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Abstract

One of Jupiter’s most prominent atmospheric features, the Great Red Spot (GRS), has been observed for more than
two centuries, yet little is known about its structure and dynamics below its observed cloud level. While its
anticyclonic vortex appearance suggests it might be a shallow weather-layer feature, the very long time span for
which it was observed implies it is likely deeply rooted, otherwise it would have been sheared apart by Jupiter’s
turbulent atmosphere. Determining the GRS depth will shed light not only on the processes governing the GRS,
but on the dynamics of Jupiter’s atmosphere as a whole. The Juno mission single flyby over the GRS (PJ7)
discovered using microwave radiometer measurements that the GRS is at least a couple hundred kilometers deep.
The next flybys over the GRS (PJ18 and PJ21), will allow high-precision gravity measurements that can be used to
estimate how deep the GRS winds penetrate below the cloud level. Here we propose a novel method to determine
the depth of the GRS based on the new gravity measurements and a Slepian function approach that enables an
effective representation of the wind-induced spatially confined gravity signal, and an efficient determination of the
GRS depth given the limited measurements. We show that with this method the gravity signal of the GRS should
be detectable for wind depths deeper than 300 km, with reasonable uncertainties that depend on depth (e.g.,
±100 km for a GRS depth of 1000 km).
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1. Introduction

Jupiter’s Great Red Spot (GRS) has been an iconic feature in
the solar system for centuries. Ever since it was discovered,
hundreds of years ago, it perplexed astronomers with its shape,
color, and consistency. Nonetheless, little is known about the
GRS, particularly about how deep into the gaseous planet this
anticyclonic vortex extends. On the one hand, it resembles an
Earth-like atmospheric vortex, suggesting it is driven by
shallow atmospheric processes, and should be shallow and
confined to some weather-layer (Dowling & Inger-
soll 1988, 1989). On the other, its centuries-long existence
within Jupiter’s turbulent atmosphere suggests that it must
contain significant mass otherwise it would have been sheared
apart by the jets and other vortices. The depth to which it
extends carries with it great implications on the mechanisms
driving and maintaining it. Until recently, the depth of Jupiter’s
atmosphere itself was unknown, but recent gravity measure-
ments by the Juno spacecraft (Iess et al. 2018) allowed for the
determination that the atmospheric jets on Jupiter extend down
to depths of thousands of kilometers (∼105 bars in pressure,
Kaspi et al. 2018). The goal of this study is to propose a new
methodology for interpreting the Juno gravity measurements in
order to determine the depth of the GRS.

The Juno spacecraft orbits Jupiter every 53 days on a polar,
highly eccentric orbit with perijove at 4000 km above Jupiter’s
cloud level (Bolton et al. 2017; Folkner et al. 2017). To allow a
full coverage of the planet, every perijove is at a different
longitude with a planned longitudinal separation of 11°.25 over
the entire mission. As the GRS drifts by ∼110° eastward every

year (Simon et al. 2018) this provides, in principle, several

opportunities for passes over the GRS. The first of these has

been on orbit 7 (PJ7), where microwave radiometer measure-

ments suggested that the GRS is at least a couple hundred

kilometers deep (Li et al. 2017). However, because but this

orbit was devoted to microwave measurements, radio science

operated only in the X-band, thus preventing the application of

the plasma calibration scheme, which requires simultaneous

Ka-band data (Iess et al. 2018). Orbits 18 (PJ18) and 21 (PJ21)

will fly over the GRS in gravity mode, meaning they will

operate with the more accurate Ka-band.
Differently than the depth estimate of the zonal jets, which is

obtained using the zonal gravity harmonics, for the case of the

GRS a nonzonal localized field is required. Parisi et al. (2016)

used the tesseral gravity field to estimate the depth, and found

that the GRS must be at least 2000 km deep in order to be

detected. However, that estimate of the gravity signature

required the determination of a large number of spherical

harmonics, resulting in a considerable uncertainty in the

solution. Here we propose a new approach, using Slepian

functions that are designed specifically for isolated gravity

measurements of local spatial features (e.g., Simons &

Dahlen 2006; Simons et al. 2009; Harig & Simons 2012;

Plattner & Simons 2017). We demonstrate its applicability to

the GRS problem and examine the detectability of the GRS

depth with the method, given the limited measurements

expected.
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The Mercury gravity field, spin-pole axis, rotation period, Love number, and ephemeris have been determined using the complete four years of MESSENGER tracking

data from March 2011 to April 2015. The pole location and obliquity (1.99 ± 0.12 arcmin) is consistent with previous determinations. Since MESSENGER was in a

highly elliptical orbit with periapsis in the far northern hemisphere, the gravity resolution over the surface of Mercury varies greatly from harmonic degree n=12 at

the south pole to n=154 in a small region near the north pole which was covered with exceptionally low periapsis data near the end of mission. The gravity field

MESS160A is determined to n=160 and shows notable improvement in the correlation with topography. Three different constraint methods are used to generate the

gravity field. The nominal method is a Kaula power law of 5×10−5/n2 to constraint the coefficients. One alternate constraint uses surface acceleration mea-

surements, which only constrains the unobserved portion of the gravity field. The other constraint method sets the gravity uncertainties using the harmonic spectrum

of the gravity derived from topography. The Mercury tidal Love number solution k2=0.53 ± 0.03 is larger than previous results but within suggested error bounds.

In addition, the technique for estimating the Mercury ephemeris is discussed.

1. Introduction

The MErcury Surface, Space ENvironment, GEochemistry, and

Ranging (MESSENGER) mission (Solomon et al., 2001; Solomon et al.,

2007) has provided the first extensive view of the inmost planet Mer-

cury. Prior to MESSENGER, the only measurements of the Mercury

gravity field were from analysis of two Mariner 10 flybys (Anderson

et al., 1987), resulting in determination of Mercury's gravitational mass

or GM and harmonic coefficients J2 and C22. When MESSENGER was

inserted on March 18, 2011 into an initial 12-hour period nearly polar

orbit with periapsis as low as 200-km, the gravity field could be sensed

for the first time, especially in the far northern hemisphere since the

periapsis was near 60°N.

