov{x, y} (1.50)

thus for independent variables:

cov{x, y} =
∫∫

x y p (x, y) dx dy−
∫
x p(x) dx

∫
y p (y) dy = 0 (1.51)

Independence implies zero covariance, though the reverse is not true!
Population correlation coefficient:

ρ (x, y) =
cov{x, y}√

var (x) var (y)
. (1.52)

It of course follows that

−1 ≤ ρ(x, y) ≤ 1. (1.53)

Perhaps here Tarantola first edition grey boxes?
I need to introduce iid some time very soon.
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1.10 A suitable notation
Need to talk about the dot product. And the transpose of a dot product. And
the dyad, but really should not be writing the transpose.

The variance of a linear combination of variables is:

var
{∑

i

wixi

}
=
∑
i

∑
j

wi cov{xi, xj}wj , (1.54)

and

cov{x, x} = var{x} (1.55)

Note: if xi and xj are independent, scrap cov of cross terms and leave var
terms only.

It just gets tiresome inventing new letters for different random variables such
as x, y, and so on. For convenience, let’s call them all xi, i = 1, ..., N , however
many we need. A bit of linear algebra here would be good. At the minimum
level, go with

cov{x} = 〈xxT〉 if 〈x〉 = 0 (1.56)

and then do an arbitrary linear transform of which eqs and are special cases.

cov{A · x} = 〈(A · x)
(
xT ·AT

)
〉 (1.57)

= A · 〈xxT〉 ·AT (1.58)

= A · cov{x} ·AT (1.59)

Some simple index rules. The elements of x̃ = A · x are given in index
notation by x̃i =

∑
j Aijxj and the elements of the transformed covariance

matrix C̃ = A · C · AT are given by C̃ij =
∑
k

∑
lAikCklA

T
lj as per the

common rules of tensor transformation. And if Aij is simply wiδij then get
eq. (1.54) back.

Put a simulation picture here, e.g. BMI.
Order of things was 1. moments, 2. eq. (1.43), 3. eq. (1.47).

1.11 Estimation properties
Truth versus estimate. Constant versus random. Unbiased, consistent, efficient
in words.

Let’s say we have a property, s, and we estimate it, ŝ. How good is the
estimate? Brackets denote repeated measurements. Properties: (s is the only
truth, ŝ is an estimate)

BIAS OF THE ESTIMATOR (“accuracy”)
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b = 〈ŝ〉 − s

Note that b2 = 〈ŝ〉2 + s2 − 2s〈ŝ〉.
VARIANCE OF THE ESTIMATOR (“precision”)

v =
〈

(ŝ− 〈ŝ〉)2 〉
Note that

v =
〈

(ŝ− 〈ŝ〉)2 〉 =
〈
ŝ2 + 〈ŝ〉2 − 2ŝ〈ŝ〉

〉
= 〈ŝ2〉+ 〈ŝ〉2 − 2〈ŝ〉2

= 〈ŝ2〉 − 〈ŝ〉2 (1.60)

and that we’ll continue to use the notation var{} when we have something
concrete to stick within the squiggly brackets.

ERROR OF THE ESTIMATE

ε = ŝ− s

MEAN-SQUARED ERROR

〈ε2〉 =
〈

(ŝ− s)2 〉 = 〈ŝ2 + s2 − 2ŝs〉
= 〈ŝ2〉+ s2 − 2〈ŝ〉s
= v + b2 (1.61)

Thus in conclusion, the mean squared error is the sum of the variance plus the
square of the bias.

〈ε2〉 = v + b2.

Now launch into a philosophical discussion of how minimum-bias or minimum-
variance are only part of the problem, rather one minimizes the mse — which
often means a slight bias to get variance reduction.

Unbiasedness, consistency (if the sequence of estimators converges in prob-
ability to the truth), efficiency (if there is some best possible state reached,
usually the minimal mean-squared error).

1.12 The sample mean
So, we have a population, and calculate for a sample of uncorrelated obser-
vations xi the arithmetic mean:

µ̂x =
1
N

N∑
i=1

xi.
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Fig. 1.4. Accuracy, precision. Bias, variance.

How good of an estimate is this for the mean of the population µx = 〈x〉? We
consider each of the possible observations as random variables themselves and
wonder about their properties should we have access to more than one set of
them.

Bias of the sample mean

〈µ̂x〉 − µx =
1
N

N∑
i=1

〈xi〉 − µx (1.62)

=
1
N

N∑
i=1

µx − µx (1.63)

= 0. (1.64)

So the arithmetic mean is an unbiased estimator for the population mean:

b{µ̂} = 0
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Variance of the sample mean

The long way round.

〈(µ̂x − µx)2〉 =
〈( 1

N

N∑
i=1

xi − µx

)2 〉
(1.65)

=
1
N2

〈( N∑
i=1

xi −Nµx

)2 〉
=

1
N2

〈( N∑
i=1

(xi − µx)

)2 〉
(1.66)

=
1
N2

N∑
i=1

N∑
j=1

〈(xi − µx) (xj − µx)〉 (1.67)

=
1
N2

N∑
i=1

σ2
x (1.68)

=
σ2
x

N
(1.69)

since xi and xj are drawn from the same parent distribution with common
mean and variance — and no covariance between the samples, 〈xi, xj〉 = 0.

Key “notational” tricks are (search for the right place to put this!):

(
1
N

N∑
i=1

xi − µ̂x

)2

=

[
1
N

(
N∑
i=1

xi −Nµ̂x

)]2

(1.70)

and(
N∑
i=1

xi −Nµ̂x

)
=

N∑
i=1

(xi − µ̂x) (1.71)

So the arithmetic mean is a consistent estimator for the population mean:

v{µ̂} =
σ2
x

N

We could have also done this straight from the result of unbiasedness and
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the rule eq. (1.54)

〈(µ̂x − µx)2〉 = var

{
1
N

N∑
i=1

xi

}
(1.72)

=
1
N2

N∑
i=1

var{xi} (1.73)

=
σ2
x

N
(1.74)

since — or rather, if! — there are no covariances in this case. Variance and
mean squared error coincide.

Conclusion: the arithmetic mean µ̂x is an unbiased estimate for the popu-
lation mean µx, with variance and mean-squared error both given by σ2

x/N ,
with σ2

x the population variance.
Nothing here has implied the estimators are any “good”... no considerations

of efficiency. Efficiency is another matter – is this the best we can do? Is this a
mininum in any sense (yes!)

Perhaps here is where I show Tarantola’s grey boxes?

1.13 The sample variance

Maybe do what I do with Olhede in “methodology”, which is much shorter.
Going in knowing the answer, define this as the estimate:

σ̂2
x =

1
N − 1

N∑
i=1

(xi − µ̂x)2

based on the sample mean. Note: Press et al say “If the difference between N
and N − 1 matters to you, you are probably up to no good anyways.”

Bias of the sample variance:

What is the bias due to this? Start with the expected value with respect to the
sample mean. We know that

var{xi} = 〈x2
i 〉 − 〈xi〉2 = σ2

x (1.75)

We know from eqs (1.62)–(1.64) that 〈µ̂x〉 = µx. We know from eqs (1.72)–
(1.74) that var{µ̂x} = 〈µ̂2

x〉 − 〈µ̂x〉2 = σ2
x

N .
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We’re dealing with independent samples, 〈xixj〉 = 0. So now we are ready
for this calculation:

〈σ̂2
x〉 =

〈 1
N − 1

N∑
i=1

(xi − µ̂x)2 〉 (1.76)

=
1

N − 1

N∑
i=1

〈(xi − µ̂x)2〉 (1.77)

=
1

N − 1

N∑
i=1

(
〈x2
i 〉+ 〈µ̂2

x〉 − 2〈xiµ̂x〉
)

(1.78)

=
1

N − 1

N∑
i=1

〈x2
i 〉+

N

N − 1
〈µ̂2
x〉 −

2
N − 1

N∑
i=1

〈xiµ̂x〉 (1.79)

=
1

N − 1

N∑
i=1

〈x2
i 〉 −

N

N − 1
〈µ̂2
x〉 (1.80)

=
1

N − 1

N∑
i=1

(
σ2
x + µ̂2

x

)
− N

N − 1

(
σ2
x

N
+ µ2

x

)
(1.81)

=
N

N − 1
σ2
x +

N

N − 1
µ2
x −

σ2
x

N − 1
− N

N − 1
µ2
x (1.82)

= σ2
x (1.83)

It’s unbiased:

b{σ̂2
x} = 0

Note the trick:

2
N − 1

N∑
i=1

〈xiµ̂x〉 =
2

N − 1
〈 N∑
i=1

xiµ̂x
〉

(1.84)

=
2

N − 1
〈Nµ̂xµ̂x〉 (1.85)

=
2N
N − 1

〈µ2
x〉 (1.86)

Variance of the sample variance:

Need a proper definition of moments, raw, centered, just a moment, higher
orders.
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µn =

+∞∫
−∞

(x− µx)2 p (x) dx (1.87)

When you do this – and it takes a while, you end up with:

var{σ̂2
x} =

1
N

(
µ4 −

N − 3
N − 1

µ2
2

)
(1.88)

which considerably simplifies for the normal distribution since the central mo-
ments (to be distinguished from the crude or raw moments around zero instead
of around the expected value) are well known: µ2 = σ2 and µ4 = 3σ4 thus
the variance of the sample variance for normally distributed variables is given
by

var{σ̂2
x} =

2σ4

N − 1
. (1.89)

We have mentioned the normal, only now, but wait till later.
NOW link this with the spatial statistics, RB X p 21, and compare how for

correlated fields the variance loses degrees of freedom, whereas for Whittle
likelihood, it doesn’t!



2
Distributions

We have the notion of a pdf. We need to know what happens to a pdf when we
add variables, when we differentiate variables, when we add MANY variables
together. This quite naturally introduces the normal and the chi-squared dis-
tribution, and then we continue to motivate the central-limit theorem and the
general notion of “fitting” data as “modeling residuals”. Through hypothesis
testing as a check whether all the assumptions are fullfilled, and then, yes, a
certain p-value, if you must.

2.1 Adding variables

Refer to “a suitable notation” since we know something about the moments
already. But now we need to learn about the distributions.

Let x and y be two random variables with a joint probability density distribu-
tion p (x, y). What is the probability density function of the random variable
which is the sum z = x + y? For each fixed value of x, the corresponding
y = z − x, and thus the joint pdf is given by

p (x, y) = p (x, z − x) . (2.1)

For each fixed value of z, the variable x can range from −∞ to +∞, and so
the marginal distribution of z will be

p (z) =

+∞∫
−∞

p (x, z − x) dx. (2.2)

If x and y are independent, and their probability density functions are p1(x)
and p2(y), respectively, then we obtain the general result that the pdf of the

24
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sum variable is the convolution of the individual ones:

p (z) =

+∞∫
−∞

p1(x) p2(z − x) dx. (2.3)

Example

Let x and y be random variables with uniform distributions

p1(x) =
1
a

for 0 ≤ x ≤ a, (2.4)

p2(y) =
1
a

for 0 ≤ y ≤ a. (2.5)

What is the distribution of z = x+ y? As we know

p2(y) = p2(z − x), (2.6)

which applies in the range

0 ≤ z − x ≤ a, (2.7)

0 ≥ −z + x ≥ −a, (2.8)

z ≥ x ≥ z − a. (2.9)

In other words, the distribution of the sum is the restricted convolution integral

p(z) =
∫ z

z−a
p1(x) p2(z − x) dx. (2.10)

There are two regimes for this, since 0 ≤ z ≤ 2a but 0 ≤ x ≤ a and x cannot
be bigger than z. Write down eq. (2.10) but then point to the need to truncate
the upper, and the lower limit at 0 and at a. We have

p(z) =


z∫
0

(
1
a

)2
dx =

(
1
a

)2

z for 0 ≤ z ≤ a,
a∫

z−a

(
1
a

)2
dx = 2a− z

a2 for a ≤ z ≤ 2a,
(2.11)

and 0 otherwise, which is a triangular function. Properly normalized. Picture
here: Uniform for y on 0 to a. Uniform for x on 0 to a. Triangle for z on a to
2a.
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An alternative derivation of the convolution rule

Working with the distribution function:

P (x+ y ≤ z) = P (z) =
∫∫

x+y≤z
p(x, y) dx dy, (2.12)

=
∫∫

x+y≤z
p1(x) p2(y) dx dy, (2.13)

=

+∞∫
−∞

p1(x)

 z−x∫
−∞

p2(y) dy

 dx, (2.14)

=

+∞∫
−∞

p1(x)P2(z − x) dx. (2.15)

On to the probability density function:

p(z) =
dP

dz
=

+∞∫
−∞

p1(x)
dP2

dz
(z − x) dx, (2.16)

=

+∞∫
−∞

p1(x) p2(z − x) dx, (2.17)

which is what we had before. We are of course using the chain rule of differ-
entiation, by which (dy/dz = 1)

dP2

dz
=
dP2

dy

dy

dz
=
dP2

dy
= p2. (2.18)

Well, keep doing this and get the following. For any underlying distribution
by CENTRAL LIMIT THEOREM. In fact, any distribution with finite variance
would do it = CLT.

2.2 The Gaussian distribution

The standard form of the Gaussian or normal probability density function is
(normpdf):

p(x) =
1

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
. (2.19)
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The distribution function is (normcdf):

P (x) =
1

σ
√

2π

x∫
−∞

exp
[
− (x′ − µ)2

2σ2

]
dx′. (2.20)

This is not called the error function (erf), but it is close. Variables X that are
distributed normally with expectation µ and variance σ2 are denoted

X ∼ N
(
µ, σ2

)
. (2.21)

Expectation of the Gaussian distribution

〈x〉 =

+∞∫
−∞

x p(x) dx (2.22)

=

+∞∫
−∞

x
1

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
dx (2.23)

=

+∞∫
−∞

(x+ µ)
1

σ
√

2π
exp

(
− x2

2σ2

)
dx (2.24)

= µ

+∞∫
−∞

1
σ
√

2π
exp

(
− x2

2σ2

)
dx

+

+∞∫
−∞

x
1

σ
√

2π
exp

(
− x2

2σ2

)
dx (2.25)

= µ. (2.26)

The first term equals 1, because it is just simply the normalization of the prob-
ability density function,

∫
p(x) dx. The second term is the integral of an odd

function over a symmetric interval – it thus vanishes. Matlab example of how
to do this integral?

