Advances in Novel Numerical Methodologies for the Geosciences:

An Avenue for Developing Collaboration Environments Towards Scientific Discovery

Natasha Flyer Institute of Mathematics Applied to Geoscience National Center for Atmospheric Research Boulder, CO

Why We Are Here?

To explore venues on developing and funding a national framework for collaboration in mathematics and geosciences research

General questions to be addressed:

- What form would this national framework take?
- How would it transform the frontier of math-geoscience collaboration?
- How does our individual research interests fit into this national framework?
- Given existing collaborative solicitations, what avenues are we to pursue?
- As individuals, how much effort and time are we willing to contribute to making this initiative happen?

The Predictive Model: Fostering Synergistic Activity between Disciplines

Funding allowed scientists to cross disciplinary barriers, stimulating novel collaboration modes

The Predictive Model: Fostering Synergistic Activity between Disciplines

Funding allowed scientists to cross disciplinary barriers, stimulating novel collaboration modes

Focus of following discussion:

Describe a novel numerical method and how national funding for that has lead to math-geo collaborations that otherwise might not have taken place

RBF: An example of novel numerics stimulating new paths of collaboration

Scattered data within a 2-D region

Radial basis functions (RBF) here, 'rotated Gaussians' Linear combination of the basis functions that fits all the data

Many types of RBFs are available

Piecewise smooth (Algebraic accuracy)

Infinitely smooth (Spectral accuracy)

 $r = \sqrt{(x - x_k)^2 + (y - y_k)^2}$, (x_k, y_k) is where the RBF is centered

First round of CMG funding got us to a stage of RBF development to interact with the Geosciences

Ex. Solid Earth

Ra = 7000

Ra = 1,000,000

Benchmark at Ra = 7000

Method	No of nodes	Nu outer	Nu inner	< V _{RMS} >	< T >
Finite volume	663,552	3.5983	3.5984	31.0226	0.21594
Finite elements	393,216	3.6254	3.6016	31.09	0.2176
(CitcomS)					
Finite differences	12,582,912	3.6083		31.0741	0.21639
(Japan Earth Simulator)					
Spherical harmonics -FD	552,960	3.6086		31.0765	0.21582
Spherical harmonics -FD	Extrapolated	3.6096		31.0821	0.21577
RBF-Chebyshev	36,800	3.6096	3.6096	31.0820	0.21578

Second round of CMG funding addressed scalability expanding collaborations to government agencies, industry, and academia

RBF-generated Finite Differences N = 25K, n = 31, 99.998% Empty, 5th-6th Order **Stencils (RBF-FD)**

RBF-FD for the Atmospheric Sciences: Important Benchmarks

RBF-FD: Extensions into new collaborative environments

How and by what means are we to build new and sustain such collaborative and interdisciplinary connections ?