The first estimates of the Mercury gravity field were determined

from the first five months of MESSENGER's radio tracking data (Smith

et al., 2012). The corresponding gravity field HgM002 was determined

to harmonic degree n=20 and provided the first long wavelength

structure of the Mercury gravity field, crustal and elastic lithospheric

estimates of the northern rise, and the polar moment of inertia. Genova

et al. (2013) also estimated the gravity field to degree 20 and showed

consistency with HgM002. Mazarico et al., 2014 extended the resolu-

tion of the gravity field HgM005 to n=50, and provided an estimate of

the Mercury Love number k2=0.451 ± 0.14, obliquity, and rotational

period. Mazarico et al., 2016 developed HgM007, an extended

resolution gravity field to degree and order 100, which shows improved

correlation with topography derived from the Mercury Laser Altimeter

(MLA, Zuber et al., 2012). Verma and Margot (2016) estimated a 40th

degree gravity solution together with the spin state and a Love number

of k2=0.464 ± 0.023.

In this paper, we present a new Mercury gravity solution to n=160

(MESS160A) using MESSENGER's entire Doppler and range data set.

The solution shows improved correlation with topography and con-

sistent Mercury orientation and Love number with previous solutions.

Three different constraint methods are tested on the gravity field so-

lutions including: 1) the typical Kaula power law constraint (~1/n2)

that biases the gravity coefficients to zero with an a priori uncertainty

based upon the harmonic degree n; 2) a variable surface constraint that

only constrains locally the gravity field based upon the expected re-

solution as given by the degree strength from the gravity covariance;

and 3) applying a coefficient by coefficient constraint biased to zero but

with an a priori uncertainty given by the magnitude of the topography

coefficient.

A higher resolution gravity field to degree 160 was chosen, because

that is near the maximum resolution for the end (last eight months) of

the MESSENGER mission where many orbits have periapsis altitude in

the 10-km to 30-km range. Since the periapsis of the highly elliptical

MESSENGER orbit is in the far northern hemisphere near 60°N, the

resolution of the gravity field varies greatly over the Mercury surface.
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The gravity and shape data acquired by the Dawn spacecraft 
during its primary mission revealed that Ceres is partially 
differentiated with an interior structure consistent with a 
volatile-rich crust, a mantle of hydrated rock and isostatically 
compensated topography1–3. Detailed analyses showed that 
the mechanically strong crust overlays a weak, fluid-bearing 
upper mantle4. Previous studies, however, assumed that 
Ceres’s crust is a uniform layer. Here, we report findings 
from the new high-resolution gravity data from Dawn’s sec-
ond extended mission (XM2), which reveal a complex crustal 
structure of Ceres. In the low-altitude regions probed by the 
Dawn spacecraft during the XM2 phase, we observe that grav-
ity–topography admittance progressively shifts to a lower 
density solution at higher degrees, implying a radial density 
gradient across Ceres’s crust that is consistent with decreas-
ing porosity with depth and/or increasing content of dense 
phases, such as rock and salts. That gradient brings a critical 
new constraint on the crustal freezing history, suggesting that 
the salts and silicates concentrated in the liquid phase while 
the crust was growing. Localized spectral analysis of the new 
data also shows evidence for a lower crustal density in the 
north polar region than in the south or near the equator, sup-
porting impact-driven porosity variations for the observed lat-
itudinal density differences5. On the local scale, the new data 
show evidence for density or rheological variations within the 
crust, in association with lobate landslides and ejecta depos-
its that were inferred to be ice-rich6,7 as well as an extensional 
fault system8. These inferences provide geophysical context 
for geological features on the surface and help us advance our 
understanding of the evolution of an ice-rich but heat-starved 
body, whose evolution was in part shaped by impacts.

A new gravity model of Ceres, called CERES70E, was computed 
using Dawn’s XM2 radio Doppler data, and has the maximum 
degree of spherical harmonic expansion of 70. Considering that the 
gravity field of most ice-rich bodies, such as Europa, Enceladus and 
Titan, are only determined to degrees 2, 3 and 5 (Supplementary 
Table 1), respectively, the spatial resolution of Ceres’s gravity field 
is by far the highest resolution available for an ice-rich body. The 
degree-strength (DS) map for CERES70E, which shows the effec-
tive resolution of the recovered gravity field9, is shown in Fig. 1a.  
The DS peaks at 59 and is typically between 30 and 40 within the 
low periapsis region. The corresponding isostatic anomaly map 

computed using CERES70E, based on a degree-dependent compen-
sation model (Methods), and topography10 are shown in Fig. 1b,c.

Findings from CERES70E are first compared with Ceres’s global 
structure. Fig. 2 shows the global gravity–topography correlation 
and admittance from the primary mission (PM) and localized 
admittance from XM2 using a Slepian taper analysis11 (Methods). 
The higher values of the local correlation compared with the global 
correlation (Fig. 2a) indicate that CERES70E better resolves the 
local gravity along the path of XM2 orbits. The low localized admit-
tance values (Fig. 2b) for degrees 15–21 with high local correlation 
continue the trend found in the global admittance, implying that 
topographic features are compensated or even super-compensated. 
The best-fit mean crustal density is 1; 233
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 kg m–3, which is lower 
than, but consistent with, the previous crustal density estimate2 
from the PM data of 1; 287

þ87

�70
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 kg m–3 and brings renewed support 
for a large abundance of ice and hydrates and low silicate content 
in Ceres’s crust.

In contrast to the PM data, the XM2 data allows study of the 
vertical density gradient within Ceres’s crust. This gradient is shown 
by the slope in the local admittance (Fig. 2b) that indicates a gradual 
shift to a lower crustal density solution for degrees between 15 and 
21. A greater level of isostatic compensation or super compensa-
tion would produce lower admittance values under the same density 
and rheological structures. However, due to the longer timescale of 
isostatic adjustment at shorter wavelengths, the level of compensa-
tion is likely to decrease or remain similar, at least, for shorter wave-
length features. A change in the level of compensation is therefore 
unlikely to explain the lower observed admittances.

