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Introduction – I

The geological evolution of our chemically differentiated

and physically deformed planet is recorded in the interior

distribution of compositional and thermal heterogeneities.

• These affect the propagation speed of seismic waves

• They cause variations in the acceleration due to gravity

• They are expressed as surface topography and oceanic bathymetry
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Introduction – II

To understand Earth, and indeed any planet,

we must study all three (physical) observables:

• (an)elastic wave speeds

(including attenuation & anisotropy)

• mass density, gravity field

(static, dynamic & time-dependent)

• height of mountains, depth of oceans

(tectonic motion, interactions with winds & currents)

and how they correlate, at any and all scales.
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Chemistry & Thermodynamics→ Physical Properties

Temperature / Pressure
(how hot is it deep down there?)

Composition / Phase changes
(what is it all made of and how?)

↓

Mass density (kg m−3)

Seismic wave speeds (m s−1)
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N ≈ 2/day

Ekström et al. (2012)



A rich and rewarding wavefield

Nissen-Meyer et al. (2014)



Thousands of seismometers 7/56

EarthScope (IRIS)
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Bullen and Bolt (1985); Zhao (2019)



One-dimensional reference Earth models 9/56
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Dziewoński and Anderson (1981); Kennett and Engdahl (1991)



Millions of travel times (signal?) 10/56

Astiz et al. (1996)



First-order discontinuities 11/56

Burky et al. (2023)



Millions of travel times (noise?) 12/56

Kennett and Engdahl (1991)



Three-dimensional Earth structure 13/56

Denis Andrault, Université Clermont Auvergne
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pξ

f(x,y)

Inverting the Radon transform

R[f ](p, ξ) =

∫
L

f(x, y) ds. (1)

Reconstruct the function from its projections:

given R[f ](p, ξ), find f(x, y).

Radon (1917) solved to this problem, giving an

expression for R−1 for straight “ray paths”.

Radon (1917)
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seismometers

earthquakes

your planet

Travel-time tomography

The Earth has a heterogeneous wave-

speed structure c(r) = c0(r) + δc(r).

Ray-theoretical travel-time anomalies are

δt ≈
∫
ray

δc−1 ds ≈ −
∫
ray

δc

c20
ds. (2)

Fermat’s principle allows ray to be calcu-

lated in the reference model c0(r).

Usually, not exclusively, c0(r) = c0(r).

Nolet (1987)
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Zhao and Lei (2004)
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For a set of seismic rays i = 1 → M ,

calculate the length spent in each of the

j = 1 → N grid boxes in which it accu-

mulates a proportional fraction of the total

travel-time anomaly δt, discretizing (2).

δti = sij δc
−1
j or δt = S · δc−1 or indeed d = G ·m (3)

travel-time

anomalies


...

δti
...

 =


...

. . . sij . . .
...

×


...

δc−1
j

...

 slowness

perturbations
(4)

tall sensitivity matrix space

Shearer (2019)
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We have: G ·m = d, which is linear.

You think: m = G−1 · d, but we can’t invert a non-square M ×N matrix.

You think: GT ·G is square, let’s solve GT ·G ·m = GT · d.

You try: m = (GT ·G)−1 ·GT · d.

Alas! GT ·G may be singular, ill-conditioned, under/over-

determined, have (near-)zero eigenvalues, and

thus be not-invertible. We need regularization.

over-determined, M>N mixed-determined under-determined, M<N

Menke (1989); Aster et al. (2005)



Global models – I 19/56

Simmons et al. (2012)
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After discretization, parameterization, and regularization, every infinite-frequency,

“optical”, geometrical ray illuminates a “fat tube” in the model space.

But the basic premise — that a velocity anomaly sensed anywhere along the ray

shows up as a travel-time anomaly at the receiver — is wrong. Wavefronts heal.

(Hung et al., 2001)
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What we did is only true when the wave is of an infinitely high frequency:

δt ≈
∫
ray

[
−c−1

0

](δc

c0

)
ds. (5)

Only at ω → ∞ is the sensitivity kernel of the measurement δt to the model

perturbation δc/c0 given by c−1
0 exclusively on the geometrical ray path.