Variance of the Gaussian distribution

〈(x− E{x})2〉 =

+∞∫
−∞

(x− µ)2p(x) dx = σ2, (2.27)
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which we prove using the well-known integral that, depending on the text
book, bears the names of Gauss, Poisson and Euler, namely:

+∞∫
−∞

e−x
2
dx =

√
π. (2.28)

Usingr Euler-Poisson formula that gives us
√
π = Γ(1/2). Trick is to square

the integral to a double, then switch to polar coordinates. See “Gaussian inte-
gral” on Wikipedia. Matlab example of how to do this integral?

Percentiles and Intervals

Quantile-quantile plots are a good thing to talk about here. qqplot Invented
by Wilkes! Remember Tukey. Not that long ago.

Scaling

If x ∼ N (µ, σ2), how is z = (x− µ)/σ distributed? We already talked about
how this works in terms of the variance and the mean.

Matlab example of how it’s just an axis scaling.

2.3 Changing variables

If x ∼ N (µ, σ2), how is (x − µ)/σ distributed? Well, it’s just a change of
variables? How’s that done? Talk about x and then the functional mapping
g(x) = y. Knowing p(x), what is p(y)? From the graph, we can see that

p(y) dy = p(x) dx. (2.29)

But how does dy relate to dx? Let’s do a first-order Taylor series for the
function g(x) = y and try to find the value of g(x+ dx) = y + dy:

g(x+ dx) = g(x) +
dg

dx
dx = y + dy. (2.30)

From this we conclude that, to first order:

dy =
dg

dx
dx =

dy

dx
dx, (2.31)

of course, and thus

p(x) dx = p(y)
dy

dx
dx, (2.32)
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which we formalize to ensure positivity by writing:

p(y) = p(x)
∣∣∣∣dydx

∣∣∣∣−1

. (2.33)

Jacobian, my friend. BUT: need to ensure normalization.
Picture. Make infinitesimal or else the argument won’t work well. Deform

a p(x) to a p(g(x)). Shade areas of equal probability. Relate dx and dy.

First example: The standard normal distribution

We return to the question at hand, whereby x ∼ N (µ, σ2) is a Gaussian vari-
able with expectation µ and variance σ2, and we are finding out what the distri-
bution is of the variable obtained by subtracting the mean from x and dividing
the result by the standard deviation of x. The transformation is:

y =
x− µ
σ

and
dy

dx
=

1
σ

and
∣∣∣∣dydx

∣∣∣∣−1

= σ, (2.34)

and thus the distribution of the resulting variable is:

p(y) =
σ

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
(2.35)

=
1√
2π

exp
(
−y

2

2

)
, (2.36)

which is nothing else but p(x) when µ = 0 and σ = 1, and which is therefore
called standard-normally distributed. We will denote important result this as:

If x ∼ N
(
µ, σ2

)
then

(
x− µ
σ

)
∼ N (0, 1). (2.37)

See something about the distribution of the maxima of the sample as a func-
tion of N, which I heard by Bouchard (?) at PCTS and reminded me of Donoho
and

√
(2 lnN) in the thresholding paper.

Alternative derivation of the standard normal

z =
x− µ
σ

when X ∼ N
(
µ, σ2

)
(2.38)
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Pz(z′) = Prob(z ≤ z′) (2.39)

= Prob
(
x− µ
σ
≤ z′

)
(2.40)

= Prob(x− µ ≤ σz′) (2.41)

= Prob(x ≤ µ+ σz′) (2.42)

= PGaussian(µ+ σz′) (2.43)

= Px(µ+ σz′) (2.44)

but

x ∼ N
(
µ, σ2

)
(2.45)

so we know it already

Pz(z) = Px(µ+ σz) (2.46)

p(z) =
dP

dz
= σpx(µ+ σz) (2.47)

by the chain rule, therefore, by substitution,

p(z) =
1√
2π
e−

Z2
2 ∼ N (0, 1) (2.48)

This is the easy way for a linear transformation. See BP Chap 3-4, Trauth, and
Aster.

Second example: The chi-squared distribution
Now let x be a standard normal variable,

x ∼ N (0, 1) (2.49)

and let’s ask ourselves the question what the distribution is of its square:

y = x2. (2.50)

Evidently

dy

dx
= 2x = 2

√
y and

∣∣∣∣dydx
∣∣∣∣−1

, (2.51)

leading to:

p(x2) = p(y) =
1√
2π

e−y/2
√
y
. (2.52)
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This is the so-called χ2-distribution with one degree of freedom, χ2
1. We re-

mind ourselves of some properties of the gamma function

Γ
(

1
2

)
=
√
π, (2.53)

Γ(1) = 1, (2.54)

Γ(N − 1) = NΓ(N). (2.55)

Γ(N) = (N − 1)!. (2.56)

In Matlab, see chi2pdf and chi2cdf. Make the connection with factorial
and gamma. Don’t get bogged down, though having the formula for the Gamma
function would be nice.

Γ(z) =
∫ ∞

0

tz−1e−t dt (2.57)

2.4 The chi-squared distribution

Because in standard form the χ2-distribution with n degrees of freedom is
going to be the result of adding multiple sums of squares of normal variables
together as

y = z2
1 + z2

2 + · · ·+ z2
n (2.58)

which results in

p(y) =
1

2n/2Γ(n/2)
exp

(
−y

2

)
(y)n/2−1. (2.59)

We will be using the notation with N “degrees of freedom” that:

If xi ∼ N (0, 1) then
N∑
i

x2
i ∼ χ2

N . (2.60)

The χ2 distribution is a one-parameter distribution, whose expectation and
variance are determined solely by the number of its degrees of freedom, n,

E
(
χ2
n

)
= µχ2 = n (2.61)

E
[
(χ2
n − µχ2)2

]
= σ2

χ2 = 2n (2.62)
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2.5 General statements about fitting data
Here we make the point that yall need to know about how “sums of squares”
are distributed. I reiterated variance and bias and rmse with a hypothetical
example of how to fit a third-order polynomial with a first, then second, etc.
degree fit. Each time calculating the metrics.

Here I had some 3 pictures in Lecture 5 which worked well. Whatever goes
to χ2. Are the data normal? Are the errors? Residuals? What is a qq-plot? χ2

again, somewhat self-referentially. .
It’s all about sums of squares.
Polynomial fitting. Need to explain this better and hands-on. Good Black-

board Oct 3, 2017.
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2.6 Convolution

See Papoulis book on Systems and Optics. See PW p 161. Start from the
general transform with reproducing-type kernels, then specify to LTI which
implies convolution! Simple, elegant.

convolution.png
commutativity

Mention the Hilbert transform AS a convolution with 1/pi, so they’ve all
heard of it! As a way of first bringing out the Hilbert transform.

What is convolution? We will need it often.

y(t) =

+∞∫
−∞

h(τ)x(t− τ) dτ, (2.63)

whereby t is an arbitrary input. h(t) is the impulse response. Discrete version
– see Strang. The value of the output y(t) is given as a weighted, linear, infinite
sum, over the entire history of the input x(t). Th weighting function h(t) is
called the impulse response, the value of the output is due to a unit impulse
input at a time τ before.

h(t) =

+∞∫
−∞

h(τ)δ(t− τ) dτ (2.64)

Say what the δ function is.
For a causal (i.e. physically realizable) system, we cannot have any output

before we received an input, in other words

h(τ) = 0 for τ ≤ 0 (2.65)

How about in the discrete case? This is probably how we can best under-
stand the procedure by which functional (also stochastic, statistical) inputs get
mapped via deterministic “filter” functions into outputs:

y(n) =
N∑
k=0

h(k)x(n− k) (2.66)

Note: Green functions, is a smoothing kernel. This is not a cross-correlation,
just so you know. Cross-correlation has POSITIVE sign inside, that’s all. Dis-
tro of X+Y is convo, of X-Y is cross-co!

So construct this sequence and then read it from the bottom up, you’ll see
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eq. (2.66) appear before your eyes for the simple case when N = 1 thus the
filter is of length N + 1 = 2:

h =
[
h(0) h(1)

]
(2.67)

Every input gets multiplied by however long the response takes, and this for
every sample of the inputs. The results are added. Whatever lingers.

Need some kind of arrows up on the top that say, at time one, at time two,
etc.

time 1 time 2 time 3

×

{
x(0) x(0)
h(0) h(1)

×

{
x(1) x(1)
h(0) h(1)

×

{
x(2) x(2)
h(0) h(1)

y(0) = h(0)x(0)
y(1) = h(0)x(1) + h(1)x(0)

y(2) = h(0)x(2) + h(1)x(1)

Read the results and write them out from the bottom up.
Now take a good look at we just did:

y(0) = h(0)x(0) (2.68)

y(1) = h(0)x(1) + h(1)x(0) (2.69)

y(2) = h(0)x(2) + h(1)x(1) (2.70)
...

... +
... (2.71)

y(n) = h(0)x(n) + h(1)x(n− 1) (2.72)

and the general form follows. Picture. See Strang and Nguyen, first page.
Should you want to represent this as a matrix operation, you could, too! You’d
get a Toeplitz matrix.

discrete impulse x(0) = 1

y(0) = h(0) (2.73)

y(1) = h(1) (2.74)

H is a “filter” causal, with finite impulse response.
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First Example: Continuous convolution
The impulse response:

h(τ) = e−τ , τ ≥ 0 (2.75)

The signal:

x(t) = 1 τ ≥ 0 (2.76)

To calculate the convolution,

[h ∗ x](t) =

+∞∫
−∞

x(τ)h(t− τ) dτ (2.77)

Now, flip the signs and shift

h(−τ) = eτ , τ ≤ 0 (2.78)

h(t− τ) = et−τ τ ≤ t (2.79)

No restriction on the sign of t: it can be anything. Multiply, then integrate:

(eτ ∗ 1)[t] =

+∞∫
−∞

e−(t−τ) dτ =

t∫
0

eτ−t dτ = eτ−t
∣∣t
0

= 1− e−t. (2.80)

Now t− τ ≥ 0 and τ ≥ 0 thus 0 ≤ τ ≤ t.
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Second example: Discrete convolution
Now the signal is given by

s =
[
−1 2 4 −6 5 2 0 1

]
, (2.81)

and we consider the filters

h1 = [ 1 1 ] and h2 = [ 1 −1 ]. (2.82)

Think about what could be going on with h1. It’s some kind of a moving
average, or smoothing, or lowpass.

−1 −1
2 2

4 4
−6 −6

5 5
2 2

0 0
1 1

(2.83)

[
−1 1 6 −2 −1 7 2 1 1

]
(2.84)

Think about what could be going on with h1. It’s some kind of a moving
difference, or roughening, or highpass:

−1 1
2 −2

4 −4
−6 6

5 −5
2 −2

0 0
1 −1

(2.85)

[
−1 3 2 −10 11 −3 −2 1 −1

]
(2.86)

Also do example of Strang and Nguyen p. 6.
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2.7 Confidence Intervals
Generalities. We’ve so far contented ourselves with describing what happens
to the mean and variances of certain types of variables. Clearly, we want the
whole distribution to be able to make quantitative inference of any kind.

2.7.1 How good is the sample mean?

Let µ be the population mean. let µ̂ be the estimate based on N samples.

µ̂ =
1
N

N∑
i=1

xi (2.87)

i.e. the arithmetic mean.
Sure, 〈µ̂〉 = µ as we have proved. This is unbiased. also,

var{µ̂} = 〈µ̂2〉 − 〈µ̂〉2 =
σ2

N
(2.88)

as we have seen. Note: we did it via mse = v + b2. Note: known variance
Wikipedia: The standard error (SE) is the standard deviation of the sampling

distribution of a statistic,[1] most commonly of the mean (e.g. standard error
of the mean). So compared to the above, you may want to do

s2

N
(2.89)

if s is your estimate of σ.
But really, we would like a confidence interval, i.e. to be able to say that

the true µ falls in some interval around the estimated µ̂ with some degree of
confidence. We need the whole pdf of the estimator in eq. (2.87). Where there
are N independent observations of the random variable, x.

The data are normally distributed and their variance is known

Let’s say x ∼ N (µ, σ2), what is the pdf of

µ̂ =
1
N

N∑
i=1

xi (2.90)

for n� 1?
Even if the x weren’t normal the argument would still hold...

(i) its normal, too (we know this from the CLT on n� 1)
(ii) its mean is µ
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(iii) its standard deviation is
√
σ2/N

In other words,

µ̂ ∼ N
(
µ,
σ2

N

)
(2.91)

Therefore,

µ̂− µ
σ

√
N ∼ N (0, 1) (2.92)

is standard-normally distributed. We’ve done this too.
What does this mean for us? If we did a hundred tests of N = 100, and

computed each time the sample mean according to eq. (2.87), we quantify the
probability of

Prob
(
zα/2 ≤

µ̂− µ
σ

√
N ≤ z1−α/2

)
= 1− α (2.93)

from this we derive a confidence interval.

Prob
(

σ√
N
zα/2 + µ ≤ µ̂ ≤ σ√

N
z1−α/2 + µ

)
= 1− a (2.94)

We define zα as the value for which the distribution function of the standard
normal reaches the probability value of α× 100%.

If µ is the mean, then, with a probability 1− α will we find µ̂ in our trials:

µ = µ̂± z1−α/2
σ√
N

(2.95)

Note: z1−α/2 = −zα/2 symmetric distributions, such as the standard normal
z. Mention twosided. Picture here of a Gaussian, let’s say, with α/2 on the
left and 1− α/2 on the right.

Goodman2016, Baker2016, Nuzzo2014.
Note — once we’re done, we have found a single µ̂, no longer a random

variable! So technically, either µ̂ falls into the interval or it doesn’t. The
previous equation is the interpretation as the basis for hypothesis testing.

This is a it of a step... (BR p63 “slight logical step”) What BP 4.44 says is
equivalent to treating µ like the unknown and µ̂ like the given. In the same
number cases does µ fall within the confidence interval based on µ̂.

Link it back to Bayes and likelihood and Sivia.
So, if we know the mean and variance of the data, we can find the distribu-

tion of the sample mean µ̂ – we can use this to test hypotheses:
If mean is µ and variance is σ2 and sample size is N , then what are the

chances of observing µ̂ if this null hypothesis is true?
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High? Accept. Low? Reject. Pick a threshold, that would b ethe (1-a)100
percent confidence interval.