Assuming a similar compensation state, lower densities at shal-
lower depths may contribute to the observation of lower admittance 
values at shorter wavelengths. This trend in admittance is strong 
evidence of a radial gradient in density that is consistent with a 
decrease of porosity with depth and/or an increase in dense material 
such as rock and salts. The latter is also suggested by non-detection 
of chlorine by Dawn’s Gamma Ray and Neutron Detector (GRaND) 
in XM2 (detection limit of 5 wt.%)12. A higher concentration of 
water ice at shallow depths would also be consistent with the abun-
dance of ice-rich morphological features found on the surface6,7. 
The vertical density gradient provided by the XM2 data therefore 
supports the hypothesis of the top-down freezing of an icy crust 
from a deep ocean, which is expected to yield a gradient in impuri-
ties with depth13.
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Abstract

One of Jupiter’s most prominent atmospheric features, the Great Red Spot (GRS), has been observed for more than
two centuries, yet little is known about its structure and dynamics below its observed cloud level. While its
anticyclonic vortex appearance suggests it might be a shallow weather-layer feature, the very long time span for
which it was observed implies it is likely deeply rooted, otherwise it would have been sheared apart by Jupiter’s
turbulent atmosphere. Determining the GRS depth will shed light not only on the processes governing the GRS,
but on the dynamics of Jupiter’s atmosphere as a whole. The Juno mission single flyby over the GRS (PJ7)
discovered using microwave radiometer measurements that the GRS is at least a couple hundred kilometers deep.
The next flybys over the GRS (PJ18 and PJ21), will allow high-precision gravity measurements that can be used to
estimate how deep the GRS winds penetrate below the cloud level. Here we propose a novel method to determine
the depth of the GRS based on the new gravity measurements and a Slepian function approach that enables an
effective representation of the wind-induced spatially confined gravity signal, and an efficient determination of the
GRS depth given the limited measurements. We show that with this method the gravity signal of the GRS should
be detectable for wind depths deeper than 300 km, with reasonable uncertainties that depend on depth (e.g.,
±100 km for a GRS depth of 1000 km).

Key words: gravitation – hydrodynamics – planets and satellites: atmospheres – planets and satellites: gaseous
planets

1. Introduction

Jupiter’s Great Red Spot (GRS) has been an iconic feature in
the solar system for centuries. Ever since it was discovered,
hundreds of years ago, it perplexed astronomers with its shape,
color, and consistency. Nonetheless, little is known about the
GRS, particularly about how deep into the gaseous planet this
anticyclonic vortex extends. On the one hand, it resembles an
Earth-like atmospheric vortex, suggesting it is driven by
shallow atmospheric processes, and should be shallow and
confined to some weather-layer (Dowling & Inger-
soll 1988, 1989). On the other, its centuries-long existence
within Jupiter’s turbulent atmosphere suggests that it must
contain significant mass otherwise it would have been sheared
apart by the jets and other vortices. The depth to which it
extends carries with it great implications on the mechanisms
driving and maintaining it. Until recently, the depth of Jupiter’s
atmosphere itself was unknown, but recent gravity measure-
ments by the Juno spacecraft (Iess et al. 2018) allowed for the
determination that the atmospheric jets on Jupiter extend down
to depths of thousands of kilometers (∼105 bars in pressure,
Kaspi et al. 2018). The goal of this study is to propose a new
methodology for interpreting the Juno gravity measurements in
order to determine the depth of the GRS.

The Juno spacecraft orbits Jupiter every 53 days on a polar,
highly eccentric orbit with perijove at 4000 km above Jupiter’s
cloud level (Bolton et al. 2017; Folkner et al. 2017). To allow a
full coverage of the planet, every perijove is at a different
longitude with a planned longitudinal separation of 11°.25 over
the entire mission. As the GRS drifts by ∼110° eastward every

year (Simon et al. 2018) this provides, in principle, several

opportunities for passes over the GRS. The first of these has

been on orbit 7 (PJ7), where microwave radiometer measure-

ments suggested that the GRS is at least a couple hundred

kilometers deep (Li et al. 2017). However, because but this

orbit was devoted to microwave measurements, radio science

operated only in the X-band, thus preventing the application of

the plasma calibration scheme, which requires simultaneous

Ka-band data (Iess et al. 2018). Orbits 18 (PJ18) and 21 (PJ21)

will fly over the GRS in gravity mode, meaning they will

operate with the more accurate Ka-band.
Differently than the depth estimate of the zonal jets, which is

obtained using the zonal gravity harmonics, for the case of the

GRS a nonzonal localized field is required. Parisi et al. (2016)

used the tesseral gravity field to estimate the depth, and found

that the GRS must be at least 2000 km deep in order to be

detected. However, that estimate of the gravity signature

required the determination of a large number of spherical

harmonics, resulting in a considerable uncertainty in the

solution. Here we propose a new approach, using Slepian

functions that are designed specifically for isolated gravity

measurements of local spatial features (e.g., Simons &

Dahlen 2006; Simons et al. 2009; Harig & Simons 2012;

Plattner & Simons 2017). We demonstrate its applicability to

the GRS problem and examine the detectability of the GRS

depth with the method, given the limited measurements

expected.
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The Mercury gravity field, orientation, love number, and ephemeris from the

MESSENGER radiometric tracking data☆
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A B S T R A C T

The Mercury gravity field, spin-pole axis, rotation period, Love number, and ephemeris have been determined using the complete four years of MESSENGER tracking

data from March 2011 to April 2015. The pole location and obliquity (1.99 ± 0.12 arcmin) is consistent with previous determinations. Since MESSENGER was in a

highly elliptical orbit with periapsis in the far northern hemisphere, the gravity resolution over the surface of Mercury varies greatly from harmonic degree n=12 at

the south pole to n=154 in a small region near the north pole which was covered with exceptionally low periapsis data near the end of mission. The gravity field

MESS160A is determined to n=160 and shows notable improvement in the correlation with topography. Three different constraint methods are used to generate the

gravity field. The nominal method is a Kaula power law of 5×10−5/n2 to constraint the coefficients. One alternate constraint uses surface acceleration mea-

surements, which only constrains the unobserved portion of the gravity field. The other constraint method sets the gravity uncertainties using the harmonic spectrum

of the gravity derived from topography. The Mercury tidal Love number solution k2=0.53 ± 0.03 is larger than previous results but within suggested error bounds.

In addition, the technique for estimating the Mercury ephemeris is discussed.

