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Functions cannot be bandlimited and spacelimited at the same time.

However, we can find a set of bandlimited functions that will optimize their spa-
tial concentration to some spatial domain, and we can find a set of spacelimited

functions that will minimize spectral leakage outside the bandlimit of interest.

We can use these “Slepian” functions as windows, for spectral analysis, or we can

use them as a (sparse) basis to represent geophysical observables—on a sphere.
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In the 60s Slepian et al. solved the problem of concentrating a bandlimited signal

1 +W ‘
o(t) / Gw) e do, W] < oo, 0

Cor
into a time interval |t| < T'. The “Slepian functions” optimize the concentration

/ o g°(t) dt

N = 2=L 0<\<1. (2)
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In the 60s Slepian et al. solved the problem of concentrating a bandlimited signal

1 +W ‘
o(t) / Gw) e do, W] < oo, 0

:% i

into a time interval |t| < T'. The “Slepian functions” optimize the concentration

/ ;T g°(t) dt

\ —

They are eigenfunctions of a Fredholm integral equation,

/ RO 0 = r() 3

| w(t—=1)
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Similarly, two-dimensional Slepian functions are bandlimited Fourier expansions
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Similarly, two-dimensional Slepian functions are bandlimited Fourier expansions

1 .
g<X) — (27’(’)2 /’CG(k) et dk, ’/Cl < 00, (4)

that concentrate into a finite spatial region R € R? of area A by maximizing

These are also eigenfunctions of a Fredholm integral equation,

/R [ (2717)2 //c pik (x=x') dk] g(x) dx’ = Ag(x). (6)
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On a sphere, Slepian functions are bandlimited spherical-harmonic expansions
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g®=> Y gnYim#), L<oo (7)

=0 m=-—I

that are concentrated within a region K € () by optimizing the energy ratio

. /Rg2(f) d<2
/Qf(f') dS2

: 0< A<, (8)
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On a sphere, Slepian functions are bandlimited spherical-harmonic expansions

L [
g®=> Y gnYim#), L<oo (7)

=0 m=-—I

that are concentrated within a region K € () by optimizing the energy ratio

. /Rg2(f) d<2
/Qf(f') dS2

They are eigenfunctions of a Fredholm equation, with /; a Legendre function,

[z

: 0< A<, (8)

20+ 1 o N , R
( )mr-r) o) dY = Ag(£). )
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A, =1.000 x 107 A, =1.000 x 107%° A, =9.997 x 107" A, =9.994 x 107

= -13 - -16 _ -17 _ -21
)\16 = 4.857 x 10 )\17 =3.124 x 10 )\18 =1.748 x 10 Alg =2.750 x 10
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The integral-equation kernels are all spectrally bandlimited spatial delta functions

that are “reproducing kernels” for the bandlimited functions of the kinds considered:
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where (not just on the domain for which they were constructed, though, there, they

will be a sparse basis). Their trace is a space-bandwidth joint “Shannon” area.
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The integral-equation kernels are all spectrally bandlimited spatial delta functions

that are “reproducing kernels” for the bandlimited functions of the kinds considered:

+W
D(t, t/) _ Qi 6icu(t—t’) dw’ tl“{D} — 2@7 (10)
T J_w m
D(x,x") = 1 / e ) gk tr{D} = [(2é (11)
’ (27T>2 K ’ 4777

L m
A
DE,&) = > > Yiu(®)Yia(®). tr{D} = (L+1)"—. (12)

[=0 m=-—1

Thus, the Slepian functions are bases for bandlimited geophysical processes any-
where (not just on the domain for which they were constructed, though, there, they

will be a sparse basis). Their trace is a space-bandwidth joint “Shannon” area.

Remember that the trace of an operator is the sum of all of its eigenvalues, V.
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In the spectral domain, the Slepian functions are eigenfunctions of equations that
have spacelimited spectral delta functions as kernels. On the sphere, we solve for

the spherical harmonic expansion coefficients of the functions as
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In the spectral domain, the Slepian functions are eigenfunctions of equations that
have spacelimited spectral delta functions as kernels. On the sphere, we solve for

the spherical harmonic expansion coefficients of the functions as

Y ;1 [/ Yimy’m’ dQ] gum’ — )\glma 0<A<L (13)

=0 m/'=-U

We define the spatiospectral localization kernel, with eigenvalues ), as

A
Dlm,l’m’ — / Yle/m/ dQ, tl”{D} = (L —+ 1)24— (14)
R T

Many of the eigenvalues are very, very small. Thus, D may be hard to calculate—

and even harder to invert.