The data are normally distributed but their variance is unknown

Clearly somewhere in here we’ll need a test for normality to begin with!
We’ll have to put in the sample variance for the lack of anything better. Thus

we first figure out what the distribution is of the sample variance!

σ̂2 =
1

N − 1

N∑
i=1

(xi − µ̂)2 (2.96)

where x is normal with µ and σ2. We already know much about it:

(i) it’s a sum of squares, so χ2 will come in
(ii) its expected value is the variance, σ2.

(iii) eq. (1.88) gave us an inkling as to its variance, remember 2σ4/(N−1).

Let us start from the answer and work backwards. It has been derived (Pa-
poulis p260) that the sum of squares of standard-normally distributed variables

N∑
i=1

(xi − µ̂)2

σ2
∼ χ2

N−1, (2.97)

We are penalized by one degree of freedom for having first computed the sam-
ple mean. One of the terms in the equation is fixed when we have all but one
of the terms and their mean, quite intuitively.

To verify the expectation of the variable in eq. (2.97), take eq. (2.96) and
multiply it by〈 N∑

i=1

(xi − µ̂)2

σ2

〉
=
〈

(N − 1)
σ2

σ̂2

〉
=

(N − 1)
σ2

〈σ̂2〉 = N − 1 (2.98)

which follows from eq. (2.96), 〈σ̂2〉 = σ2. So eq. (2.98) follows by linearity
of the expectation.
The variance of the variable in eq. (2.97) is 2(N − 1). So,

var

(
σ2

N − 1

N∑
i=1

(xi − µ̂)2

σ2

)
=

2(N − 1)
(N − 1)2

σ4 =
2σ4

N − 1
(2.99)

by which we have found again the variance of the sample variance for normally
distributed variables with variance σ2, var{σ̂2} (Kenny and Keeping p164).
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Note that this is the short form of an equation which, to say it most generally,
would have a couple of other terms in it. We’ve encountered this once, it is
worth reverifying what the results are. See the Wolfram article on this (Sample
Variance Distribution), quite helpful.

So the distribution of eq. (2.97), simply rewritten as

(N − 1)
σ2

σ̂2 ∼ χ2
N−1, (2.100)

which gives us all the information we need about the distribution of eq. (2.96).
The distribution of the sample variance of size N is proportional to a χ2 dis-
tribution with N − 1 degrees of freedom.

We also know the distribution of the mean from eq. (2.92). We’d like to have
an equation of the same form. Note: which we know to be true by the CLT
and the scaling argument. But we don’t know the true variance of the sample.
Let’s try something finding the distribution of

µ̂− µ
σ̂

√
N ∼ what? (2.101)

Point out the difference with eq. (2.92).
We have a Gaussian variable µ̂ distributed as eq. (2.91), and a χ2 variable

σ̂2 distributed as eq. (2.100). That which we want to know, eq. (2.101) is in
other words the ratio of a standard normally distributed variable, the numerator
of eq. (2.101),

z =
µ̂− µ
σ

√
N ∼ N (0, 1) (2.102)

and another variable, the denominator of eq. (2.101),

σ̂

σ
=
√

y

N − 1
(2.103)

whereby y is the variable whose distribution we know already also:

y = (N − 1)
σ̂2

σ2
∼ χ2

N−1 (2.104)

The distribution of this ratio of variables was worked out a long time ago by
Gosset,

µ̂− µ
σ̂

√
N ∼ tN−1 (2.105)

whereby tn has a pdf

p(t) =
Γ(n+1

2 )
√
n
√
nΓ(n2 )

[
1 +

t2

n

]−n+1
2

(2.106)
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The student t distribution n −→∞−→ Gaussian. (Papoulis p207, Biometrica
p908) asymptotically.

Because we can calculate the student t distribution, and we can go through
the same argument as before to construct confidence intervals on the popula-
tion mean, based on the sample mean and the sample variance

µ = µ̂± tN−1;1−α/2
σ̂√
N

(2.107)

All of these were symmetric — even when the distributions are asymmetric
we can do this.

2.7.2 How good is the sample variance?

We’ve just worked out

(N − 1)
σ̂2

σ2
∼ χ2

N−1. (2.108)

and from this we learn

Prob
(
χ2
N−1;α/2 ≤ (N − 1)

σ̂2

σ2
≤ χ2

N−1;1−α/2

)
= 1− α (2.109)

Now translate this to a statement on σ2 given σ̂2.

Prob
(

σ2

N − 1
χ2
N−1;α/2 ≤ σ̂

2 ≤ χ2
N−1;1−α/2

σ2

N − 1

)
= 1− α (2.110)

rephrase this to a (1− α)× 100% confidence interval.
Or else start from before and do 1/over it,

1
χ2
N−1;1−α/2

≥ σ2

(N − 1) σ̂2
≥ 1
χ2
N−1;α/2

(2.111)

or a confidence interval

σ̂2(N − 1)
χ2
N−1;1−α/2

≤ σ2 ≤ σ̂2(N − 1)
χ2
N−1;α/2

(2.112)

Now we can ask the question: how big does N need to be to get a certain level
of confidence interval?
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Fig. 2.1. Pieces of lecture. Right.

2.7.3 How good is the sample correlation coefficient?

Here the formula from BP. Never, ever, quote an “r-value” without quoting the
significance level. Look at Snedecor, VandeCar+90.

HERE MAYBE NEED TO WORK OUT THE DISTRIBUTION OF THE
RATIO OF TWO CHI-SQUAREDS? TO GET AT LEAST TO F.

THEN POINT OUT THAT WE HAD ADDING VARIABLES, CHANG-
ING VARIABLES, SHOULD HAVE A SECTION ON FINDING THE PDFS
OF MULTIPLIED VARIABLES.
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Fig. 2.2. Pieces of lecture. Left. A was How good is the sample mean – known vari-
ance. B was unknown variance.

2.8 Hypothesis testing
As to the lab, a good thing would be to run the test for 1:N each time M times,
and plot the means and stds of the p values versus N with the thresholding.

Let’s say you’re after s, and you estimate ŝ from its samples,

• We can figure out bias, variance and mse
• We can construct a confidence interval
• We can query the data under various hypotheses

E.g. the mean; the sample mean; its distribution
Null Hypothesis: H0

• The truth is µ = µ0

• We observe µ̂ until the shown probability
• What is the chance that the observed µ̂ falls as far apart from µ0 as it does?

or even further?

[graphic] big chance ≥ α if this is ≥ α, accept H0
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Fig. 2.3. Pieces of lecture. Middle.

[graphic] small chance < a, it’d be extremely unlikely for H0 to be true.
Nevertheless, the chance exists, it’s the Type I error.

Accept HO if the change of seeing the result < α. α is a type 1 error, you
can live with.

Wrong hypothesis HO

• the truth is µ 6= µo but µ = µ1

• we observe µ̂, with chance ≥ α for H0

• we decide in favor of µ = µ0, wrongly

[graphic] this is the chance that you accept µ̂ for HO, but wrongly
β is a type II error. This is the chance that the wrong hypothesis is accepted.
Reduce α, get better significance, but the probability β is increased.
1 − β is called the power of the fit. Only increasing N can reduce α and β

at the same time, by making the pdf’s more peaked and thus better separated.
Example 4.2 is nice.
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population sample “statistic” distribution expectation variance

µ mean µ̂ N 〈µ̂〉 = µ σ2

N

σ2 variance σ̂2 σ2

N−1χ
2
N−1 〈σ̂2〉 = σ2 2σ4

N−1

Do lab 1! Give nice Matlab illustrations of this, with the tests. Also plot
the chi2 that these X2 should look like, etc. 1 Graph for changing N, the
X2 data, and the accepts/rejects 1 Graph for changing N, the p value, and the
accepts/rejects. All for many loops and cases. Show that the chi2 is actually
chi2 by its histogram!





Part II
Linear Inverse Theory





3
Best-fit type approaches

Let us be vague, in terms of notation, about the notions model (that which we
want to know), noise (that which corrupts) and the data (that which we have),
using the simple mnemonics m, n and d, and let us describe the mapping
between model space and data space by some operator G , as follows:

G (m) + n = d. (3.1)

3.1 The forward problem
A forward model is an operation that turns a set of model parameters into a set
of observable data. Speaking quite generally and neglecting the influence of
noise anywhere in this system, we write

G(m) = d. (3.2)

We shall focus quite exclusively on linear problems, i.e. those for which, for
some scalar values a and b, the following expression holds:

G(am1 + bm2) = aG(m1) + bG(m2). (3.3)

3.1.1 Continuous problems
Some general model∫

g(x, y)m(y) dy = d(x) (3.4)

De/convolution∫
g(x− y)m(y) dy = d(x) (3.5)

When is it nice to think about something in continuous, functional form? I

49
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last gave an example of how knowing an analytical inverse helps, or how, in
the forward sense, to do an integral of something whose primitive function you
know. Hansen, barcode reading thing. Maybe an midocean ridge for us?

Deconvolution/Toeplitz form - inversion... how it works for [1 1] and [1 2 1].

Example 1 (without a solution)

First an example of how a function is smoothed, running average, low-pass
filtering. Draw a picture. We anticipate that going back is going to be hard.
This is convolution like we’ve had in the continuous sense. But we also write
the same equation out again in discrete form for continuity with the below and
with the above on convolution that we’d already done.

3.1.2 Discrete problems

There is always a matrix

G ·m = d (3.6)

But this is abstract so we do it by example.

Example 2 (without a solution)

Second example: fitting a parabola of a throw in a gravity field. Draw a nice
picture of some data, some parabolas through it, the distance to the data points,
the mean squared error of the result.

d(t) = a+ bt+ ct2 (3.7)

write this as a matrix operation as follows:

N data




d1

d2

...
dN

 =


1 t1 t21
1 t2 t22
...

...
...

1 tN t2N


︸ ︷︷ ︸

N ×M matrix

 a

b

c

M unknowns (3.8)

3.2 Solving linear inverse problems

Forget math class where you could get a solution by inverting something. Ex-
ample: a scalar inverse, a 2 by 2 doable inverse. See examples.
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Example 1: Estimating the Earth’s average density
From either the mass or the moment of inertia. Earth mass, M , and moment of
inertia, I , for a = 6371×103 m the mean radius. Both of these are observables,
call them d1 and d2:

M = 5.974× 1024 kg = d1, (3.9)

I/a2 = 1.975× 1024 kg = d2. (3.10)

Two equations of the same kind: looking for a scalar from a single observation.
The unknown is the average density, ρ̄, let’s call this m1. Let’s write how the
mass and the moment of inertia depend on the density of a uniform solid sphere
with this average density. Incidentally, just like we did with pdf’s, these are
moments of the density distribution of the Earth! In general, this would be the
mass, M which is the zeroth moment of the “location” variable of the “density
distribution”, the center of mass, which would be the first, and the moment-
of-inertia which would be the second. If we remember that the differential
element of mass is given by

dM(r) = ρ(r) dV = ρ(r) r2 sin θ dr dθ dϕ (3.11)

we quickly arrive at the expressions for the total mass and moment-of-inertia
with respect to the rotation axis which is the north pole of the coordinate sys-
tem when θ = 0, and let’s integrate out the azimuthal variable already:

M = 2π
∫ a

0

∫ π

0

ρ(r) r2 sin θ dr dθ, (3.12)

I = 2π
∫ a

0

∫ π

0

(r sin θ)2 ρ(r) r2 sin θ dr dθ. (3.13)

Check that the center of mass is in the center and that it does not get the per-
pendicular projection that the moi requires, as it is with respect to the center
not to an axis! Though it gets the cosine which makes it vanish. Think about
what the average radius is compared to the center of mass. Rather, isn’t the
center of mass that location about which the variance of the density distribu-
tion is minimized. But no, we don’t want the average radius of all of them,
we want the average position on each of the three axes. So we’ve got to still
project on the axes to get x, y, and z to ultimately be zero.

These are the forward models, and both are linear, so let’s just call themG11

and G22 for now

M =
4π
3
a3 ρ̄ = G11 ρ̄ (3.14)

I/a2 =
8π
15
a3 ρ̄ = G22 ρ̄. (3.15)
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and so from either of these equations taken individually, we can estimate the
mean density to be. The solutions are obtained by simple linear scalar inver-
sion. So we won’t write the hat but we’ll identify them by a superscript which
says which linear model and which observation they are derived from:

ρ̄1 = 5.515× 103 kg m−3 from eq (3.14) (3.16)

ρ̄2 = 4.558× 103 kg m−3 from eq. (3.15). (3.17)

Note that another way to put it would be to say that we did this by simple
inversion of the system of independently considered equations[

M

I/a2

]
=
[

4π
3 a

3 0
0 8π

15 a
3

] [
ρ̄1

ρ̄2

]
(3.18)

Example 2: Estimating the Earth’s two-layer density

a = 6371 km, two-layer earth, c = 3485 From either the mass or the moment
of inertia. Slightly more complicated, but completely solvable through matrix
inversion.

Exact, unique solution.

M =
4π
3
c3 ρc +

4π
3

(a3 − c3) ρm (3.19)

= G11 ρc +G12 ρm (3.20)

I/a2 =
8π
15

c5

a2
ρc +

8π
15

(
a3 − c5

a2

)
ρm (3.21)

= G21 ρc +G22 ρm. (3.22)

When you’re done

ρc = 12.492× 103 kg m−3 (3.23)

ρm = 4.150× 103 kg m−3. (3.24)

We’ve solved[
M

I/a2

]
=

4π
3

[
c3

(
a3 − c3

)
2
5
c5

a2
2
5

(
a3 − c5

a2

) ][ ρ̄1

ρ̄2

]
. (3.25)

Example 3: Estimating the Earth’s average density, again

Another estimate would take both constraints on the single parameter. This is
left for later. What if we try to satisfy both of these data at the same time?
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We’d have:[
M

I/a2

]
=
[

4π
3 a

3

8π
15 a

3

]
ρ̄ (3.26)

Counterexample: a rectangular matrix, an undoable inverse. Look again at
the discrete form of the convolution matrix.

There is always noise, and perhaps the system has no solution. Talk about
signal and noise. We now want an estimate estimate of the model, m̂ such that
the solution

G ·m = d = s + n (3.27)

which is by definition to the prediction

G · m̂ = d̂ ≈ d (3.28)

How close is close? There is the error or residual of course.

e = d−G · m̂ (3.29)

We need to go back to our notions of bias, variance and mean squared error,
which here is, up to a scaling, given by the norm or length of the vector with
residuals.