1. Introduction

The MErcury Surface, Space ENvironment, GEochemistry, and

Ranging (MESSENGER) mission (Solomon et al., 2001; Solomon et al.,

2007) has provided the first extensive view of the inmost planet Mer-

cury. Prior to MESSENGER, the only measurements of the Mercury

gravity field were from analysis of two Mariner 10 flybys (Anderson

et al., 1987), resulting in determination of Mercury's gravitational mass

or GM and harmonic coefficients J2 and C22. When MESSENGER was

inserted on March 18, 2011 into an initial 12-hour period nearly polar

orbit with periapsis as low as 200-km, the gravity field could be sensed

for the first time, especially in the far northern hemisphere since the

periapsis was near 60°N.

The first estimates of the Mercury gravity field were determined

from the first five months of MESSENGER's radio tracking data (Smith

et al., 2012). The corresponding gravity field HgM002 was determined

to harmonic degree n=20 and provided the first long wavelength

structure of the Mercury gravity field, crustal and elastic lithospheric

estimates of the northern rise, and the polar moment of inertia. Genova

et al. (2013) also estimated the gravity field to degree 20 and showed

consistency with HgM002. Mazarico et al., 2014 extended the resolu-

tion of the gravity field HgM005 to n=50, and provided an estimate of

the Mercury Love number k2=0.451 ± 0.14, obliquity, and rotational

period. Mazarico et al., 2016 developed HgM007, an extended

resolution gravity field to degree and order 100, which shows improved

correlation with topography derived from the Mercury Laser Altimeter

(MLA, Zuber et al., 2012). Verma and Margot (2016) estimated a 40th

degree gravity solution together with the spin state and a Love number

of k2=0.464 ± 0.023.

In this paper, we present a new Mercury gravity solution to n=160

(MESS160A) using MESSENGER's entire Doppler and range data set.

The solution shows improved correlation with topography and con-

sistent Mercury orientation and Love number with previous solutions.

Three different constraint methods are tested on the gravity field so-

lutions including: 1) the typical Kaula power law constraint (~1/n2)

that biases the gravity coefficients to zero with an a priori uncertainty

based upon the harmonic degree n; 2) a variable surface constraint that

only constrains locally the gravity field based upon the expected re-

solution as given by the degree strength from the gravity covariance;

and 3) applying a coefficient by coefficient constraint biased to zero but

with an a priori uncertainty given by the magnitude of the topography

coefficient.

A higher resolution gravity field to degree 160 was chosen, because

that is near the maximum resolution for the end (last eight months) of

the MESSENGER mission where many orbits have periapsis altitude in

the 10-km to 30-km range. Since the periapsis of the highly elliptical

MESSENGER orbit is in the far northern hemisphere near 60°N, the

resolution of the gravity field varies greatly over the Mercury surface.
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The gravity and shape data acquired by the Dawn spacecraft 
during its primary mission revealed that Ceres is partially 
differentiated with an interior structure consistent with a 
volatile-rich crust, a mantle of hydrated rock and isostatically 
compensated topography1–3. Detailed analyses showed that 
the mechanically strong crust overlays a weak, fluid-bearing 
upper mantle4. Previous studies, however, assumed that 
Ceres’s crust is a uniform layer. Here, we report findings 
from the new high-resolution gravity data from Dawn’s sec-
ond extended mission (XM2), which reveal a complex crustal 
structure of Ceres. In the low-altitude regions probed by the 
Dawn spacecraft during the XM2 phase, we observe that grav-
ity–topography admittance progressively shifts to a lower 
density solution at higher degrees, implying a radial density 
gradient across Ceres’s crust that is consistent with decreas-
ing porosity with depth and/or increasing content of dense 
phases, such as rock and salts. That gradient brings a critical 
new constraint on the crustal freezing history, suggesting that 
the salts and silicates concentrated in the liquid phase while 
the crust was growing. Localized spectral analysis of the new 
data also shows evidence for a lower crustal density in the 
north polar region than in the south or near the equator, sup-
porting impact-driven porosity variations for the observed lat-
itudinal density differences5. On the local scale, the new data 
show evidence for density or rheological variations within the 
crust, in association with lobate landslides and ejecta depos-
its that were inferred to be ice-rich6,7 as well as an extensional 
fault system8. These inferences provide geophysical context 
for geological features on the surface and help us advance our 
understanding of the evolution of an ice-rich but heat-starved 
body, whose evolution was in part shaped by impacts.

A new gravity model of Ceres, called CERES70E, was computed 
using Dawn’s XM2 radio Doppler data, and has the maximum 
degree of spherical harmonic expansion of 70. Considering that the 
gravity field of most ice-rich bodies, such as Europa, Enceladus and 
Titan, are only determined to degrees 2, 3 and 5 (Supplementary 
Table 1), respectively, the spatial resolution of Ceres’s gravity field 
is by far the highest resolution available for an ice-rich body. The 
degree-strength (DS) map for CERES70E, which shows the effec-
tive resolution of the recovered gravity field9, is shown in Fig. 1a.  
The DS peaks at 59 and is typically between 30 and 40 within the 
low periapsis region. The corresponding isostatic anomaly map 

computed using CERES70E, based on a degree-dependent compen-
sation model (Methods), and topography10 are shown in Fig. 1b,c.

Findings from CERES70E are first compared with Ceres’s global 
structure. Fig. 2 shows the global gravity–topography correlation 
and admittance from the primary mission (PM) and localized 
admittance from XM2 using a Slepian taper analysis11 (Methods). 
The higher values of the local correlation compared with the global 
correlation (Fig. 2a) indicate that CERES70E better resolves the 
local gravity along the path of XM2 orbits. The low localized admit-
tance values (Fig. 2b) for degrees 15–21 with high local correlation 
continue the trend found in the global admittance, implying that 
topographic features are compensated or even super-compensated. 
The best-fit mean crustal density is 1; 233

þ45

�36

I

 kg m–3, which is lower 
than, but consistent with, the previous crustal density estimate2 
from the PM data of 1; 287

þ87

�70

I

 kg m–3 and brings renewed support 
for a large abundance of ice and hydrates and low silicate content 
in Ceres’s crust.

In contrast to the PM data, the XM2 data allows study of the 
vertical density gradient within Ceres’s crust. This gradient is shown 
by the slope in the local admittance (Fig. 2b) that indicates a gradual 
shift to a lower crustal density solution for degrees between 15 and 
21. A greater level of isostatic compensation or super compensa-
tion would produce lower admittance values under the same density 
and rheological structures. However, due to the longer timescale of 
isostatic adjustment at shorter wavelengths, the level of compensa-
tion is likely to decrease or remain similar, at least, for shorter wave-
length features. A change in the level of compensation is therefore 
unlikely to explain the lower observed admittances.

