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Where does it fit?
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IV. Inverse problems / optimization
Recovery principles from indirect data
Dimensionality reduction
Convex and semidefinite relaxation, regularization
Va.
Vb.

Why is CMG++ timely?



Interferometric waveform inversion
. w/ Vincent Jugnon
v
Model-robust imaging, linearized reflection regime

Problem: find reflectors m(x) in
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when cy(x) is poorly known. Data: u(r, t;s) with good angular
coverage.

e Typical approach: optimize over ¢y(x)
... lacks convexity



Interferometric waveform inversion

@ Goal: robust imaging without inverting for co(x)

@ ldea: use correlograms in an optimization framework
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Interferometric waveform inversion

Rationale: robustness to errors in ¢p(x), e.g., shift




Interferometric waveform inversion

Rationale: robustness to errors in ¢p(x), e.g., shift

=9 (10% error)



Interferometric waveform inversion

Linearized inversion for m(x):

@ Absolute times:

min» " |d; — (Fm);[>  i=(r,5w)

= m = F~1d (inversion) or m = F*d (migration).

@ Relative times:

mlnz \did; — (Fm);(Fm);|?, i=(r,s,w), j=(r s, o)



Linear vs. interferometric inversion

@ Linear data model, uniform medium
o Wide-aperture array
@ Noiseless, but fixed regularization level
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Linear vs. interferometric inversion
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Linear vs. interferometric inversion
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Linear vs. interferometric inversion
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Linear vs. interferometric inversion
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Linear vs. interferometric inversion




Issues with interferometric inversion

min 3 [d1d; — (Fm);(Fm);

ij
Problems:
@ Quartic objective with spurious local minima

@ Too many products: N2 vs. N.



Convexification by relaxation

Lifting:

e New unknown: M = m @ m, i.e., M(x1,%2) = m(x1)m(x2).

@ Constraint linear in M:

(Fm)i(Fm); = L(M);
@ Quadratic objective, convex:

min Z |didj — L(M);|?
1)

@ M is rank 1; get m as leading eigenvector of M.



Convexification by relaxation

Semidefinite relaxation:

@ Underdetermined system: keep a small subset of d,-Fj.
o Constraint search to M > 0.
@ Enforce low-rank solution: NP-hard problem

man\dd L(M);i|?> + Arank(M)

M>0
ij

@ Trace relaxation: convex problem

m|nZ|dd M);i|? + Atrace(M)



Interferometric waveform inversion

How many products d,-gj are needed for well-posedness?

(1), s, @)
Define a graph G = (V, E) where
e Each data point d; = d, s,
is a vertex i in V, (& 8y @)
@ Each active d,-gj
is an edge (/,j) € E.

Matrix of magnitudes: Dj; = |d;||d;| if (i,)) € E, zero otherwise.
(Weighted adjacency matrix.)



Interferometric waveform inversion

Necessary: G is connected, and all its vertices have loops.
Sufficient: in addition, G should be very well connected.
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G is an expander graph if its
adjacency matrix A(G) has a
large spectral gap:

(1) 5, )

A1 — A2

is a non-negligible fraction of
A1 — Ay




Interferometric waveform inversion

Let Ay > A2 > ... be the eigenvalues of D.

Theorem

Consider noiseless data d;d; = L(Mo)j;, (i,j) € E, and

My = my ® mg. Assume the forward map F is invertible. Then any
method that imposes d;d; = L(M);; with M = 0 returns a model
m obeying

A —p DG ==
Hm mOH - H A+ A+ ...
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Eigenvector method (Amit Singer, 2012): m = my.

= A good expansion property of G is sufficient for well-posedness
of linearized interferometric inversion.