3.3 The overdetermined problem

Do the full derivation here. Start again with a noisy version of

d = G ·m + n and 〈n〉 = 0 and 〈s n〉 = 0 (3.30)

Goal is to find an estimator m̂ that predicts this data using the linear model.
The prediction error is

e = d−G · m̂. (3.31)

We want to keep it small (to within where we assume it could be just noise, so
back to the notions of significance and chi-squared statistics etc.) Define this
the mean-squared error:

φ = ||e||22 = e · e = (d−G · m̂) · (d−G · m̂) (3.32)

Or, in index notation with(out) the summation convention:

φ =
N∑
i=1

(
di −

M∑
j=1

Gijm̂j

)2

= (di −Gijm̂j) (di −Ginm̂n) (3.33)
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And now take the derivative with respect to a generic model parameter

∂φ

∂m̂k
= (di −Gijm̂j) (−Gik)−Gik (di −Ginm̂n) (3.34)

= −2Gik (di −Gijm̂j) = 0. (3.35)

Which is, if you will, in vector notation:

∇m̂ Φ = −2GT · (d−G · m̂) = 0 (3.36)

and thus clearly the minimzer of φ is when

GT · d = GT ·G · m̂, (3.37)

from which we derive the best-fitting least-squares estimate as use argmin here!

m̂ =
(
GT ·G

)−1 ·GT · d. (3.38)

In conclusion, this here is the “left-inverse” of the design matrix, etc.

G−g =
(
GT ·G

)−1 ·GT. (3.39)

Because of this, plugging in we see there is no bias.

m̂ =
(
GT ·G

)−1 ·GT · (G ·m + n) and 〈m̂〉 = m. (3.40)

How does the estimated model vector relate to the true model vector? The
model resolution matrix in this case is the identity

R = (GT ·G)−1 ·GT ·G = I. (3.41)

Example 3: Fitting a curve through data
This we can’t solve yet, so we need a new tool. How do we characterize the
solution? Still only have bias and variance to play with. Let’s decide on a
good measure. L2. Write this solution out for the linear regression with two
parameters and you’ll see the familiar sum of squares of Menke’s book.

Example 4: Finding the mean of several measurements
Consider the problem of finding the value of a single parameter,m, fromN re-
peated measurements. Written in matrix form, this becomes

1
1
...
1

m =


d1

d2

...
dN

 (3.42)
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And thus the solution is

m̂ =

[ 1 . . . 1
]  1

...
1



−1 [

1 . . . 1
]


d1

d2

...
dN

 (3.43)

which is the same as saying

m̂ = N−1
N∑
i

di (3.44)

which we recognize as the arithmetic mean.
Woohoo. Now change the norm, comment on the outlier behavior, go do an

`1 problem to come up with the median. Refer to [3].
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Example 5: Incorporating data uncertainty
Do this derivation without going into detail of the statistics just yet. However,
we are once again solving

d = G ·m + n (3.45)

by finding some linear operator that works on the data to return the model

m̂ = G−g · d (3.46)

Start by assuming that the data and the model parameters have zero mean.
Motivate this more properly but anyway

〈d〉 = 0 and 〈m〉 = 0 (3.47)

and defining the data covariance matrix to be the dyad or the “squared” pair

Cd = 〈ddT〉 (3.48)

We’re looking for another G−g that works, that we can apply to the data to
construct a model. We’d love to keep the model unbiased as before, but now
we’re talking variance, we can talk about model covariance as well. Whatever
the linear model, the

Cm = 〈(G−g · d) · (G−g · d)T〉 = G−g · 〈ddT〉 ·G−gT (3.49)

= G−g ·Cd ·G−gT (3.50)

so it’s just a quadratic form as expected.
This is the key to error propagation for linear models and students need

to see it.

A new penalty function
Let’s make a new penalty function, one that weights the prediction error of the
data somehow, e.g., and minimize

φ = (d−G · m̂) ·WT ·W · (d−G · m̂) (3.51)

= (W · d−W ·G · m̂) · (W · d−W ·G · m̂) (3.52)

= (d̃− G̃m̂) · (d̃− G̃m̂) (3.53)

Now it looks again like the first time around except for where

G̃ = W ·G and d̃ = W · d (3.54)

Solution once again is

m̂ = (G̃T · G̃)−1 · G̃T · d̃ (3.55)
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which, in other words, is

m̂ = (GT ·WT ·W ·G)−1 ·GT ·WT ·W · d (3.56)

See [4] p. 103 re IRLS.
At this point we should have already written the likelihoods from the next

chapter. But maybe not. Now let’s propose to use the inverse covariance for
the interior weighting, i.e.

C−1
d = WT ·W (3.57)

thereby minimizing

φ = (d−G · m̂) ·C−1
d · (d−G · m̂) (3.58)

forming the

m̂ =
(
GT ·C−1

d ·G
)−1 ·GT ·C−1

d · d (3.59)

Probably too much detail

In other words can show that this is the minimum-variance unbiased estimate
without writing the likelihoods yet.

G−g =
(
GT ·C−1

d ·G
)−1 ·GT ·C−1

d (3.60)

What is the bias of this thing? Plug in, average, observe the cancellation.
It’s unbiased. What is the variance of this thing? This is called BLUE. [5,
p. 138]. Minimizer of also minimizes the variance matrix of the estimate.
Minimal model covariance? Previously we assumed we’d demeaned but now
let’s return for the full form. It doesn’t matter. Well, the data covariance, Cd,
is given by the dyad

Cd = 〈(d−G ·m)(d−G ·m)T〉 (3.61)

The model covariance, Cm, is given by the dyad

Cm = 〈(m̂−m)(m̂−m)T〉 (3.62)

= 〈(G−g · d−m)(G−g · d−m)T〉

= 〈G−g · (d−G ·m)(d−G ·m)T ·G−gT〉

= G−g · 〈(d−G ·m)(d−G ·m)T〉 ·G−gT

= G−g ·Cd ·G−gT (3.63)
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which is just like we had it. Variance is the about the average variation about
the mean. Taking the mean out before you do it or leaving it in makes no damn
difference. Make a note of the symmetry to transposition which is vital for all
covariances and which we need later.

Doing is properly requires us to figure out what “minimum” means in a
matrix sense, we’d have to have derivatives, etc. – Hilbert-Schmidt. We could
notice it’s equal to the ML solutions and involve Fisher, Cramér, Rao. We
could notice it is minimum mse but NO – that is not enough... it’s not true, we
are minimizing (d−Gm) ·Cd · (d−Gm).

Definitely too much detail
[5, p. 144]. So now we have the model covariance. Let’s just say we want
to “minimize” the “matrix” in eq. (3.63) subject to the inverse operator G−g

being given by the expression eq. (3.60) for purely overdetermined systems,
thus G−g · G = I but let’s say there actually is another operator D−g that
does the job, by which we mean that both

G−g ·G = I and D−g ·G = I (3.64)

Let’s say there is another D−g that does the job, and express

D−g = G−g + (D−g −G−g) (3.65)

The resultant

Cm = D−g ·Cd ·D−g
T

= [G−g + (D−g −G−g)] ·Cd · [G−g + (D−g −G−g)]T

= G−g ·Cd ·G−g + (D−g −G−g) ·Cd · (D−g −G−g)T

+ 2(D−g −G−g) ·Cd ·G−gT (3.66)

Note that we’ve used the transpose symmetry of Cd. The last term is zero
which we see by substitution of the expression G−g so

(D−g −G−g) ·Cd ·C−1
d ·G · (G

T ·C−1
d G)−1

= (D−g −G−g) ·G · (GT ·C−1
d ·G)−1 (3.67)

Note that we’ve used the transpose symmetry of C−1
d . But since we supposed

that both D−g ·G = I and G−g ·G = I were solutions, we have

(D−g −G−g) ·G = 0 (3.68)

and thus eq. (3.67) is zero. What’s left is the two first terms

Cm = G−g ·Cd ·G−gT + (D−g −G−g) ·Cd · (D−g −G−g)T (3.69)
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this is positive definite always so smallest and equal to

Cm = G−g ·Cd ·G−gT (3.70)

when

D−g = G−g (3.71)

So our estimate eq. (3.60) is BLUE, and unique. The fact that we have a mini-
mum doesn’t for that matter mean that it’s a “good” and “significant” estimate
— for that we’ll still need the statistical viewpoint of testing.

3.4 The underdetermined problem: first cut

What if neither eq. (3.39) nor eq. (3.60) are good enough? Reasons could be
simply zero determinant, low eigenvalues, numerically zero eigenvalues, and
the lot. Why is that so bad? Getting it a little wrong on the model or in the data
leads to huges effects in the model. Bad!

Example 6: Asking the wrong questions

A dumb example: let Cd = I, and try fitting a line through a single point.
Clearly, there is no “best” solution in the usual sense, since any “solution” has
zero prediction error. Written in matrix form, this becomes

[
1 x1

] [ a

b

]
=
[
d1

]
(3.72)

And thus the solution is:

m̂ =
([

1
x1

] [
1 x1

])−1 [
1
x1

] [
d1

]
(3.73)

and we need to invert this – whether you remember or not, inverses of a matrix
are universally proportional to their determinant

(GT ·G)−1 ∝ 1∣∣∣∣ 1 x1

x1 x2
1

∣∣∣∣ =
1
0

=∞ (3.74)

This matrix is “singular”, least-squares regression fails. M data, N un-
knowns. There isn’t enough information here – it is an ill-conditioned, ill-
posed, underdetermined problem.
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Example 6: A quick fix

A priori information and the lot. Making sure both parameters are equal
(smoothing). Making sure both parameters are small (damping). Fixing one
value. Making sure one is positive. Let’s pick the example of damping, and
amend the problem as: 1 x1

1 0
0 1

[ a

b

]
=

 d1

0
0

 (3.75)

More generally, introducing a single scalar multiplier λ,[
G
λI

]
·m =

[
d
0

]
(3.76)

minimize error([
d
0

]
−
[

G
λI

]
·m
)2

=
[

d−G ·m
0− λm

]T [
d−G ·m
0− λm

]
(3.77)

φ = (d−Gm) · (d−Gm) + λ2m ·m (3.78)

solution is by direct minimization of the gradient

∇Φ = −2GT · (d−G ·m) + 2λ2m = 0, (3.79)

which leads to

0 = −GT · d + GT ·G ·m + λ2m (3.80)

= −GT · d + (GT ·G + λ2I) ·m (3.81)

leading to the general damped least-squares inverse

m̂ =
(
GT ·G + λ2I

)−1 ·GT · d (3.82)

See Gubbins 115.

Some details that are welcome

Alternative derivation has us work straight from the definition of the inverse of
the overdetermined problem:[

G
λI

]
·m =

[
d
0

]
(3.83)
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which leads straight to the formulation

m =
([

GT λI
]
·
[

G
λI

])−1

·
[

GT λI
]
·
[

d
0

]
(3.84)

and thus, when we also once again stick the data error covariance in there, we
obtain the solution

m̂ =
(
GT ·C−1

d ·G + λ2I
)−1 ·GT ·C−1

d · d (3.85)

What’s a good choice?

Clearly this is a very special form of extra constraints, let’s see this in its gen-
eral form using some weighted model norm as

m̂ =
(
GT ·C−1

d ·G + λ2WT ·W
)−1 ·GT ·C−1

d · d (3.86)

as in [4]. And then it’s a small step to “propose” to use the inverse model
covariance which must be “a priori” for this also. So this time

φ = (d−Gm) ·C−1
d · (d−Gm) + m ·C−1

m ·m (3.87)

definitely makes sense after identifying

C−1
m = λ2WT ·W, (3.88)

and when you’re done

m̂ =
(
GT ·C−1

d ·G + C−1
m

)−1 ·GT ·C−1
d · d (3.89)

We have to do this — watch the effect on the model uncertainty. If we are
using eq. (3.85) the model covariance matrix is an ugly thing that returns zero
when the data contribute nothing to the solution — when G = 0 if that should
be the case. But if we do eq. (3.89) we properly get model uncertainty even if
the data don’t contribute. Do the full derivation but not here, see [4] p. 119.

Link up with the notion of “variance reduction” (unexplained total variance)
and with [3] eq. 2.20

N∑
i=1

(obs− pred)2

var(obs)
∼ χ2

N−m (3.90)

The (i, j)th element of the data covariance matrix, a dyad,

〈ddT〉 (3.91)
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that is, for data of zero mean, is

〈didj〉 (3.92)

Now let A be

(G′
T

G′)−1G′
T

(3.93)

in weighted form
then

Cm = 〈mmT〉 = (GT ·G′)−1 ·GT ·Cd ·G′ · (GT ·G′)T (3.94)

Note: but Cd of weighted data = 1
but GT ·G is symmetric if Cd = 1, so

Cm = (G′
T

G′)−1(G′
T

G′)(G′
T

G′)−1 (3.95)

Cm = (G′T
′
G)−1 (3.96)

Bring the σ2 back, for uncorrelated data

Cm = σ2(GT ·G)−1 (3.97)

typically not diagonal, thus: may construct confidence interval. Perhaps diag-
onalize. Perhaps perform constrained minimization and thus eliminate model
parameters.

Trade-off. Illustration level?
[Example why χ2 shouldn’t be zero? Can always make it zero by fitting an

N − 1 polynomial through data (Lagrange’s theorem)].
Once you have a fit, you can interpret χ2. Having a minimum doesn’t mean

it is good.
For this we must go to the Bayesian form. But first we do another bit.

3.5 Constrained minimization
Make pictures of fitting the ping-pong ball going forcing through a certain
point. Or to have the average of some parameters be zero. Or some other
such motivational thing. An example could be the constrained fitting of an
otherwise overdetermined problem.

General case, graphical interpretation
Let us consider the minimization of a certain scalar misfit function Φ, subject to
the constraint that a certain other scalar Γ or vector Γ function of the unknown
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Fig. 3.1. Make the picture now! Contours of Φ, contours of Γ. Make something real.

parameter set m is also satisfied. We want to find the solution m̂ that achieves
a minimum Φ(m̂) while satisfying Γ(m̂) or Γ(m̂) exactly, in the sense

min Φ(m̂) subject to Γ(m̂) = 0, (3.98)

min Φ(m̂) subject to Γ(m̂) = 0. (3.99)

This all different from inequality-constrained minimization. Or from the
minimization of two quadratics, etc. But still.