Assuming a similar compensation state, lower densities at shal-
lower depths may contribute to the observation of lower admittance 
values at shorter wavelengths. This trend in admittance is strong 
evidence of a radial gradient in density that is consistent with a 
decrease of porosity with depth and/or an increase in dense material 
such as rock and salts. The latter is also suggested by non-detection 
of chlorine by Dawn’s Gamma Ray and Neutron Detector (GRaND) 
in XM2 (detection limit of 5 wt.%)12. A higher concentration of 
water ice at shallow depths would also be consistent with the abun-
dance of ice-rich morphological features found on the surface6,7. 
The vertical density gradient provided by the XM2 data therefore 
supports the hypothesis of the top-down freezing of an icy crust 
from a deep ocean, which is expected to yield a gradient in impuri-
ties with depth13.

Evidence of non-uniform crust of Ceres from 
Dawn’s high-resolution gravity data
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Abstract

Direct seismic imaging of subsurface flow, sound speed, and magnetic field is crucial for predicting flux-tube
emergence on the solar surface, an important ingredient for space weather. The sensitivity of helioseismic mode-
amplitude cross-correlation to p- and f-mode oscillations enables formal inversion of such subphotospheric
perturbations. It is well known that such problems are written in the form of an integral equation that connects the
perturbations to the observations via sensitivity kernels. While the sensitivity kernels for flow and sound speed
have been known for decades and have been used extensively, formulating kernels for general magnetic
perturbations had been elusive. A recent study proposed sensitivity kernels for Lorentz stresses corresponding to
global magnetic fields of general geometry. The present study is devoted to proposing kernels for inferring Lorentz
stresses as well as the solenoidal magnetic field in a local patch on the Sun via Cartesian mode coupling. Moreover,
for the first time in solar physics, Slepian functions are employed to parameterize perturbations in the horizontal
dimension. This is shown to increase the number of data constraints in the inverse problem, implying an increase in
the precision of inferred parameters. This paves the path to reliably imaging subsurface solar magnetic features in,
e.g., supergranules and (emerging) active regions.

Unified Astronomy Thesaurus concepts: Helioseismology (709); Solar oscillations (1515); Helioseismic pulsations
(708); Solar physics (1476); Solar interior (1500); Magnetohydrodynamics (1964); Sunspots (1653); Solar active
regions (1974); Solar magnetic fields (1503)

1. Introduction

The solar activity cycle has an approximate periodicity of 11
yr. As the Sun goes from a solar minimum to a maximum, the
number of active regions and sunspots goes from being nearly
zero to around a couple hundred (Hathaway 2010, and
references therein). Formation and dissipation of these strongly
magnetized patches are directly connected to the physical
processes at play in the subsurface layers, as detailed in the
review by Fan (2009). Consequently, imaging sound speed,
flow, and magnetic field in these layers is critical in
understanding the solar cycle. While sound-speed and flow
profiles have been widely investigated using traditional
methods in local helioseismology (see review by Gizon &
Birch 2005, and references therein), direct seismic imaging of
magnetic fields has not seen much success.

Attempts at studying subsurface magnetic fields have mostly
been in the area of sunspot seismology, which dates back to
Thomas et al. (1982) reporting the splitting of the 5 min
oscillations. Using the Fourier–Hankel method, Braun et al.
(1987), Bogdan et al. (1993) observed absorption of p-mode
power in sunspots. Braun (1995) found strong evidence of
“mode mixing” from correlation of phase shifts of the incident
and scattered p-modes of adjacent radial orders, suggesting
the need for using measurements that capture the scattering
matrix. Conversion of p-modes to magnetoacoustic modes in a
vertical flux tube was proposed in Spruit (1991). Similar efforts
to explain the absorption of p-mode power continued in a
series of notable studies that include but are not limited to

Spruit & Bogdan (1992), Cally & Bogdan (1993), Cally et al.
(1994), Cally & Bogdan (1997), and Crouch & Cally (2005),
almost all of which use uniform and straight magnetic fields in
modeling sunspots. Cally (2005) adopted a perturbative
approach while Cally (2006) used a ray-theoretic approach to
study conversion of acoustic modes to fast and slow
magnetosonic modes when entering regions of strong uniform
magnetic fields. Building on the ray-theoretic approach,
Schunker & Cally (2006) studied the dependence of mode
conversion on the “attack angles” at which the acoustic waves
impinge on magnetic fields. The reader is referred to
Khomenko & Collados (2015) for a comprehensive review
on similar studies. Another area of numerical effort includes the
simulation of linearized wave propagation through a magne-
tized background (see Cameron et al. 2008; Hanasoge 2008;
Cameron et al. 2011; Schunker et al. 2013).
Traditional methods in local helioseismology such as

time–distance helioseismology (Duvall et al. 1993), helio-
seismic holography (Lindsey & Braun 1997), and ring
diagram analysis (Hill 1988) have been implemented in
inferring flow and sound speed in and around sunspots and
active regions. This is an extensive area of research with a
controversial history, and the reader is referred to the
comprehensive study by Gizon et al. (2009), Moradi et al.
(2010), and references therein. In particular, Gizon et al.
(2009) studied subsurface flow and sound-speed perturba-
tions around the NOAA active region 9787 using several
methods in local helioseismology, and reported that the
results could not be reconciled. Such disparity in results is
attributed to the extreme sensitivity of each method to the
complicated data analysis that precedes the inversion. Major
breakthroughs in the area of numerically simulating a sunspot
using realistic partial ionization and radiative transfer have
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Similarly, two-dimensional Slepian functions are bandlimited Fourier expansions
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A brief history of Slepian functions — 2 5/69

Similarly, two-dimensional Slepian functions are bandlimited Fourier expansions

g(x) =
1

(2π)2

∫
K
G(k) eik·x dk, |K| <∞, (4)

that concentrate into a finite spatial regionR ∈ R2 of area A by maximizing

λ =

∫
R
g2(x) dx∫ +∞

−∞
g2(x) dx

, 0 < λ < 1. (5)

These are also eigenfunctions of a Fredholm integral equation,∫
R

[
1

(2π)2

∫
K
eik·(x−x′) dk

]
g(x′) dx′ = λg(x). (6)



