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Where does it fit?

I.
II.
III.
IV. Inverse problems / optimization

Recovery principles from indirect data
Dimensionality reduction
Convex and semidefinite relaxation, regularization

Va.
Vb.

Why is CMG++ timely?



Interferometric waveform inversion
w/ Vincent Jugnon

Model-robust imaging, linearized reflection regime

Problem: find reflectors m(x) in
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,

when c0(x) is poorly known. Data: u(r , t; s) with good angular
coverage.

Typical approach: optimize over c0(x)
... lacks convexity



Interferometric waveform inversion

Goal: robust imaging without inverting for c0(x)

Idea: use correlograms in an optimization framework

Traveltime Waveform

Absolute τr dr (ω)

Relative τr1 − τr2 dr1(ω)dr2(ω)



Interferometric waveform inversion

Rationale: robustness to errors in c0(x), e.g., shift

c0 = 1 (exact)



Interferometric waveform inversion

Rationale: robustness to errors in c0(x), e.g., shift

c0 = .9 (10% error)



Interferometric waveform inversion

Linearized inversion for m(x):

Absolute times:

min
m

∑
i

|di − (Fm)i |2 i = (r , s, ω)

⇒ m = F−1d (inversion) or m = F ∗d (migration).

Relative times:

min
m

∑
i ,j

|didj − (Fm)i (Fm)j |2, i = (r , s, ω), j = (r ′, s ′, ω′)



Linear vs. interferometric inversion

Linear data model, uniform medium
Wide-aperture array
Noiseless, but fixed regularization level
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Issues with interferometric inversion

min
m

∑
i ,j

|didj − (Fm)i (Fm)j |2

Problems:

1 Quartic objective with spurious local minima

2 Too many products: N2 vs. N.



Convexification by relaxation

Lifting:

New unknown: M = m ⊗m, i.e., M(x1, x2) = m(x1)m(x2).

Constraint linear in M:

(Fm)i (Fm)j = L(M)ij

Quadratic objective, convex:

min
M

∑
i ,j

|didj − L(M)ij |2

M is rank 1; get m as leading eigenvector of M.



Convexification by relaxation

Semidefinite relaxation:

Underdetermined system: keep a small subset of didj .

Constraint search to M � 0.

Enforce low-rank solution: NP-hard problem

min
M�0

∑
i ,j

|didj − L(M)ij |2 + λ rank(M)

Trace relaxation: convex problem

min
M�0

∑
i ,j

|didj − L(M)ij |2 + λ trace(M)



Interferometric waveform inversion

How many products didj are needed for well-posedness?

Define a graph G = (V ,E ) where

Each data point di = dr ,s,ω

is a vertex i in V ,

Each active didj

is an edge (i , j) ∈ E .

ω(r , s ,    )
11 1

(r , s ,    )ω
2 22

Matrix of magnitudes: Dij = |di ||dj | if (i , j) ∈ E , zero otherwise.
(Weighted adjacency matrix.)



Interferometric waveform inversion

Necessary: G is connected, and all its vertices have loops.
Sufficient: in addition, G should be very well connected.

ω(r , s ,    )
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Definition

G is an expander graph if its
adjacency matrix A(G ) has a
large spectral gap:

λ1 − λ2

is a non-negligible fraction of
λ1 − λN .



Interferometric waveform inversion

Let λ1 > λ2 > . . . be the eigenvalues of D.

Theorem

Consider noiseless data didj = L(M0)ij , (i , j) ∈ E, and
M0 = m0 ⊗m0. Assume the forward map F is invertible. Then any
method that imposes didj = L(M)ij with M � 0 returns a model
m obeying

‖m −m0‖2 ≤ C
λ1 − µ
λ1 − λ2

‖m0‖2, µ =
λ2

1 + λ2
2 + . . .

λ1 + λ2 + . . .

Eigenvector method (Amit Singer, 2012): m = m0.

⇒ A good expansion property of G is sufficient for well-posedness
of linearized interferometric inversion.