The intuitive explanation and picture (which is easiest to draw graphically
for eq. 3.98) is that where this happens, the gradients of both functions with
respect to the parameters estimated, m̂, are anti-parallel,

∇m̂ Φ = −λ∇m̂ Γ, (3.100)

Go as far as you can in minimizing Φ while staying on the contour of Γ = v.
If these constraints are satisfied, the minimum of φ+λΓ is the minimum of φ.
So you add a new equation to the old one, but you impose that the addition is
zero. What is the connection? See [4]: may as well pick a λ as [6] on p 56.
Or, think of a valley of minimum of φ and pick on it the one that satisfies the
constraints.

Another way to understand this has us consider the need to minimize “new”
penalty functions,

Φ + λΓ and Φ + λ · Γ, (3.101)

with the “lambda(s)” one or more Lagrange multiplier(s). Thus we now re-
quire, in the case of eq. (3.98), that

∇m̂ Φ + λ∇m̂ Γ = 0, (3.102)

where λ is a scalar Lagrange multiplier, and in the case of eq. (3.99),

∇m̂ Φ + ∇m̂ Γ · λ = 0, (3.103)

with λ a vector Lagrange multiplier. In the latter case, the Lagrange vector as
many entries as you want to impose additional constraints. Write out in index
notation and think about gamma also being a linear operator (see my own notes
in [4], p. 233). From now on we drop the subscript from ∇ as we shall never
get confused.
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Special case, linear constraint equalities
This is a quadratic minimization plus a linear constraint. Should be able to
formalize this in matrix form. Also see Hansen about double quadratics. That’s
where the “quick fix” comes in, presumably. I do this in class with an eye on
eq. (3.78) which should have made intuitive sense by that time.

A (linear) scalar constraint on the model parameters is of the general form

Γ(m̂) = f · m̂− v = 0, (3.104)

for a certain vector f and some value v, while a (linear) vector constraint, for
some matrix F and a certain vector v, is of the general form,

Γ(m̂) = F · m̂− v = 0. (3.105)

Perhaps do the following two examples twice, once explicitly and once for
the Lagrange matrix equations if we can make it look nice.

Top left: taking the gradient of the quadratic, which is going to be some
form of m ·WT ·W ·m thus WT ·W. Bottom right is zero. Remainder is
the constraints, i.e. the vectors themselves.

Let us now turn our attention to the problem of finding the minimizer m̂ of
the quadratic penalty function Φ given by

min Φ = (d−G · m̂) · (d−G · m̂), (3.106)

supplemented by constraints of the form (3.104) or (3.105). Note that this
situation is different from the purely underdetermined case, we are still saving
this for later. There, we found that we were able to obtain a perfect data fit,
Φ = 0, and we attempted to select from a large class of models, all of which
explained the data without error, by minimizing some other quantity, e.g. the
Euclidean length of the model vector.

Here, we solve

0 = ∇m̂ [(d−G · m̂) · (d−G · m̂)] + λ∇m̂(f · m̂) (3.107)

= −2 GT · (d−G · m̂) + λf . (3.108)

In other words, satisfying eq. (3.108)

0 = −2 GT · d + 2 GT ·G · m̂ + λf (3.109)

simultaneously with the initial constraint (3.104)

v = f · m̂ (3.110)

can be written in matrix form (the transposes on vectors start to matter!) as[
GT · d
v

]
=
(

GT ·G fT

f 0

)[
m̂
λ/2

]
. (3.111)
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Top left is the equivalent of the original problem that you minimize, the bottom
right is what you try to fix.

Example 7: Constrained fitting of a straight line

d =


d1

d2

...
dN

 , G =


1 x1

1 x2

...
...

1 xM

 and m =
[
b

a

]
(3.112)

and let the constraint be that the line go through the point (x∗, y∗), as in[
1 x∗

] [ b

a

]
= y∗ (3.113)

Lagrange equations from eq. (3.111)

GT ·G =

 M
M∑
i=1

xi

M∑
i=1

xi
M∑
i=1

x2
i

 (3.114)

is now square and can be inverted [conditions?] who knows invert this, instead.

3.6 The underdetermined problem: the pure form
Let’s do a different example — suppose we can fit the data exactly, but we
need to choose a particular solution. We’d have to satisfy eq. (3.99) where

min Φ = m̂ · m̂ subject to Γ = d−G · m̂ = 0. (3.115)

What we did before we knew constraints
Thus we solve

0 = ∇(m̂ · m̂) + ∇(d−G · m̂) · λ (3.116)

= 2m̂−GT · λ, (3.117)

by in other words having

m̂ = − 1
2 GT · λ (3.118)

but of course we know from eq. (3.115) that G · m̂ = d and thus,

d = − 1
2 G ·GT · λ (3.119)
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and thus we can determine the vector of multipliers as

λ = −2
(
G ·GT

)−1 · d, (3.120)

which we plug back into eq. (3.118) to yield

m̂ = GT · (G ·GT)−1 · d (3.121)

By construction, eq. (3.121) is the minimum-length solution of all those that
satisfy the data exactly. Now say something about the null-space interpreta-
tion?

G−g = GT · (G ·GT)−1 (3.122)

is a “right-inverse” of the design matrix. Correct. See SV’s thesis on page 13
for the SVD version of this.

In the formalism of minimization with constraints
Purely underdetermined problem – you can fit te data exactly but you need to
minimize the solution length. We’ve already done this, we’re going to do this
again in the slighly more general framework.

min Φ = m̂ · m̂ subject to Γ = d−G · m̂ = 0. (3.123)

Indeed

m̂ · m̂ = (I · m̂) · (I · m̂) (3.124)

minimize

m̂ · m̂ = m̂2 →equiv I ·m = 0 (3.125)

least squares subject to

G · m̂ = d→equiv F ·m = d (3.126)

See how the roles are switched! The equations of Lagrange are(
I GT

G 0

)[
m̂
λ

]
=
[

0
d

]
(3.127)

And then eq. (3.121) is the least-squares solution to the problem which is just
a square inversion leading to[

m̂
λ

]
=
(

0 GT · (G ·GT)−1

(G ·GT)−1 ·G −(G ·GT)−1

)[
0
d

]
(3.128)
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as you can check by substituting.
Purely overdetermined problem—you cannot find an exact solution but you

can minimize the residuals. Minimize (G · m̂ − d)2 subject to what? The
norm being a certain value? Need to work this out in more general detail. The
board lecture was good. Maybe ask Kyle for his notes, he seems to have decent
handwriting.

WRAPUP: how we went from data norm to model norm to mixtures thereof.

More examples of ad hoc stuff

The tomographic inverse problem
slowness si, d, G, m, m2 =?, m1 =?
underdetermined: too little information, supple a priori constraints
overdetermined: to much information, look for best solution
[6] p. 51: average is overdetermined, individual is underdetermined, same

length. A constraint is just another (set of) equation(s) satisfied by the model
parameters that have nothing to do with the actual data.

[6] p. 55: i.e. the mean of the model parameters has a value known a priori,
“value v”

d
v

= G
1/N1/N1/N1/N1/N1/N1/N m (3.129)

or a specific data point is known

d
v

= G
000100 m (3.130)

or reducing the roughness of the solution

d

0
↓

=

G

1 −1
1 −1

1 −1
↘

m (3.131)

It is clear that choices have to be made as to how one has to weight the infor-
mation contained in the data versus the information supplied a priori.

So we need to talk about a trade-off curve.

3.7 Model and data resolution matrices

G−g ·G = I (3.132)
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purely overdetermined, the left inverse

(GT ·G)−1 ·GT = G−g (3.133)

G ·G−g = I (3.134)

purely underdetermined, the right inverse

GT · (G ·GT)−1 = G−g (3.135)

in practice, the problem is neither purely under or overdetermined, and G−g·
G is the model resolution matrix of whatever you pick to solve by

m̂ = G−g · d (3.136)

that necessitates the discussion
G−g ·G is the model resolution matrix. It only equals the identity for the

purely overdetermined case. Similarly,

d̂ = G · m̂ = G ·G−g · d (3.137)

G ·G−g is the data resolution matrix, see [6] = I for purely underdetermined.
Maybe the model G matrix has a character in between over/underdetermined
cases? G embodies model and experimental geometry.

SEE NOTES 10/23/2008
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Fig. 3.2. Wuut
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3.8 Mixed-determined systems

What if it’s a mixture — this is when eigenvalue expansions and the SVD
should be discussed. Lay and Wallace discussion? Diagrams a la Myres?

Before or after next should talk about Landweber method. Malta confer-
ence: Landweber is supposed to converge to the Moore-Penrose Inverse, illus-
trate this with some really simple examples, and look up the key paper positing
this.

3.9 Inversion of a nonlinear function / Geiger’s method

d = T (mi, zj) (3.138)

T (mk+1) = T (mk) +
∂T

∂mi

∣∣∣∣
mk
· (mk+1

i −mk
i ) (3.139)

dobs − dpred =
∂T

∂mi

∣∣∣∣
mpred

·∆m (3.140)

∆d = ∇T ·∆m (3.141)

same linear problem as before - guess; invert for update until convergence, i.e
until ∆d, the misfit, is 0, or ∆m, the model update, is 0 as well.

Earthquake location problem.
Exercise: earthquake location and double difference?
method 1

method 2 - Geiger’s method for earthquake location - an example of non-linear
inversion by first-order approximation

get course notes- lay and wallace, cahier, any other notes?
Method 1: good discussion on p22 of Lay and Wallace.

(i) guess a solution x,yz,t
(ii) calculate arival times

(iii) calculate distances, azimuths
(iv) calculate time/distance residual
(v) plot residual distance vs azimuth

(vi) shift time by average residual
(vii) shift location along azimuth of maximum by distance difference

(viii) repeat
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error: when residuals are small: say ∆t
What method 1 is, is a series of forward modeling exercises with adjust-

ments that supposedly go in the direction of the gradient of the misfit function.
Is this really true?

tpred = f(x, y, z, v) (3.142)

f is nonlinear. v is velocity

ti = t+

√
(xi − x)2 + (yi − y)2 + (zi − z)2

v
(3.143)

can’t do it? Linearize!

d = T (m) (3.144)

guess m0, then d0 = T (m0)
Taylor series to first order:

T (m) = T (m0) +
∂T

∂m

∣∣∣∣
m0

· ∂m (3.145)

= T (m0) +
∂T

∂x
dx+

∂T

∂y
dy +

∂T

∂z
dy +

∂T

∂t
dt (3.146)

In summary,

(d− d0) = ∇T ·∆m, (3.147)

whereby ∇T is the Jacobian, each row is with respect to a particular rota-
tion. Iterate. Don’t confuse derivative of linear t which is 1 and derivative of
nonlinear ti which we call t-prime.

So now: write out the derivatives of the function Ti that takes an earthquake
location x, y, z, t and calculates its travel time to station i.

(ti − t)v =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 (3.148)



72 Best-fit type approaches

∂ti
∂t

∣∣∣∣
x0,y0,z0,t0

= 1 (3.149)

∂ti
∂x

∣∣∣∣
x0,y0,z0,t0

= − (xi − x)
v2(ti − t)

(3.150)

∂ti
∂y

∣∣∣∣
x0,y0,z0,t0

= − (yi − y)
v2(ti − t)

(3.151)

∂ti
∂z

∣∣∣∣
x0,y0,z0,t0

= − (zi − z)
v2(ti − t)

(3.152)

so now these are ready to be stuck into a matrix for inversion.

Fig. 3.3. Geiger 1
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Fig. 3.4. Geiger 2
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Fig. 3.5. Geiger 3
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Fig. 3.6. Geiger 3

Fig. 3.7. Geiger 4



4
Distributional approach

In this section we want to begin with Chapter X and use Chapter Z to find
Chapter Y again, in the same order. Number the solutions with subscripts, 1,
2, ..., 8 and end up with a little table perhaps.

4.1 Likelihoods
See Sivia in the very beginning for some notation etc. Begin with Bayes.

Independent identically distributed data:

p(d|m) = p(d1|m) · · · p(dN |m) (4.1)

In practice, we have the data, we want the model (another “leap of faith”)

L(m|d) = p(d|m) (4.2)

Let’s assume an individual pdf looks like

p(di|m) =
1

σi
√

2π
e
− (di−PM

j Gijmj)2

2σ2
i =

1
σi
√

2π
e
− (di−G·m)2

2σ2
i (4.3)

Why? You hope that
∑
j Gijmj explains the data in the mean, in the true sense

of the word, it is what we expect!

L(m|d) = p(d|m) =
1

(2π)N/2
e
−
NP
i

(di−PM
j Gijmj)2

2σ2
i (4.4)

not the value, but the argument

argmax(log L) = argmin
N∑
i=1

(
di −

∑
j Gijmj

)2

2σ2
i

(4.5)

76
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Now for data that have covariance the likelihood is

L(m|d) ∼ exp
[
−(d−G ·m) ·C−1

d · (d−G ·m)
]

(4.6)

is just a multivariate Gaussian. Data can have correlated error, i.e. non-
diagonal Cd.

See variance reduction etc before.

4.2 Two approaches to solving inverse problems

G ·m = d (4.7)

minimize the residual in the mean squared sense:

φ = ||d−G · m̂||22 = e · e (4.8)

where the model prediction error, or the residual is given by.

e = d−G · m̂ (4.9)

Minimization is the easiest in the index notation. The repeated j speaks for
itself, the i is repeated due to the square.

φ = (di −Gijm̂j)2 (4.10)

Note: Two sums implied! Over i and over j. Take the derivative with respect
to a generic model parameter mk

∂φ

∂mk
= 2(di −Gijm̂j)(−Gik) = 0 (4.11)

Convert back to vector/matrix notation:

∇ΦGT · (d−G · m̂) = 0 (4.12)

GT · d = GT ·G · m̂ (4.13)

and the least-squares estimate is again:

m̂ = (GT ·G)−1 ·GT · d (4.14)

as eq. (??).
This estimate is identical to the maximum likelihood estimate of the data

(and the forward operator write it) rescaled to unit variance. In other words
the estimated solution m̂ maximizes

L(m|d) ∼ exp (−[d−G ·m] · [d−G ·m]) (4.15)
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which is appropriate for independent data. Now with a real data covariance,

〈d dT〉 = Cd (4.16)

Maximize L, equal to minimize

(d−G ·m) ·C−1
d · (d−G ·m) (4.17)

We have no prior info on the model, we leave that for later.
SVD must bring up total least squares?
differentiate (d−G ·m) ·C−1

d · (d−G ·m) convert to m and we get

GT ·C−1
d · (d−G ·m) (4.18)

Why the transpose?