A brief history of Slepian functions — 3 6/69

On a sphere, Slepian functions are bandlimited spherical-harmonic expansions

g(r̂) =
L∑
l=0

l∑
m=−l

glmYlm(r̂), L <∞, (7)

that are concentrated within a region R ∈ Ω by optimizing the energy ratio

λ =

∫
R

g2(r̂) dΩ∫
Ω

g2(r̂) dΩ
, 0 < λ < 1. (8)

They are eigenfunctions of a Fredholm equation, with Pl a Legendre function,∫
R

[
L∑
l=0

(
2l + 1

4π

)
Pl(r̂ · r̂′)

]
g(r̂′) dΩ′ = λg(r̂).
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Ω

g2(r̂) dΩ
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They are eigenfunctions of a Fredholm equation, with Pl a Legendre function,∫
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4π

)
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]
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Some examples of Slepian functions — 3 9/69

λ
1
 = 1.000 × 10−00 λ

2
 = 1.000 × 10−00 λ

3
 = 9.997 × 10−01

λ
4
 = 9.994 × 10−01

λ
16

 = 4.857 × 10−13 λ
17

 = 3.124 × 10−16 λ
18

 = 1.748 × 10−17 λ
19

 = 2.750 × 10−21



∗A unified framework — 1 10/69

The integral-equation kernels are all spectrally bandlimited spatial delta functions

that are “reproducing kernels” for the bandlimited functions of the kinds considered:

D(t, t′) =
1

2π

∫ +W

−W

eiω (t−t′) dω, tr{D} = 2
TW

π
, (10)
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where (not just on the domain for which they were constructed, though, there, they

will be a sparse basis). Their trace is a space-bandwidth joint “Shannon” area.
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The integral-equation kernels are all spectrally bandlimited spatial delta functions

that are “reproducing kernels” for the bandlimited functions of the kinds considered:

D(t, t′) =
1

2π

∫ +W

−W

eiω (t−t′) dω, tr{D} = 2
TW

π
, (10)

D(x,x′) =
1

(2π)2

∫
K
eik·(x−x′) dk, tr{D} = K2 A

4π
, (11)

D(r̂, r̂′) =
L∑
l=0

m∑
m=−l

Ylm(r̂)Ylm(r̂
′), tr{D} = (L+ 1)2

A

4π
. (12)

Thus, the Slepian functions are bases for bandlimited geophysical processes any-

where (not just on the domain for which they were constructed, though, there, they

will be a sparse basis). Their trace is a space-bandwidth joint “Shannon” area.

Remember that the trace of an operator is the sum of all of its eigenvalues, N .



A unified framework — 2 11/69

In the spectral domain, the Slepian functions are eigenfunctions of equations that

have spacelimited spectral delta functions as kernels. On the sphere, we solve for

the spherical harmonic expansion coefficients of the functions as

L∑
l′=0

l′∑
m′=−l′

[∫
R

YlmYl′m′ dΩ

]
gl′m′ = λglm, 0 < λ < 1. (13)

We define the spatiospectral localization kernel

Dlm,l′m′ =

∫
R

YlmYl′m′ dΩ, tr{D} = (L+ 1)2
A

4π
.

Many of the eigenvalues are very, very small. Thus, D may be hard to calculate—

and even harder to invert.

And remember that the spatial region R can be completely arbitrary.
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have spacelimited spectral delta functions as kernels. On the sphere, we solve for

the spherical harmonic expansion coefficients of the functions as

L∑
l′=0

l′∑
m′=−l′

[∫
R

YlmYl′m′ dΩ

]
gl′m′ = λglm, 0 < λ < 1. (13)

We define the spatiospectral localization kernel, with eigenvalues λ, as

Dlm,l′m′ =

∫
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YlmYl′m′ dΩ, tr{D} = (L+ 1)2
A

4π
. (14)

Many of the eigenvalues are very, very small. Thus, D may be hard to calculate—

and even harder to invert.

And remember that the spatial region R can be completely arbitrary.



Eigenvalue behavior — 1 12/69
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∗A “lucky accident”: the “magic of commutation” 14/69

Diagonalization of the operator D, with elements

Dlm,l′m′ =

∫
R

YlmYl′m′ dΩ, (15)

is often hard and sometimes impossible.
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Diagonalization of the operator D, with elements

Dlm,l′m′ =

∫
R

YlmYl′m′ dΩ, (16)

is often hard and sometimes impossible.

But if R is axisymmetric, i.e. a single polar cap or a double polar cap, we

can find the Slepian functions as the solutions to a different eigenvalue problem

involving a very simple kernel with very well-behaved eigenvalues.

Θ
Θ

π−Θ



Summary of the theory (on the sphere) 16/69

Spherical harmonics Ylm form an orthonormal basis on Ω:∫
Ω

YlmYl′m′ dΩ = δll′δmm′ . (17)

The spherical harmonics Ylm are not orthogonal on R:∫
R

YlmYl′m′ dΩ = Dlm,l′m′ . (18)
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Spherical harmonics Ylm form an orthonormal basis on Ω:∫
Ω

YlmYl′m′ dΩ = δll′δmm′ . (17)

The spherical harmonics Ylm are not orthogonal on R:∫
R

YlmYl′m′ dΩ = Dlm,l′m′ . (18)

The eigenfunctions of D are called Slepian functions, g(r̂). They form a band-

limited localized basis, doubly orthogonal: on R (to λ) and also on Ω (to 1).

The Shannon number, or sum of the eigenvalues, the space-bandwidth product,

N = (L+ 1)2
A

4π
,

is the effective dimension of the space for which the bandlimited g are a basis.



Summary of the theory (on the sphere) — 2 17/69

✓□ Scalar fields

□ Vector (potential) fields

□ Tensor fields
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✓□ Vector (potential) fields

✓□ Tensor fields



Application 1 : Sparse approximation 20/69

The expansion of a bandlimited process on the sphere in either spherical harmon-

ics or in Slepian functions is equal and exact :

s(r̂) =
L∑
l=0

l∑
m=−l

slmYlm(r̂) =

(L+1)2∑
α=1

sαgα(r̂). (19)
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ics or in Slepian functions is equal and exact :

s(r̂) =
L∑
l=0

l∑
m=−l

slmYlm(r̂) =

(L+1)2∑
α=1

sαgα(r̂). (19)

But if the signal is regional in nature, an expansion into Slepian functions up until

the Shannon number N will be approximate but sparse:

s(r̂) ≈
N∑

α=1

sαgα(r̂), r̂ ∈ R. (20)

The mean squared reconstruction error in the noiseless case is determined by the

neglected eigenvalues, which are small beyond the Shannon number N .