In reality, waves have a finite frequency, and measurements are at many different

frequencies at that. The wave “feels” off the ray.

δt ≈
∫∫
Earth

∫
Kδt

(
δc

c0

)
dV. (6)

Finding Kδt, a 3D Fréchet kernel, is the name of the game.
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A finite-frequency travel-time anomaly is the time shift given by maximizing the

cross-correlation of an observed seismogram, u(t) = u0(t) + δu(t), with the

synthetic wavefield, u0(t), computed in the reference model c0 = (ρ0,C0):

δt = argmax

∫ t2

t1

u(t− δt)u0(t) dt. (7)

The waveform perturbation δu(t) comes from perturbations in the Earth model:

ρ0 → ρ0 + δρ and C0 → C0 + δC, (8)

u0 → u0 + δu, (9)

where ρ is density, C the elastic tensor, and linearization the Born approximation.

The seismogram u(t) is any one component (vertical, radial, tangential) of the

wavefield u(r, t) measured at one particular location (the seismometer).
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Question 1
How does the measurement δt depend on the waveform perturbation δu?
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Question 1
How does the measurement δt depend on the waveform perturbation δu?

There is only one answer, and it has been known for a long time:

δt =

∫ t2

t1

u̇0(t) δu(t) dt∫ t2

t1

ü0(t)u0(t) dt

=

∫∫
Earth

∫
Kδt

c

(
δc

c0

)
dV. (10)

Question 2
How does the waveform perturbation δu(t) depend on δρ and δC of the Earth?

The answer depends on physical and numerical approximations.

This time there are several approaches, each with its own advantages.

Luo and Schuster (1991); Zhao and Jordan (1998); Marquering et al. (1999); Dahlen et al. (2000); Zhao et al. (2000)
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The paraxial approximation. Trace only the geometrical ray; expand travel-time

surface about it; only consider like-type scattering in the vicinity of the central ray.

This is much more efficient than the previous three methods, but it breaks down

somewhat earlier. However, the approximations are justifiable for common phases

such as P, PcP, PP, S, ScS, SS, between 30◦ and 90◦ distance.

Dahlen et al. (2000); Hung et al. (2000); Yoshizawa and Kennett (2002)
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Montelli et al. (2004)
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The spectral-element method 26/56

The most powerful comprehensive contemporary grid-based method to produce

synthetic seismograms in realistic 3D media (e.g. self-gravitating, rotating, aniso-

tropic, attenuative, heterogeneous Earth models).

Combines the geometrical flexibility of the finite-element method with the expo-

nential convergence and weak numerical dispersion of spectral methods.

Komatitsch and Vilotte (1998); Komatitsch and Tromp (1999, 2002a,b); Komatitsch et al. (2002); Fournier et al. (2004)
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global.shakemovie.princeton.edu
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Bozdağ et al. (2016)
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Modern (e.g. SEM) methods can compute wavefields in arbitrary 3D background

models. We no longer have to assume that only P (or S ) wave speed perturbations

influence P (or S ) cross-correlation travel times of P (or S ) waveforms.

We can take one step back and restart from the Born approximation (8–9):

δu(t) =

∫∫
Earth

∫ {
Kδu

ρ (t)

(
δρ

ρ0

)
+Kδu

C (t)

(
δC

C0

)}
dV, (11)

where computing 3D waveform kernels involves one forward simulation and

one backward simulation and their interaction by convolution:

Kδu
ρ (t) = −

∫ t

0

u̇to
i (τ) u̇

fro
i (t− τ) dτ, (12)

Kδu
C (t) = −

∫ t

0

ϵtoij (τ) ϵ
fro
kl (t− τ) dτ. (13)

Marquering et al. (1998); Tromp et al. (2005); Nissen-Meyer et al. (2007a,b); Tape et al. (2007)



Any kernel 46/56

Different flavors of SEM wavefield computation can be used...

Tromp et al. (2005); Nissen-Meyer et al. (2007a,b); Tape et al. (2007)
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Bozdağ et al. (2016)
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The adjoint method generalizes all of the above technology to the point where any

sort of aggregate misfit measure, χ, can be optimized: (relative) travel times,

waveform, phase, and envelope (double) differences...