∂(Gijmj)
∂mk

= Gik + (d−G ·m) ·C−1
d ·G = 0 (4.19)

do this for every k but keep the sum over i which therefore requires the trans-
pose. Thus

GT ·C−1
d · (d−G ·m) = 0 (4.20)

also, clearly Cd = CT
d and for vectors this doesn’t matter. Or else

GT ·C−1
d · d = GT ·C−1

d ·G ·m (4.21)

and thus the solution is again given by

m̂ =
(
GT ·C−1

d ·G
)−1 ·GT ·C−1

d · d (4.22)

as eq. (??), where we presumed the linearity of the forward model.

Think about noise a bit more formally

d = G ·m + n (4.23)

General case ABT 2.101. What’s the bias of this selection?

〈m̂〉 = (GT ·C−1
d ·G)−1 · (GT ·C−1

d ·G) ·m (4.24)

〈m̂〉 = m immediately falls out, but let’s also do the case where uncorrelated
data

Cd = σ2I and C−1
d = σ−2I (4.25)
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In other words,

〈m̂〉 = σ2(GT ·G)−1 · (GT ·G) ·mσ−2 (4.26)

= m. (4.27)

Unbiased since it was minimum RMSE already RMSE = var + bias2

What is the variance?

Cm = G−g ·Cd · (G−g)T (4.28)

so it’s also minimum variance in the sense that

〈(m̂−m)(m̂−m)T〉 (4.29)

is minimized. Refer to above whole section.

4.3 Full-blown Bayesian form

Up until now, we’ve provided “mock” model constraints. I suppose it makes a
lot more sense to specify a-priori model covariance matrix... Let’s not anymore
try to maximize the likelihood of observing the data given the postulated model
parameters. We postulate an a priori probability density function on the model
parameters of the Gaussian kind: we have

p(m) ∼ exp
[
−(m−m0) ·C−1

m · (m−m0)
]

(4.30)

we had for the conditional probability on the data the Gaussian quadratic form

P (d|m) ∼ exp
[
−(d−G ·m) ·C−1

d · (d−G ·m)
]

(4.31)

We use Bayes’ theorem and we optimize the probability of the, now stochastic,
model given the data.

p(m|d) =
p(d|m)p(m)

p(d)
(4.32)

which is proportional to—let the initial model be m0 = 0:

p(m|d) ∼ exp
[
(d−G ·m) ·C−1

d · (d−G ·m)−m ·C−1
m ·m

]
(4.33)

and the maximum-likelihood solution now given by minimizing the exponent.
Same procedure as ever: maximize the likelihood function is equivalent to
minimizing the penalty function

φ = (d−G ·m) ·C−1
d · (d−G ·m) + m ·C−1

m ·m (4.34)
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So take the derivative with respect to m̂. In index notation, with respect to a
generic model parameter

∂φ

∂mk
=

∂

∂mk

[
(di −Gijmj)(C−1

d )ie(de −Genmn)−miCdmj

]
(4.35)

0 = (di −Gijmj)(Cd)ie − (Glk −miC
−1
mik) (4.36)

or back in vector form:

0 = GT ·C−1
d · (d−G ·m) + C−1

m ·m (4.37)

and the solution is once again

m̂ = (GT ·C−1
d ·G + C−1

m )−1 ·GT ·C−1
d · d (4.38)

which is the solution to[
C−1/2

d ·G
C−1/2

m

]
·m =

[
C−1/2

d · d
0

]
. (4.39)

We should try to write all of our solution in this familiar form (like we had for
the regularized and constrained cases already) so that we can use the standard
algorithms to solve them. Sometimes one will find this relation instead

m̂ = Cm ·GT · (Cd + G ·Cm ·GT)−1 · d (4.40)

which is identical; the equivalence is through

GT ·C−1
d · (G ·Cm ·GT +Cd) = (GT ·C−1

d ·G+C−1
m ) ·Cm ·GT (4.41)

Bayesian approach vs frequentist/Tikhonov approach. Now must say some-
thing about the covariance of the result. Gubbins on the curvature of the like-
lihood function.

Next - maybe Gauss-Newton methods? Maximum likelihood? Nonlinear
methods using linearization. Lab: Earthquake location. Landweber iteration.

Board scheme: optimization to testing to error bars is the classic way. This
was the new way. Evaluation is now in terms of “resolution” or “information
added”. So resolution is back and the choice of prior needs to be discussed.

4.4 Tarantolia
Forget inversion, rather do the mapping of probabilities. Apply to the quake
location problem, see the SIAM book. Basically, it’s about evaluating

p(m|d) ∼ p(d|m) p(m) (4.42)



4.4 Tarantolia 81

a possibly nonlinear function of the model parameters. E.g. for the Gaussian
case this would be using the notation G for some functional, now here is the
likelihood function

p(d|m) ∼ exp
(
[d− G(m)] ·C−1

d · [d− G(m)]
)

(4.43)

Now, Metropolis Hastings is a way of not having to do this evaluation analyt-
ically, but rather to sample the distribution directly. See the last chapter in the
Tarantola web book and [7].





Part III
Time-series Analysis





5
Fourier Analysis

What’s a time series? Never mind “time”: it’s the “series” part that is impor-
tant. What is meant is that, in contrast to a bunch of numbers drawn at random
out of a hat (the domain of most of what preceded this chapter), from now on,
the order in which they are drawn will matters. More than that: the ordering
will mean something. Whether the axis on which you order represents space,
or time, or anything else, we will talk about time series very generally. They
are strings of data, “sequences” of values that, by their values and by their
ordering, carry information—which we want to unearth.

It requires hardly any imagination to consider the daily weather as an archtyp-
ical time series, and the earth being rotund and rotating, sine and cosine func-
tions as the natural functions with which to describe the temporal behavior
of fundamental meterological variables such as, e.g., the outside temperature,
will need no special introduction.

5.1 Pure harmonics
A pure harmonic, e.g., the real-valued sin(2πφ) and cos(2πφ) or the complex-
valued exp(i2πφ), is an oscillatory, periodic, function. As I write it, a pure har-
monic associates a dimensionless ratio φ with a number between −1 and +1.

Any dimensionless ratio, depending on your application, will fit in this
framework. Should the independent variable under study be time, t, we would
define the fractional variable φ = t/T , in terms of a period, T . If, on the
other hand, the variable of interest is a position: a dimension, x, y or z, of Eu-
clidean space, we could define φ = x/L, measured in terms of some generic
applicable length scale, L. While it introduces extra baggage in the terminol-
ogy, unnecessary at this point, a common alternative (symbol) choice would
be φ = x/λ, which would relate position to a specific wavelength, λ.

But we do not need waves (with prescribed relations between space and

85



86 Fourier Analysis

 5 PM  5 AM  5 PM  5 AM  5 PM  5 AM  5 PM  5 AM  5 PM  5 AM  5 PM

Princeton Aug 16-21 2020 (timezone: America/New-York)

16

18

20

22

24

26

28

30

32

A
ir
 t
e
m

p
e
ra

tu
re

 (
°

C
)

0

0.5

1

1.5

2

2.5

3

R
a
in

 a
c
c
u
m

u
la

ti
o
n
 (

m
m

)

Leabrook Lane

Guyot Hall

Fig. 5.1. Weather cycles in Princeton, New Jersey, late Summer 2020. Air temperature and
rain accumulation measured by a Kestrel Drop D3 Fire on Leabrook Ln and a Vaisala WXT-520
instrument at Guyot Hall, WGS84 latitude 40.3458◦, longitude−74.6547◦, elevation 46.692 m.

time) to proceed: oscillations, quantities that rise and fall around an equilib-
rium state (for example, a long-term average), will do.

Since sin, cos and complex exponentials are functions that are 2π-periodic
in their argument, as the fraction φ ranges from 0 to 1, the argument 2πφ of
sin(2πφ) will range from 0 to 2π, and the function values from 0 over +1
back down to 0 and then to −1 and then back to 0 in one complete oscillation.
Similarly, the values of cos(2πφ will go from +1 down to 0 and then to −1
and 0 before rising back up to +1.

As to the complex exponentials, Euler’s magic formula stipulates that

ei2πφ = cos(2πφ) + i sin(2πφ), (5.1)

and, hence,

cos(2πφ) =
1
2
(
ei2πφ + e−i2πφ

)
, (5.2)

sin(2πφ) =
1
2i
(
ei2πφ − e−i2πφ

)
. (5.3)

The repeating nature of “periodic” signals is manifest in the realization that,
for any integer n ∈ Z+, adding n times 2π to the argument of sin, cos and exp
leaves the function value unchanged. In the case of a time series with period T ,

sin
(

2π
t

T

)
= sin

(
2π

t

T
+ 2πn

)
= sin

(
2π
T

[t+ nT ]
)
, (5.4)

from which we learn indeed that T is the stretch of time that passes until the
oscillation repeats itself.
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If one oscillation takes T units of time t to complete, then 1/T = f , the
temporal frequency, is the number of oscillations that can be completed in
precisely one unit of t. If that frequency is measured in radians, ω = 2πf is
the angular frequency. So we should be able to rewrite eq. (5.4), or, rather,
reread it with new eyes, as

sin
(

2π
t

T

)
= sin(2πft) = sin(ωt), (5.5)

where ft = φ is again the dimensionless quantity that counts the number of
times a complete cycle (however long in physical units), is being completed.
For a period T in seconds (s), the unit of frequency f = 1/T is in Hertz (Hz),
and the unit of angular frequency ω = 2π/T is in radians per second.

As to spatial oscillations, taking λ = L, the equivalent to eq (5.4) is

sin
(

2π
x

λ

)
= sin

(
2π
x

λ
+ 2πn

)
= sin

(
2π
λ

[x+ nλ]
)
. (5.6)

I find no reason not to reuse the symbol f = 1/λ for the spatial frequency,
and I stick with convention to use k = 2π/λ for the wavenumber.

sin
(

2π
x

λ

)
= sin(2πfx) = sin(kx). (5.7)

Again, I caution that there needn’t be any waves yet. It’s just symbols, for
different domains of applications, time or space, and no dispersion relation
between k and ω is implied: there is no propagation speed.

5.2 Orthogonality

What happens upon integration over a complete cycle? Nothing much:

√
2

1∫
0

cos(2πφ) dφ =
sin(2πφ)√

2π

∣∣∣∣1
0

= 0, (5.8)

√
2

1∫
0

sin(2πφ) dφ =
− cos(2πφ)√

2π

∣∣∣∣1
0

=
−1√
2π

+
1√
2π

= 0. (5.9)

As to the complex exponentials, we will note the indefinite integral∫
ei2πφ dφ =

ei2πφ

i2π
. (5.10)

What about the integral of the product of two periodic functions? Let us
imagine ourselves on an interval of size T or L, with a function sin(2πft) or



88 Fourier Analysis

sin(2πfx) whose fundamental frequency f is either 1/T or 1/L, i.e., pre-
cisely matched to the duration or length in question, cycling once within that
interval, and repeating identically outside of it interval, ad infinitum.

Of course, functions oscillating faster, at integer multiples of that funda-
mental frequency would equally well “fit” within the interval under consider-
ation. For the case of proper “time series”, we thus consider the integrals of
products of sin(2πmφ) and sin(2π nφ), with m,n ∈ Z+

0 integers, over the
scaled interval (i.e. in terms of the fraction φ), to formulate the relationships:

2

1∫
0

{
cos
sin

}
(2πmφ)

{
cos
sin

}
(2π nφ) dφ = δmn, for m,n 6= 0, (5.11)

where the Kronecker delta means that the integral vanishes unless m = n,
when it evaluates to 1. The curly braces in eq. (5.11) are meant to convey that
you can pick either cos or sin and have the equation hold—but remember that
you are not allowed to pick sin twice and m = n = 0, since in that case, the
integral returns 0, and not 1. Also, you are not allow to pick cos twice and
m = n = 0, since in that case, you’d get 2, not 1. All the other choices remain
valid, and we’ll simply ban sin(0) out of our heads for now, and remember
that cos(0) will acquire a prefactor of 1 rather than the

√
2 that we endowed

the other terms with in eqs (5.8), which helped us arrive at eq. (5.11).
In contrast, in terms of complex exponentials, the equivalent to eq. (5.11) is

universally true for all integers m and n, as is easily shown:∫ 1

0

e+i2πmφe−i2πnφ dφ =
1
i2π

ei2π(m−n)φ

(m− n)

∣∣∣∣1
0

= δmn, (5.12)

though you will need de l’Hôpital’s rule to prove it for m = n.

5.3 Orthonormal basis expansions of square-integrable functions

What do we take away from eq. (5.11)? That the set{
1
√

2 cos(2πmφ)
√

2 sin(2πmφ)
}

for m ∈ Z+, (5.13)

is orthonormal. Even more conveniently, in the space of functions that are
square-integrable over the interval [0, 1], e.g., for all real-valued s(φ) whose
energy is finite:

1∫
0

|s(φ)|2 dφ <∞, (5.14)
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the set (5.13) supplies a complete orthonormal basis. What that means is that
any such square-integrable function s(φ) can be decomposed as a linear combi-
nation of these sinusoidal building blocks at the perfectly matched frequencies.
The more elements we take from the set, the better the approximation.

One caveat is that the convergence is to be understood in the mean-squared,
not in a pointwise sense. The mean-squared “misfit” over the interval can
be brought arbitrarily close to zero if we bring enough “parameters” m =
0, ...,M − 1 into the game:

lim
M→∞

1∫
0

∣∣∣∣∣ a0 +
√

2
M−1∑
m=1

[
am cos(2πmφ) + bm sin(2πmφ)

]
︸ ︷︷ ︸

the M -term approximation to s(φ)

−s(φ)

∣∣∣∣∣
2

dφ = 0.

(5.15)

At which rate the misfit (a norm, or mean-squared error!) decays to zero, we
cannot say at this point. Nor are we ready to list all the ways by which we can
determine what the proper coefficients are.