Basis I: spherical harmonics Ylm 21/69
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Basis I: spherical harmonics Ylm 22/69
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A global basis, good for global problems.
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Spherical harmonics Ylm→ Slepian functions g 24/69

An orthogonal transform by the eigenmatrix of D introduces welcome sparsity.

rank of the Slepian functions

sp
he

ric
al

 h
ar

m
on

ic
 d

eg
re

e 
an

d 
or

de
r

1 229 457 685 913 1141 1369

1

229

457

685

913

1141

1369

rank of the Slepian functions
1 229 457 685 913 1141 1369



Basis II: Slepian functions g 25/69
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Basis II: Slepian functions g 26/69
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A local basis, good for local problems. Sparsity!



Application 2 : Sparsity from geophysics 27/69

Earthquake “focal mechanisms” look like Slepian functions.

Example: using Slepian functions to unearth the signature of the great Sumatra-

Andaman earthquake from GRACE time-variable satellite gravity data.



Application 2 : Geopotential perturbations 28/69
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Application to the analysis of GRACE data i
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Application to the analysis of GRACE data — 1 i
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Application to the analysis of GRACE data — 2 i
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Solving problems in geophysics ... 33/69
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Common problems — 1 35/69

The data collected in or limited to R are signal plus noise:

d(r) =

 s(r) + n(r) if r ∈ R,

unknown/undesired if r ∈ Ω \R.

We assume that n(r) is zero-mean and uncorrelated with the signal

⟨n(r)⟩ = 0 and ⟨n(r)s(r′)⟩ = 0,

and consider known the noise covariance:

⟨n(r)n(r′)⟩.

In other words: we’ve got noisy and incomplete data on the sphere.
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Noisy: Earth’s time-variable gravity 36/69

dGSM.2005.001.2005.031.0K20.geo

 

 

Geoid height variation [mm]
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Incomplete: Cosmic Microwave Background 37/69



Common problems — 2 38/69

Consider an unknown, noisily and incompletely observed spherical process:

s(r) =
∞∑
lm

slmYlm(r).

Linear Problem: Problem 1

Given d(r) and ⟨n(r)n(r′)⟩, estimate the signal s(r), realizing that the

estimate ŝ(r) is always bandlimited to 0 ≤ L <∞.

Quadratic Problem: Problem 2

Given d(r) and ⟨n(r)n(r′)⟩, and assuming the field behaves as

⟨slm⟩ = 0 and ⟨slms∗l′m′⟩ = Sl δll′δmm′ ,

estimate the power spectral density Sl, for 0 ≤ l <∞, as Ŝl.
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estimate ŝ(r) is always bandlimited to 0 ≤ L <∞.

Quadratic Problem: Problem 2

Given d(r) and ⟨n(r)n(r′)⟩, and assuming the field behaves as

⟨slm⟩ = 0 and ⟨slmsl′m′⟩ = Sl δll′δmm′ ,

estimate the power spectral density Sl, for 0 ≤ l <∞, as Ŝl.
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The data collected in or limited to R are signal plus noise:

The data are noisy and incomplete.

Problem 1

Find the signal that gives rise to the data.
Kill this

Problem 2

Kill this

Find the power spectral density of the signal.

Kill this
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Construct a bandlimited estimate in the spherical harmonic basis by minimizing

the misfit to the data over R. The—linear—optimal solution depends on D−1:

ŝlm =
L∑

l′m′

D−1
lm,l′m′

∫
R

d Yl′m′ dΩ.
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Problem 1 — Finding the signal 40/69

Construct a bandlimited estimate in the spherical harmonic basis by minimizing

the misfit to the data over R. The—linear—optimal solution depends on D−1:

ŝlm =
L∑

l′m′

D−1
lm,l′m′

∫
R

d Yl′m′ dΩ.

Finding D−1 is tough, so construct a truncated-Slepian basis estimate instead:

ŝ(r) =
J∑
α

ŝαgα(r).

The solution depends on the localization eigenvalue at the same rank:

ŝα = λ−1
α

∫
R

dgα dΩ.
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If we simply worked with the available data we’d be using a boxcar window:

ŜSP
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If we simply worked with the available data we’d be using a boxcar window:

ŜSP
l =

1

2l + 1

∑
m

∣∣∣∣∫
R

d(r)Ylm(r) dΩ

∣∣∣∣2 .
This estimate is biased (unless Sl = S or R = Ω), coupling over the entire band.

Its bias, variance, and thus mean-squared error depend, again, on D:

mseSPl ∼
∑
mm′

|Dlm,lm′|2 .

The multitaper estimate uses a small L for the Slepian windows gα(r) over R,

ŜMT
l =

∑
α

λα

(
1

2l + 1

∑
m

∣∣∣∣∫
Ω

gα(r) d(r)Ylm(r) dΩ

∣∣∣∣2
)
.
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ŜWS
l =

1

2l + 1

∑
m

∣∣∣∣∫
Ω

d(r)Y ∗
lm(r) dΩ

∣∣∣∣2 − noise correction. (14)

Periodogram ... broadband bias, high variance
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d(r)Y ∗
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Periodogram ... broadband bias, high variance

ŜSP
l =

(
4π

A

)
1

2l + 1

∑
m

∣∣∣∣∫
R

d(r)Y ∗
lm(r) dΩ

∣∣∣∣2− noise correction. (15)

Single-taper ... bandlimited bias

Ŝα
l =

1

2l + 1

∑
m

∣∣∣∣∫
Ω

gα(r) d(r)Y
∗
lm(r) dΩ

∣∣∣∣2 − noise correction. (16)

Multiple-taper ... bandlimited bias, lower variance, easily implemented

ŜMT
l =

1

K

∑
α

λαŜ
α
l . (17)



The multitaper method 45/69

It returns a spectrally bandlimited (to ±L) average of the true spectral power

while being sensitive to a spatially localized patch R of data.