And remember that the spatial region /X can be completely arbitrary.
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Eigenvalue behavior — 2

13/69

eigenvalue A

eigenvalue A

0.51

Greenland
Australia
N America
Africa
Eurasia

SRR
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Diagonalization of the operator D, with elements

Dlm,l’m’ — / }/le’m’ an (16)
R

Is often hard and sometimes impossible.

But if R is axisymmetric, i.e. a single polar cap or a double polar cap, we
can find the Slepian functions as the solutions to a different eigenvalue problem

involving a very simple kernel with very well-behaved eigenvalues.
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Spherical harmonics Y},,, form an orthonormal basis on {2:
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Spherical harmonics Y},,, form an orthonormal basis on {2:

/ Yim Yim df) = 5ll’5mm’- (17)
Q

The spherical harmonics Y},,, are not orthogonal on R

/ }/le’m’ df) = Dlm,l’m’- (18)
R

The eigenfunctions of D are called Slepian functions, ¢(i). They form a band-

limited localized basis, doubly orthogonal: on R (to \) and also on {2 (to 1).

The Shannon number, or sum of the eigenvalues, the space-bandwidth product,
2 A

A’
Is the effective dimension of the space for which the bandlimited ¢ are a basis.

N =(L+1)
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V1 Scalar fields

Vector (potential) fields

Tensor fields
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V] Scalar fields
V] Vector (potential) fields
V] Tensor fields
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The expansion of a bandlimited process on the sphere in either spherical harmon-

ics or in Slepian functions is equal and exact:
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SE) =) N smYm(E) = Y Saga(P). (19)
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The expansion of a bandlimited process on the sphere in either spherical harmon-

ics or in Slepian functions is equal and exact:

L 1 (L+1)?
SE) =D > smYm(®) = D sagald). (19)
[=0 m=-—1 a=1

But if the signal is regional in nature, an expansion into Slepian functions up until

the Shannon number /N will be approximate but sparse:

N

s(T) ~ Z Salo(f), T E€R. (20)

a=1

The mean squared reconstruction error in the noiseless case is determined by the

neglected eigenvalues, which are small beyond the Shannon number V.
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40°

20°

-20° A

40° Tk

20° A

-20° A

40°

20°

ém'

0° 20° 40°

-20°




Basis I: spherical harmonics Y}, 22/69

5040 (5027) spherical harmonic coefficients
900 | |

degree |

-90°

60° 120° 180°

L

—-1/2 max(abs(value))

1/2 max(abs(value))

A global basis, good for global problems.
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5329 (4181) spherical harmonic coefficients

30° A -
b &
OO - - g
©

-30° - T T T 3
-50° -25° 75°
order m
-1/2 max(abs(value))

1/2 max(abs(value))

A global basis, bad for local problems.



Spherical harmonics Y},,, — Slepian functions ¢ 249

An orthogonal transform by the eigenmatrix of D introduces welcome sparsity.

229 1 o

4571 2,

685 1 s

913 ’,

spherical harmonic degree and order

1141 1

1 229 457 685 913 1141 1369 1 229 457 685 913 1141 1369
rank of the Slepian functions rank of the Slepian functions
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Basis Il: Slepian functions ¢ 26/69
R-average mse 1.18e-09% 130 (41) Slepian coefficients
1 1 L < U J 1 1 1 36 1 1 1
30° A - £
+
o
0 £ 181 .
OO - I~ 5
+
X
g g
-30° - T T T T T T 3 0 T Y T
-50° -25° 0° 25° 50° 75° -36 -18 0 18 36

order m

_—

-1/2 max(abs(value))

1/2 max(abs(value))

A local basis, good for local problems. Sparsity!



Application 2 : Sparsity from geophysics 27/69

Earthquake “focal mechanisms” look like Slepian functions.

BH@WEH®E
® =

Example: using Slepian functions to unearth the signature of the great Sumatra-

Andaman earthquake from GRACE time-variable satellite gravity data.



Application 2 : Geopotential perturbations

28/69
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Solving problems in geophysics ...
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The data collected in or limited to /X are signal plus noise:

We assume that n(r) is zero-mean and uncorrelated with the signal

and consider known the noise covariance;

In other words: we’ve got noisy and incomplete data on the sphere.
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35/69

The data collected in or limited to /X are signal plus noise:

d(r) = s(r) + n(r) ifr € R,

| unknown/undesired if r € 0\ R.