Except for this one: orthogonality! If we are comfortable writing

s(φ) ms= a0 +
√

2
∞∑
m=1

[am cos(2πmφ) + bm sin(2πmφ)] , (5.16)

with the augmented “equals” sign to be interpreted in the “mean-squared”
sense, we should be able to multiply both sides by a certain element of the
set (5.13), e.g.,

√
2 cos(2π nφ) or

√
2 sin(2π nφ), integrate over the interval,

and apply eq. (5.11) to recover exactly the coefficients an, and bn, and so, one
at a time, for all candidates n, corresponding ultimately to allm = 1, ...,M−1.

For certain simple functions you can find closed-form expressions analyti-
cally by hand. (Like boxcars, triangles, polynomials?)

Right away we understand why, in electrical engineering, a0 is known as the
direct-current or “DC” term, the average over the interval, since indeed

a0 =
∫ 1

0

s(φ) cos(0) dφ =
∫ 1

0

s(φ) dφ. (5.17)

More generally, we have

am =
∫ 1

0

s(φ) cos(mφ) dφ, (5.18)

bm =
∫ 1

0

s(φ) sin(mφ) dφ. (5.19)

Note that eqs (5.18)–(5.19) embody a correlation of the function s(φ) with the
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sinusoidal basis functions: a similarity measure, a projection in some sense.
Various synonymous interpretations come to mind.

Maybe here we list some popular by-hand expansions (square, triangle, etc),
but most importantly, their coefficient decay which would start building the
intuition. So here we mention the Gibbs effect as PW 93, at points of disconti-
nuity.

Picture here of interval approximation. Maybe some random thing,
numerically approximated, in addition to the by-hand things. Make them
more interesting than usual. Smiley face, semicircle, see Mathworld. Think
about the “half” frequency. Think of Scott’s heat equation examples?

Mention this is just one orthogonal expansion. With integrals for coeffi-
cients. Polynomials connect to what we have done in earlier chapters. Taylor
series would be expansions with differentiated terms. Bessel, Chebyshev, etc.

5.4 The Fourier series (CTDF)
Big picture. Continuous time on the interval, discrete frequencies. Give up
interval, turn the frequencies to continuous. Discretize the time domain, peri-
odize the frequencies. Notice the equivalence, describe aliasing.

But how do we find the required coefficients? We may as well rewrite
eq. (5.16) as an expansion into complex exponentials and absorb all constants
into the unknown s̃m:

s(φ) ms=
+∞∑

m=−∞
s̃m e

+i2πmφ for 0 ≤ φ < 1 (5.20)

and then... repeat [8] (p 267). Now from eq. (5.12) the orthonormal basis is{
1, e±i2πmφ

}
for m ∈ Z, (5.21)

and the sign can be chosen freely. The expansion coefficients

s̃m =

1∫
0

s(φ) e−i2πmφ dφ. (5.22)

Eqs (5.20) and (5.22) form a transform pair: the continuous-time discrete-CTDF
frequency (CTDF) Fourier series.



5.4 The Fourier series (CTDF) 91

More detail
Let us minimize the sum of the squared error over the unit interval, defining
the misfit function (watch the complex conjugation!), let’s do this for real s(φ)
only. Let us define as usual the mean-squared misfit function as the quantity to
be minimized

Φ =

1∫
0

∣∣∣∣∣s(φ)−
∞∑

m=−∞
s̃m e

+i2πmφ

∣∣∣∣∣
2

dφ, (5.23)

which leads to the condition that its derivative over the coefficients must vanish
at the condition s̃k, namely

∂

∂s̃k

 1∫
0

(
s(φ)−

∞∑
m=−∞

s̃∗m e
−i2πmφ

)(
s(φ)−

∞∑
n=−∞

s̃n e
+i2πnφ

)
dφ


=

1∫
0

[(
s(φ)−

∞∑
m=−∞

s̃∗m e
−i2πmφ

)(
− e+i2πkφ

)
+
(
−e−i2πkφ

)(
s(φ)−

∞∑
n=−∞

s̃n e
+i2πnφ

)]
dφ

=

1∫
0

[(
s(φ)

(
− e+i2πkφ

)
−

∞∑
m=−∞

s̃∗m e
−i2πmφ (− e+i2πkφ

))

+

(
s(φ)

(
−e−i2πkφ

)
−

∞∑
n=−∞

s̃n e
+i2πnφ

(
−e−i2πkφ

))]
dφ

Using the orthogonality eq. (5.12), this requires

0 =

1∫
0

[
−s(φ) e+i2πkφ + s̃∗k − s(φ)e−i2πkφ + s̃k

]
dφ

=

1∫
0

[
−s(φ) e+i2πkφ − s(φ) e−i2πkφ

]
dφ+ [s̃∗k + s̃k]

1∫
0

dφ,

In other words, we require

[s̃∗k + s̃k] =

1∫
0

[
s(φ)e+i2πkφ + s(φ)e−i2πkφ

]
dφ,

from which we find eq. (5.22) again.
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5.4.1 Out of the unit interval

Rewrite eqs (5.20)–(5.22) by moving to an interval of length T , and make s(t)

repeat periodically, but respecting the mean-squared integrability
+∞∫
−∞
|s(t)|2 dt <

∞, as follows:

s(t) =
+∞∑

m=−∞
s̃m e

+i2πm t
T for all t ∈ R, (5.24)

s̃m =
1
T

T/2∫
−T/2

s(t) e−i2πm
t
T dt, (5.25)

and then define fm = m/T , the discrete frequencies, to arrive at:

s(t) =
+∞∑

m=−∞
s̃m e

+i2πfm t, (5.26)

sm =
1
T

T/2∫
−T/2

s(t) e−i2πfm t dt, (5.27)

then let T →∞. The Fourier coefficients are s̃m. Spacing of the frequencies
is ∆f = 1/T .

5.5 The Fourier integral transform (CTCF)

Should put a subscript for “periodicity”. Argument is to replicate a general
function over the period T and then let the interval [−T/2, T/2] over which
the function is assumed to be periodic stretch all the way from −∞ to +∞,
thereby spacing the frequencies continuously, ∆f → df and allowing for ef-
fectively non-periodic functions s(t) to be represented by the continuous-time
continuous-frequency (CTCF) Fourier integral-transform pairCTCF

s(t) =

+∞∫
−∞

s̃(f) e+i2πf t df, (5.28)
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s̃(f) =

+∞∫
−∞

s(t) e−i2πf t dt. (5.29)

5.6 Discrete-time continuous-frequency (DTCF)

In the real world, however, t is sampled, so it is discrete. Now t is merely an
integer index and ∆t is a spacing or a sampling interval:

s(t) = s(t∆t), for t = 0,±1,±2, ... (5.30)

In analogy with eq. (5.29) we define

s̃p(f) =
∞∑

t=−∞
s(t∆t) e−i2πf t∆t∆t, (5.31)

essentially a Riemann sum or rectangular approximation to the integral in
eq. (5.29).

We used a new symbol, s̃p(f), for the following reason: for n = 0,±1,±2, ...,
we notice that

s̃p

(
f +

n

∆t

)
=

∞∑
t=−∞

s(t∆t) e−i2πf t∆t∆t
(
e−i2π nt∆t/∆t

)
︸ ︷︷ ︸

1
= s̃p(f), (5.32)

i.e. since both t and n are integers so nt is also an integer, the last factor van-
ishes... hence turns out that the f̃ is periodic with period 1/∆t. It’s discrete-
time, continuous frequency. So we wrote s̃p as a mnemonic, to remind us of
the periodicity.

We now turn the argument around and note that the discrete inverse Fourier
transform of eq. (5.31) is given by simple evaluation of eq. (5.28), namely

s(t∆t) =

1/(2∆t)∫
−1/(2∆t)

s̃p(f) ei2πft∆t df, (5.33)

because in this case the orthogonality property is

1/(2∆t)∫
−1/(2∆t)

e−i2πft∆te+i2πf t∆t∆t df = ∆t
[

1
2∆t

+
1

2∆t

]
= 1. (5.34)
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Eqs (5.31)–(5.33) give us the discrete-time continuous-frequency (DTCF) re-
lation.DTCF

5.7 Sampling, aliasing, etc.

What now is the connection between continuous-continuous transform pair
of eqs (5.29) and (5.28), which we rewrite here

s̃(f) =

+∞∫
−∞

s(t)e−i2πft dt (5.35a)

s(t) =

+∞∫
−∞

s̃(f)e+i2πft df (5.35b)

and the discrete-continuous version of eqs (5.31) and (5.33) which we rewrite
here (note that sp 6= s) as

s̃p(f) =
∞∑

t=−∞
s(t∆t) e−i2πf t∆t∆t (5.36a)

s(t∆t) =

1/(2∆t)∫
−1/(2∆t)

s̃p(f) ei2πf t∆t df (5.36b)

Something appears to be missing: what was formerly an interval between
−∞ and∞ now seems to contain the complete spectral information between
the frequencies −1/(2∆t) and 1/(2∆t). But as we can see by evaluating
eq. (5.35b) at t∆t, using a trick to split the infinite integration interval into a
infinite sum of finite integration intervals of width 1/∆t, with the central one
at n = 0 being the one that appears in eq. (5.36b), and then making a change
of variables from f ′ → (f + n/∆t), we obtain

s(t∆t) =

+∞∫
−∞

s̃(f ′) ei2πf
′t∆t df ′ (5.37)

=
∞∑

n=−∞

∫ 2n+1
2∆t

2n−1
2∆t

s̃(f ′) ei2πf
′t∆tdf ′ (5.38)

=
∞∑

n=−∞

∫ 1/(2∆t)

−1/(2∆t)

s̃
(
f +

n

∆t

)
ei2π(f+n/∆t)t∆t df. (5.39)
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We thus conclude that

s(t∆t) =

1/(2∆t)∫
−1/(2∆t)

[ ∞∑
n=−∞

s̃
(
f +

n

∆t

)]
︸ ︷︷ ︸

s̃p(f)

ei2πf t∆t df, (5.40)

where we identify the underbrace from eq. (5.36b) to notice that the periodic
s̃p(f) which we defined in eq. (5.31) simply copies the portion of the frequen-
cies of s̃(f) as it appeared in eq. (5.28) contained inside and wraps them into
the central interval:

s̃p(f) =
∞∑

n=−∞
s̃
(
f +

n

∆t

)
for |f | < 1

2∆t
. (5.41)

So here is how s̃ relates to s̃p: by sampling in the time domain we get copies of
the amplitude spectrum (need to define before) in the frequency domain. But
what was originally outside of ±1/(2∆t) appears now within. What we get
out at f for s̃p(f) depends not just on s̃(f) but on all the possible values at
frequencies of n/∆t away from the target f ! This effect is called aliasing.

The highest unaliased frequency is called the Nyquist frequency.
Mallat: wheels in films. Moiré effect. Wunsch says: “Those who do not

understand it are condemned to foolish results”.

5.8 Bandlimited signals and the sampling theorem

What, pray tell, is the relation between the original continuous signal and its
sampled equivalent?

If, however, the original signal is bandlimited, which is as much as being
able to restrict the infinite integral in eq. (5.28) to

s(t() =
∫ +W

−W
s̃(f) e+i2πft df (5.42)

or indeed when the bandwidth is precisely limited to the interval bounded by
the Nyquist frequencies,

s̃(f) = 0 when |f | > W =
1

2∆t
(5.43)

in other words

s̃p(f) = s̃(f) for |f | ≤ 1
2∆t

(5.44)



96 Fourier Analysis

then we have the special lucky case that we will be use eq. (5.31) or eq. (5.36a)

s(t) =

1/2∆t∫
−1/2∆t

s̃(f) ei2πft df (5.45)

=

1/2∆t∫
−1/2∆t

[
+∞∑

t′=−∞
s(t′∆t) e−i2πft

′∆t∆t

]
ei2πft df (5.46)

=
+∞∑

t′=−∞
s(t′∆t)∆t

 1/2∆t∫
−1/2∆t

ei2πf(t−t′∆t) df

 (5.47)

=
+∞∑

t′=−∞
s(t′∆t)∆t

[
sin π(t−t′∆t)

∆t

π(t− t′∆t)

]
(5.48)

The last factor is something we recognized from the formulas in the first sec-
tion... Summarizing we obtain: the Whittaker-Shannon sampling theorem:

s(t) =
+∞∑

x′=−∞
s(t′∆t) sinc

(
t− t′∆t

∆t

)
. (5.49)

Ours is the engineering or signal-processing definition of the “cardinal sine”
or “sinc” function, sinc(x) = sin(πx)/(πx). A bandlimited signal can be
recovered from its samples by interpolation if it is sampled at the Nyquist rate,
with the samples spaced ∆t apart, with the Nyquist frequencies ±1/(2∆t).

More detail

Was it obvious?

∆t
2iπ(t− t′∆t)

1/2∆t∫
−1/2∆t

ei2πk(t−t′∆t) df (i2πk(t− t′∆t))

=
∆t

2iπ(t− t′∆t)
ei2πf(t−t′∆t)

∣∣∣f=1/2∆t

k=−1/2∆t

=
∆t

2iπ(t− t′∆t)

[
e
i2π(t−t′∆t)

2∆t − e
−i2π(t−t′∆t)

2∆t

]
=

sin π(t−t′∆t)
∆t

π(t−t′∆t)
∆t

= sinc
(
t− t′∆t

∆t

)
. (5.50)
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5.9 Sampling, filtering, and interpolation
Later, think of this as a filtering of the samples with an ideal boxcar. Remind
ourselves of the continuous convolution (a commutative operation),

[g ∗ h](t) =

+∞∫
−∞

g(t′)h(t− t′)dt′ , (5.51)

which is making a discrete comeback. Let us have a discrete signal g be con-
volved with a continuous function h and evaluated at the continuous variable t:

[g ∗ h](t) =
+∞∑

t′=−∞
g(t′∆t)h(t− t′∆t)∆t, (5.52)

So the sampling theorem (5.49) looks like a filtering. The continuous signal
at t is a filtered/interpolated version of the sampled one. Why should this be
obvious? Because of the convolution theorem, which is up next.