Spectral and spatial concentration trade off via the Shannon number, which is the

sole parameter to be chosen by the analyst:

N = (L+ 1)2
A

4π
.

This dictates the deliberate bias of the estimate. More tapers means→ bias, but

the covariance matrix of the estimates between tapers is almost diagonal.

Thus, weighted averaging of estimates made with many different tapers reduces

the estimation variance. And with eigenvalue weighting, the bias is strictly limited

to the bandwidth L, and independent of the shape of the region R.
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This dictates the deliberate bias of the estimate. More tapers→ more bias, but
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to the bandwidth L, and independent of the shape of the region R.
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∗Multitaper bias 47/69

Using the choice of the eigenvalues λ of D as weights of the multitaper spectral

estimate, the multitaper coupling matrix is

Kll′ =
2l′ + 1

(L+ 1)2

L∑
p

(2p+ 1)

 l p l′

0 0 0

2

,

which — amazingly — depends only upon the chosen bandwidth L.
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∗Multitaper variance — 1 48/69

The covariance between the multitaper estimates is relatively simple when the

spectra is moderately colored (compared to the bandwidth L of the estimator):

ΣMT
ll′ =

1

2π
(Sl +Nl)(Sl′ +Nl′)

∑
p

(2p+ 1)Γp

 l p l′

0 0 0

2

, (17)

Γp =
1

K2

L∑
ss′

L∑
uu′

(2s + 1)(2s
′
+ 1)(2u + 1)(2u

′
+ 1)

2L∑
e

(−1)
p+e

(2e + 1)Be

×
{

s e s′

u p u′

}(
s e s′

0 0 0

)(
u e u′

0 0 0

)(
s p u′

0 0 0

)(
u p s′

0 0 0

)
, (18)

with Be the boxcar power, which depends on the shape of the region of interest,

and the sums over angular degrees are limited by Wigner 3-j selection rules.

The term in curly braces is a Wigner 6-j symbol. Ugly, but computable.



∗Multitaper variance — 2 49/69
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Application 3 : Magnetic field spectra 56/69
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Summary: Linear & Quadratic Problems 57/69

• Slepian functions are both spectrally and spatially concentrated

• They form a doubly orthogonal basis on the sphere and any portion of it

• They are the ideal basis to separate signal from noise, for approximation and

linear inverse problems

• They are ideal data windows for quadratic spectral analysis

• The Slepian multitaper method yields a smoothed and thus biased estimate

of the spectrum, but it requires neither iteration nor large-scale matrix inver-

sion. Its variance is much lower than that of any other method, and the only

parameter that needs to be specified by the analyst is the Shannon number,

or the space-bandwidth product diagnostic of the spatiospectral concentration.
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d(rsr̂) =

∇V (rsr̂) +∇W (rsr̂) + n(rsr̂) if r̂ ∈ R ⊂ Ω,

unknown if r̂ ∈ Ω \R,
(19)
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d(rsr̂) =

∇V (rsr̂) +∇W (rsr̂) + n(rsr̂) if r̂ ∈ R ⊂ Ω,

unknown if r̂ ∈ Ω \R,
(19)

To obtain, from discrete satellite data collected within a confined region R at

varying altitude above the planetary surface approximated by a sphere of

radius rp, the bandlimited set of coefficients v
rp
lm ∈ v

rp
L , 0 ≤ l ≤ L,

that describe the internal field V on the planetary surface.
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The outer solid harmonics r−l−1Ylm are a basis for V , from internal sources.

We define internal and external gradient vector spherical harmonics (GVSH):
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(l + 1)(2l + 1)

[
r̂(l + 1)Ylm(r̂)−∇1Ylm(r̂)

]
, (20)

F lm(r̂) =
1√

l(2l + 1)

[
r̂ l Ylm(r̂) +∇1Ylm(r̂)

]
. (21)

Vector potentials ∇V (rr̂) are expanded into Elm and the ∇W (rr̂) into F lm.

We collect the basis functions into bandlimited sets EL and FLo .



Solution 3 — 1 62/69

The solution to the least-squares problem
A

∫
R
EL · ET

L dΩAT A

∫
R
EL ·FT

Lo
dΩ ĂT

Ă

∫
R
FLo

· ET
L dΩAT Ă

∫
R
FLo

·FT
Lo

dΩ ĂT


︸ ︷︷ ︸y


ṽ
rp
L

w̃
rq
Lo


← innies

← outies

=


A

∫
R
EL · d dΩ

Ă

∫
R
FLo · d dΩ

 .

This is K̊.

We will work in the orthogonal
eigenvector decomposition of this
symmetric positive definite matrix:

K̊G̊ = G̊Λ̊.
.



∗Relationship to “classical” Slepian functions 63/69

We obtained the full-field altitude-cognizant gradient-vector Slepian functions from

solving a misfit-minimization problem by diagonalizing the matrix K̊. The coeffi-

cients G̊ can also be obtained by solving an energy maximization problem, as for

the classical vector Slepian functions of Plattner & Simons (2014).

Indeed we have solved the variational problem

λ̊ =
g̊TK̊ g̊

g̊Tg̊
=

(̊
gTi g̊To

)
K̊
(̊
gTi g̊To

)T
g̊Ti g̊i + g̊To g̊o

(22)

=

∫
R
G̊

2

↑ dΩ∫
Ω

G̊2
i dΩ +

∫
Ω

G̊2
o dΩ

. (23)
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We solve inverse problems represented by a linear and compact operator be-

tween Hilbert spaces with a known singular-value decomposition (SVD). In prac-

tice, such an SVD is often only given for the case of a global expansion of the data

(e.g., on the whole sphere) but not for regional data distributions.
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We solve inverse problems represented by a linear and compact operator be-

tween Hilbert spaces with a known singular-value decomposition (SVD). In prac-

tice, such an SVD is often only given for the case of a global expansion of the data

(e.g., on the whole sphere) but not for regional data distributions.

Slepian functions (associated to an arbitrarily prescribed region and the given

compact operator) can be determined and applied to construct a regularization

for the ill-posed regional inverse problem. We construct the Slepian basis by

solving an algebraic eigenvalue problem.

The obtained Slepian functions can be used to derive an SVD for the combination

of the regionalizing projection and the compact operator.

Standard regularization techniques relying on a known SVD become applicable

also to those inverse problems where the data are regionally given only.
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