We assume that n(r) is zero-mean and uncorrelated with the signal
(n(r)) =0 and  (n(r)s(r’)) =0,
and consider known the noise covariance:
(n(r)n(r")).

In other words: we’ve got noisy and incomplete data on the sphere.



Noisy: Earth’s time-variable gravity 36/69

dGSM.2005.001.2005.031.0K20.geo

-0.5 0 0.5
Geoid height variation [mm]



Incomplete: Cosmic Microwave Background
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Consider an unknown, noisily and incompletely observed spherical process:

0@

s(r) = Z Stm Yim(T).

Im

Linear Problem: Problem 1

Given d(r) and (n(r)n(r’)), estimate the signal s(r), realizing that the

estimate 5(r) is always bandlimited to 0 < L < oo.

Quadratic Problem: Problem 2

Given d(r) and (n(r)n(r’)), and assuming the field behaves as
(Sim) =0 and  (Sy,,,Srm’) = S1 0w Omm,

estimate the power spectral density .5}, for 0 < [ < o0, as S‘l_
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The data are noisy and incomplete.
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The data are noisy and incomplete.

Problem 1

Find the signal that gives rise to the data.

Problem 2

Find the power spectral density of the signal.
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Problem 1 — Finding the signal 40/69

Construct a bandlimited estimate in the spherical harmonic basis by minimizing

the misfit to the data over K. The—linear—optimal solution depends on D%
Stm, = Z Dyt / d Yy dSQ.

Finding D ltis tough, so construct a truncated-Slepian basis estimate instead:

J

§(r) = Z Sala(T).

«

The solution depends on the localization eigenvalue at the same rank:

§a — )\al/ dga df.
R
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Application 3 : Time-variable gravity — 2

42/69

a) West Antarctica
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Slope = -124 + 3 Gtlyr
Acceleration = =27 + 2 Gt/yr"2

R o °
{5\0 ,O b(p
T
[1/2003-1/2013|
O 500
O _—
-500 —
A
Int=—1083 T
|
. ° < 1000
fiﬁD 2 S
—
(T ® O ]

-400 -300 -200 -100 O 100
surface density change (cm water equivalent)



Problem 2 — Finding the spectrum 43/69

If we simply worked with the available data we'd be using a boxcar window:
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Problem 2 — Finding the spectrum 43/69

If we simply worked with the available data we'd be using a boxcar window:

/Rd(r) Yim (1) dS2 2

ASP _ 1
l 20 + 1 &

This estimate is biased (unless .S; = S or R = (), coupling over the entire band.

lts bias, variance, and thus mean-squared error depend, again, on D:

SP 2
mse; ~ Z ’Dlm,lm" .
mm/
The multitaper estimate uses a small L for the Slepian windows ¢, (1) over R,

) 1 2
S}“TZAQ<21—HZ )

« m

/Q 00 (1) d(r) Vi (x) dS
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Maximum-likelihood ... very cumbersome, unbiased, high variance
Whole-sphere ... unattainable

2

. 1
WS — noise correction. (14)

LT ol —

| ) ¥i a2

Periodogram ... broadband bias, high variance

SO — (%D 21112 /Rd(r) * (r) dQ

m

2
— noise correction. (15)

Single-taper ... bandlimited bias

S / 00 (r) d(x) Y7, (r) d)

2
— noise correction. (16)

a ———

LT orx 1 —

Multiple-taper ... bandlimited bias, lower variance, easily implemented

) 1 .
SMT — = D A5y (17)
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It returns a spectrally bandlimited (to 4=1) average of the true spectral power

while being sensitive to a spatially localized patch R of data.
Spectral and spatial concentration trade off via the Shannon number, which is the
sole parameter to be chosen by the analyst:

N = (L+1)2£.

47
This dictates the deliberate bias of the estimate. More tapers — more bias, but

the covariance matrix of the estimates between tapers is almost diagonal.

Thus, weighted averaging of estimates made with many different tapers reduces
the estimation variance. And with eigenvalue weighting, the bias is strictly limited

to the bandwidth L, and independent of the shape of the region K.