5.10 The convolution-Fourier duality
Let us consider two signals sampled with the same sampling interval, ∆t, and
convolve them. Let g be a discrete-time function, i.e. g = g(t∆t). Let h be a
discrete-time function i.e., h = h(t∆t). Define

[g ∗ h](t∆t) =
+∞∑

t′=−∞
g(t′∆t)h(t∆t− t′∆t)∆t. (5.53)

Using eq. (5.31), let the Fourier transform f̃ be (let us not bother with any
subscripts: in reality we are talking bandlimited functions here, a property
which is preserved upon convolution, as will be obvious from the outcome):

g̃(f) =
+∞∑
t=−∞

g(t∆t) e−2iπf t∆t∆t. (5.54)

Need to refer to eq. (5.31). Let h̃ be

h̃(f) =
+∞∑
t=−∞

h(t∆t) e−2iπf t∆t∆t. (5.55)

And the argument should be that you can add a shift to this in the time domain
variable and you don’t get a difference at all. The convolution of g and h is
given be the discrete sum as in eq. (5.53) and let’s invent a new symbol for it:

F(t∆t) = [g ∗ h](t∆t). (5.56)
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The continuous-frequency Fourier transform of the outcome is given by apply-
ing eq. (5.31), and then splitting the exponential terms, to return

F̃(f) =
+∞∑

x=−∞

[
+∞∑

t′=−∞
g(t′∆t)h(t∆t− t′∆t)∆t

]
e−i2πft∆x∆t (5.57)

=

(
+∞∑

t′=−∞
g(t′∆t′) e−i2πft

′∆t′∆t

)

×

(
+∞∑
t=−∞

h(t∆t− t′∆t) e−i2πf(t∆t−t′∆t)∆t

)
(5.58)

The last factor can be evaluated first to yield the Fourier transform h̃ and the
first factor is the Fourier transform g̃. So the final result is

F̃(f) = g̃(f) h̃(f). (5.59)

Convolution in the time domain equals multiplication in the frequency domain.
The Fourier transform of the convolution of two signals is the multiplication
of their Fourier transforms.

5.11 Sincs and boxcars

We did the above for discrete-discrete as this how you’ll be doing this in prac-
tice. However, we need to revisit one more thing and ask ourselves of which
continuous function the sinc is the continuous Fourier transform... Now back
to the interpretation of the Whitaker-Shannon theorem. The sinc and the box-
car are each other’s transform pairs. This is simple: we use the CTCF for-
malism. We’ve of course already done this and should be able to notice this
straight from the shifted transform right before the Whitaker-Shannon theo-
rem, yet we’ll be very explicit here...

h̃(f) =

1/2∆t∫
−1/2∆t

ei2πft df =
1

i2πt
[
ei2πft

]+1/2∆t

−1/2∆t

=
1

i2πt

[
eiπt/∆t − e−iπx/∆t

]
=

sinπt/∆t
πt

=
1

∆t
sinc

(
t

∆t

)
. (5.60)
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And this finally puts eq. (5.49) in the proper context as the product of the
Fourier transforms. The continuous h(x) is indeed the convolution as per
eq. (5.52) with the Fourier transform of the frequency-domain signal that ban-
dlimits the continuous input to the band between. After sampling, we can never
expect to gain anything better than that.

Picture Notes 56.
Now we can rewrite this for W and T generic bandwidth and period, and

move on to the next section.

5.12 Heisenberg, Plancherel, Parseval
Let T → 0 and 1/T → ∞, the function becomes narrower and narrower, and
sinc(kT ) becomes broader and broader. This is not a proof, but an illustration
of Heisenberg’s uncertainty principle: the broader a function is in the time
domain, the narrower in the frequency domain.

The behavior is nicely illustrated by considering the Fourier transform of
the Gaussian density.

Energy in the time domain equals that in the frequency domain. One such
equation for every form of our transforms. Here I pick one

∆t
N−1∑
t=0

|ft|2 =
∆t

(N∆t)2

N−1∑
n=0

N−1∑
n′=0

f̃nf̃
∗
n′

N−1∑
t=0

e
i2π

(n− n′)t
N︸ ︷︷ ︸

Nδnn′

(5.61)

=
1

N∆t

N−1∑
n=0

∣∣∣f̃n∣∣∣2 (5.62)

The underbrace is as before. Here too it would have been easier to symmetrize
the transform, wouldn’t it. The boys trade credit for deriving the various trans-
forms and whether you’re using one or more functions in the relation. Energy
is conserved.

5.13 Discrete-time discrete-frequency (DTDF)
Since our sequence—imagine we have it—contains only a finite number, N ,
of time-sampled values, with sampling interval ∆t, it seems logical to look
for a representation of it that only involves a finite number—the same—of
frequencies.

Define a grid of frequencies,

fn =
n

N∆t
, (5.63)
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where N∆t is the total signal length and n = 0, 1, ..., N −1. And let us define
the discrete Fourier transform as:

s̃n = ∆t
N−1∑
t=0

st e
−i2πnt∆t

N∆t , (5.64)

completely inspired by eq. (5.31) except truncated to a finite set of frequencies.
Now... get the inverse transform

s̃t =
1

N∆t

N−1∑
n=0

s̃n e
i2πnt∆t

N∆t . (5.65)

What we needed for this is (see my RB p 42, it uses geometric series and
basic identities))
N−1∑
n=0

ei2π
n
N z = N (5.66)

of z = mN for integerm or 0 otherwise. When is (t−t′) an integer multiple of
N , remember they are never more thanN−1 apart, hence only when t′−t = 0.
This completes the pair verification.

More detail
My notes on the last page of PW. Graphical argument is intuitive.

Not surprisingly if we use eq 5.64 to define f̃n, even for all n the we notice
again that f̃n is periodic with period N as expected.

e−i2π
n+N
N x = e−i2π

n
N x e−i2πx︸ ︷︷ ︸

1

(5.67)

since x is an integer. But also f̃nei2π
n
N x is periodic with period N so we may

pick an integer m and add it to the sum as

f̃x =
1

N∆x

N+m−1∑
n=m

f̃n e
i2π nN x. (5.68)

The frequencies used to be k0 → kN−1 but now they are km → kN+m−1. It
used to be the interval 0, N−1

N∆x but that falls shy of the Nyquist frequency, so
why don’t we simply take

m = −
[

(N + 1)
N∆x

]
+ 1 (5.69)
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and construct a frequency axis with that.
Frequencies NOTE chance to floor

f =
−[N+1

2 ] + 1 + n

N∆t
where n = 0, . . . , N − 1 (5.70)

When N is even the smalles frequency is

−N/2 + 1
N∆x

>
−1

2∆x
(5.71)

but the biggest frequency

N/2
N∆x

=
1

2∆x
(5.72)

exactly. Where is the “zero” frequency? at NOTE floor

n = [
N + 1

2
]− 1 (5.73)

that is the longest wavelength that you can extract:

f =
1

N∆t
(5.74)

one over the signal length (“Rayleigh”) frequency, and the shortest wave-
lenegth you can extract is

f =
1

2∆t
(5.75)

the Nyquist frequency.
So this axes has

−fN < fn ≤ fN (5.76)

but always through zero. Take a look again at eqs (5.64)-(5.65) and attempt to
write it as a matrix equation as does Strang p290.

W = e−i2πx/N (5.77)

then the matrix is filled with powers ofw. FFT writes and solves this in a clever
way. w is unitary. In the column dimensions the powers come about due to the
samples, in the row dimensions they come out due to the frequencies. LOOK
AT THE TILDES f̃n

 =


1 1 1 1 1
1 e−i2π

x
N x = 0, . . . , N − 1

1 e−i2π
2x
N

...


 f̃x

 (5.78)
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5.14 Windowing, etcetera
We have already seen that convolution in the time domain corresponds to mul-
tiplication in the frequency domain. Now, with the DTDF of course the reverse
is also true: convolution in the frequency domain corrresponds to multiplica-
tion in the time domain.

Picture. For the sake of the argument, let it be Nyquist bandlimited. First
you’ve blurred it with a sinc function and then you’ve periodized it. Clearly
you’ve messed it up.

PW119b

(g ? h)x = ∆x
N−1∑
y=0

gyhx−y (5.79)

∆x
N−1∑
x=0

(g ? h)xe−i2π
n
N x = g̃nh̃n (5.80)

Use cyclically, hs = h mod (s,N) for s outside the range [0, N − 1].

g̃n = ∆x
N−1∑
x=0

gxe
−i2π nN x (5.81)

Need padding to make cyclic. It’s best to use FFT even for convolution, N2 vs
3N logN .



6
Spectral Analysis

Need a spectral variance-based representation, just like we had a Fourier rep-
resentation. The key reference is [9].

6.1 Parseval/Plancherel again?

Let’s write Parseval/Plancherel again for DTCF processes. PW89. For that
case we have

∆x
∞∑

x=−∞
|fx|2 =

∫ 1/2∆x

−1/2∆x

|s̃p(k)|2 df (6.1)

This is about one realization. Let’s now interpret the “process” as a random
variable, i.e. we have samples or realizations of {fx} at different x. Let’s take
E {fx} = 0 for simplicity without trouble. Let’s take fx be real. The left hand
side of eq. (6.1) is the total energy of the signal, some measure of the variance,
and apparently |s̃p(k)|2 is a measure of the energy spectral density: |s̃p(k)|2 df
is the amount of energy to to sinusoids/exponentials of the frequencies in the
interval k to k + df , i.e. a measure of how much energy there is in a small
frequency interval. Now s̃p(p) are random variables.

This sort of interpretation would have worked equally well in other domain,
obviously. E.g. PW66.

∫ ∞
−∞
|g(t)|2 dt =

∫ ∞
−∞
|G(f)|2 df. (6.2)

103
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6.2 The power spectral density

Take ∆t = 1 and let us rewrite eq. (5.33) as

st =
∫ 1/2

−1/2

ei2πft s̃p(f) df︸ ︷︷ ︸
dZ(f)

. (6.3)

This is known as Cramér’s spectral representation, whereby dZ(f) is an or-
thogonal increment spectral process. Let us have

E{dZ(f)} = 0, (6.4)

and let us also have

cov{dZ(f), dZ(f ′)} = S(f) df δff ′ , (6.5)

which applies under stationarity. We define the true energy spectrum to be

cov{dZ(f), dZ(f)} = E{|dZ(f)|2} = S(f) df. (6.6)

The question is: what can we learn from a finite set of observations about
the true S(f) that we are interested in? Let’s use the (D)FT of what we got,
i.e. the finite sequence to form an estimate, a direct one, without averaging,
and see what we get in expectation. Sums only range over the samples, not
infinity. Use the square of eq (5.31) to define Ŝ(f), and find its expectation:

E{Ŝ(f)} = E


∣∣∣∣∣∑
t

st e
−i2πftat

∣∣∣∣∣
2
 (6.7)

= E

{∑
t

∑
t′

sts
∗
t′ e

i2πk(t′−t)ata
∗
t′

}
(6.8)

=
∑
t

∑
t′

E{sts∗t′}ei2πf(t′−t)ata
∗
t′ . (6.9)

the only stochastic variable being st, and for some window at.
Now let us use the spectral representation eq. (6.3) to evaluate the autoco-

variance at different times, perhaps call this some other symbol.

E{sts∗t′} =

1/2∫
−1/2

ei2πf
′(t−t′)S(f ′) df ′, (6.10)

the Wiener/Wold/Khintchine theorem. The autocovariance at lag (t− t′) = τ

is the Fourier transform of the spectrum. White spectrum you end up with δtt′ .



6.2 The power spectral density 105

And therefore the expected value of the estimate constructed from a win-
dowed discrete Fourier transform is given by

E{Ŝ(f)} =
∑
t

∑
t′

ata
∗
t′ e

i2πf(t′−t)

1/2∫
−1/2

ei2πf
′(t−t′)S(f ′) df ′ (6.11)

=

1/2∫
−1/2

S(f ′)
∑
t

∑
t′

ata
∗
t′e

i2πt(f−f ′)e−i2πt
′(f ′−f) df ′ (6.12)

=

1/2∫
−1/2

S(f ′)

∣∣∣∣∣∑
t

ate
−i2πt(f−f ′)

∣∣∣∣∣
2

df ′ (6.13)

=

1/2∫
−1/2

S(f ′) |ã(f − f ′)|2 df ′, (6.14)

where we notice the convolution with the power spectrum of the applied win-
dow ã(f). Hence we arrive at the conclusion

E{Ŝ(f)} = S ∗A, (6.15)

where A is the spectral window. And clearly, a “good” estimate is going to
have A ≈ 1. Windowing introduces bias, keep it low.

If we look at white spectra, we can keep the result unbiased if we keep the
power of the spectral window to unity, since then

E{Ŝ(f)} = S

1/2∫
−1/2

|ã(f − f ′)|2 df

︸ ︷︷ ︸
1

. (6.16)

At least then we’re good for white spectra. And of course, using Parseval’s
identity, we require that

1/2∫
−1/2

|ã(t− t′)|2 dt =
N−1∑
t=0

a2
t = 1. (6.17)

So the search is on for properly normalized windows that have good, low,
sidelobes and tall, narrow main lobes. Peaky picture, that’s what you want!

What is the variance of the estimate? Windowed or not, it’s a sum of squares,
and you can show that for large N ,
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This is an inconsistent estimator: it never gets better!

var{Ŝ(f)} ≈
{

2S2(f) for 0 < f < 1
2∆t

2S2(f) for f = 0 and f = 1
2∆t

(6.18)

If windowed, you get a “smoothed” grid of uncorrelated frequencies. Win-
dowing introduces bias and covariance. The below needs work.

cov{Ŝ(f), Ŝ(k′)} = 0 for 0 ≤ f ′, f ≤ 1
2∆t

(6.19)

We won’t be able to do better on bias, but we can try to lower the variance and
make the estimate more consistent.

6.3 Multitaper spectral estimation

ŜMT(f) =
1
K

K−1∑
k′=0

∣∣at,kste−i2πft∣∣2 , (6.20)

the average of many tapered estimates which we should call Ŝk(f). PW333.
For every one of these we have

E{Ŝk′(f)} =

1/2∫
−1/2

S(f ′) |ãk′(f − f ′)|
2
df ′, (6.21)

and for the combined estimate

E{ŜMT
k′ (f)} =

1/2∫
−1/2

S(f ′)A(f − f ′) df ′, (6.22)

where the average spectral window is

A(f) =
1
K

K−1∑
k′=0

|ãk′(f)|2 . (6.23)

Variance properties are more complicated to derive (depend on assumptions,
and Isserlis theorem... but for orthogonal tapers, the variance between tapered
estimates are just about uncorrelated. Slepian functions/sequences are one
particular such choice.

6.4 A unifying framework
Fourier being such a tool. But only a tool.
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6.5 Alternative approaches, and heuristics
Other ways. Looking. Correlation. Direct inversion. Stacking.

Maybe completely close the loop with periodfit and harmonic processes a la
Pete and PW.
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