In the time-domain, the generic canonical sensitivity kernel for χ in the sense

δχ =

∫
V

{
Kχ

ρ (x)
δρ(x)

ρ0(x)
+Kχ

C(x)
δC(x)

C0(x)

}
dV, (14)

is a wavefield correlation-based measure that involves a forward propagating

wavefield u and backward propagating adjoint wavefield u†, for some T and ∆τ ,

Kχ(x) ∼
∫ ∆τ

0

u(x, T +∆τ − τ)u†(x, τ + T ) dτ. (15)

The adjoint wavefield is excited by an adjoint source that measures data misfit.

Tromp et al. (2005, 2008); Liu and Tromp (2008); Liu and Gu (2012); Yuan et al. (2016, 2019); Liu et al. (2023)
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In the frequency domain (u → ũ, t → ω), over all sources, eq. (15) amounts to

Kχ(x) ∼
Ns∑
s=1

Nω∑
k=1

Nω∑
k′=1

ũs(x, ωk) ũ
†∗
s (x, ω′

k). (16)

This kernel controls the overall misfit gradient: the summation is over all seismic

sources and all of their frequencies, and the basis of iterative optimization.
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In the frequency domain (u → ũ, t → ω), over all sources, eq. (15) amounts to

Kχ(x) ∼
Ns∑
s=1

Nω∑
k=1

Nω∑
k′=1

ũs(x, ωk) ũ
†∗
s (x, ω′

k). (16)

This kernel controls the overall misfit gradient: the summation is over all seismic

sources and all of their frequencies, and the basis of iterative optimization.

Source encoding is a device whereby individual source frequencies are “tagged”,

e.g., ũs(x, ωk) → αs(ωk)ũs(x, ωk), such that the order of summation can be

switched without penalty, for an enormous gain in computational efficiency:

K̃χ(x) =
Nω∑
k=1

[
Ns∑
s=1

αs(ωk)ũs(x, ωk)

][
Ns∑
s′=1

αs′(ωk)ũ
†
s′(x, ωk)

]∗

. (17)

Romero+2000
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and shifted (tsr0 ) for phase selectivity. We obtain expressions for the forward field
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∫ T+t

−∞
Gji(x,xs, T + t− t′) fi(xs, t) dt

′, (18)

driven by a monochromatic source fi(xs, t) = n̂i(xs) e
γt′ sinωst

′. Note that

Gji is the Green’s function.
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We encode single frequencies with exponential prefactors that can be damped (γ)

and shifted (tsr0 ) for phase selectivity. We obtain expressions for the forward field

uj(x, t+ T ) =
S∑

s=1

∫ T+t

−∞
Gji(x,xs, T + t− t′) fi(xs, t) dt

′, (18)

driven by a monochromatic source fi(xs, t) = n̂i(xs) e
γt′ sinωst

′. Note that

Gji is the Green’s function. Likewise, the expression for the adjoint field is

u†
j(x, t) =

R∑
r=1

∫ t

0

Gji(x,xr, t− t′)f †
i (xr, t

′) dt′, (19)

driven by adjoint sources that contain the weighted misfit measurement ∆̄ũsr
i ,

f †
i (xr, t) =

S∑
s=1

eγt
sr
0 ∆̄ũsr

i eıωs(T+t)e−γ(T+t). (20)



Global models — IV

The art is in the randomized frequency assignment scheme, the selection of the

integration interval ∆τ , and determining the steady-state time T after which

mutual orthogonality between suitably encoded frequencies is expected to set in.

Tromp and Bachmann (2019); Cui et al. (2023); Liu et al. (2023)
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We discussed tomography based on transmitted phases. What about reflections?
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Underside reflections and converted phases image sharp discontinuities.
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Impedance contrasts (including surprising ones) 54/56

Underside reflections and converted phases image sharp discontinuities.
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In conclusion:

Passive seismic imaging at all scales...
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Dahlen, F. A., S.-H. Hung, and G. Nolet, Fréchet kernels for finite-frequency traveltimes — I. Theory, Geophys. J. Int., 141(1), 157–174, doi: 10.1046/j.1365–

246X.2000.00,070.x, 2000.
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