Balancing bias and variance

46/69
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Using the choice of the eigenvalues )\ of D as weights of the multitaper spectral

estimate, the multitaper coupling matrix is

o0 +1 & [ p U
Ky = (2p+1)
+ Z 00 0

111 =

s oI, =
e/ 9 I I _I T 1
2 j MWWWW”WW a5
83_ ] 1 T T ||_1(|)
I =0

OI T T T T 1

0 20 40 60 80 100

degree I
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The covariance between the multitaper estimates is relatively simple when the
spectra is moderately colored (compared to the bandwidth L of the estimator):

2

1 [ p U
ST _ - (S + Np)(Sr +N)Y (2p+ 1T, . (17)
m . 0 0 0
r, = % ZL: ZL:(zs +1)(2s" +1)(2u + 1)(2u + 1) 22%(—1)“8(26 + 1)Be

v { S e S// } < S e S/ ) ( u (& ’I.L/ ) < S P u/ ) < u Y S/ ) , (18)
U p u 0 0 0 0 0 0 0 0 0 0 0 0
with B, the boxcar power, which depends on the shape of the region of interest,

and the sums over angular degrees are limited by Wigner 3-7 selection rules.

The term in curly braces is a Wigner 6-7 symbol. Ugly, but computable.
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Magnetic field spectra

Application 3
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e Slepian functions are both spectrally and spatially concentrated
e They form a doubly orthogonal basis on the sphere and any portion of it

e They are the ideal basis to separate signal from noise, for approximation and

linear inverse problems

e They are ideal data windows for quadratic spectral analysis

e The Slepian multitaper method yields a smoothed and thus biased estimate
of the spectrum, but it requires neither iteration nor large-scale matrix inver-
sion. Its variance is much lower than that of any other method, and the only
parameter that needs to be specified by the analyst is the Shannon nhumber,

or the space-bandwidth product diagnostic of the spatiospectral concentration.
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X VV(rst) + VW (rs#) +n(rsr) ifF € R C €,
d(rst) = (19)
unknown it € Q\ R,

To obtain, from discrete satellite data collected within a confined region R at
varying altitude above the planetary surface approximated by a sphere of
radius 7, the bandlimited set of coefficients v,* € v;”,0 <1 < L,

that describe the internal field V' on the planetary surface.
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The Y},,, € ) are the “regular” orthonormalized scalar surface-spherical harmon-

ics, with 0 < [ < oo the angular degree, and —! < m < [ the angular order.
The inner solid harmonics rlY}m are a basis for W', generated by external sources.
The outer solid harmonics r_l_lYim are a basis for /', from internal sources.

We define internal and external gradient vector spherical harmonics (GVSH):

) = : 7 7) — 7
Ej (7) = ¢<z+1><2z+1>[ (14 1) Yiul(7) — ViYi(#)]. - (@0)

W(; — #150(7) + V1 Vi (7). 1)

Vector potentials V'V (r#) are expanded into E,,, and the VW (r#) into F,,,.

Flm(’i;) —

We collect the basis functions into bandlimited sets £, and F,_.
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The solution to the least-squares problem

(A/ Er-E] AQAT A/ £, - FT d0 AT [\ < innies
R R

\AL.’F'LO-&'ICZQAT A/R]-'L()-}'zodﬂﬁrf) \\szqoj < outies

\ 7
~~

This is K. /A/gL.ddQ\
We will work in the orthogonal "

eigenvector decomposition of this y
symmetric positive definite matrix: \A /R Fr, -dd2 /

KG = GA.




“Relationship to “classical” Slepian functions 369

We obtained the full-field altitude-cognizant gradient-vector Slepian functions from
solving a misfit-minimization problem by diagonalizing the matrix K. The coeffi-
cients (5 can also be obtained by solving an energy maximization problem, as for

the classical vector Slepian functions of Plattner & Simons (2014).

Indeed we have solved the variational problem

o T
OT °_ OT oT K OT oT
gk (& @)K (& &)
A=55 _ (22)

&8 8; &i T &0 &
/ G, d9
R

/é3d9+/é§d§z
Q Q

(23)
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66/69
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Finally! Conclusions 67/69

We solve inverse problems represented by a linear and compact operator be-
tween Hilbert spaces with a known singular-value decomposition (SVD). In prac-
tice, such an SVD is often only given for the case of a global expansion of the data

(e.g., on the whole sphere) but not for regional data distributions.

Slepian functions (associated to an arbitrarily prescribed region and the given
compact operator) can be determined and applied to construct a regularization
for the ill-posed regional inverse problem. We construct the Slepian basis by

solving an algebraic eigenvalue problem.

The obtained Slepian functions can be used to derive an SVD for the combination

of the regionalizing projection and the compact operator.

Standard regularization techniques relying on a known SVD become applicable

also to those inverse problems where the data are regionally given only.
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