Downscaling, Data Fusion, and Data Assimilation in Hydro-meteorology:

A variational Framework based on Regularized Inverse Estimation in the Derivative Space

E. Foufoula-Georgiou and A.M. Ebtehaj

University of Minnesota

Princeton University September, 2012

Precipitation from space: an important component of ES modeling

GPM: a multi-satellite mission extending beyond the tropics

Diagram of Swath Coverage by GPM Sensors.

DPR:

125 and 245 Km swaths Ka-band: 35.5 GHz Ku-band: 13.6 GHz

GMI:

885 Km swath 13 channels 10 -183 GHz

From TRMM to GPM: New opportunities & new challenges in retrieval, fusion, and downscaling of precipitation

Multi-sensor Data Fusion Problem

Optimal merging of multi-sensor precipitation observations at different scales and with different observational errors

The challenge:

- Reproduce the non-Gaussian statistics of precipitation over multiple scales including the clustered structure and extreme intensities.
- Achieve efficient multi-scale optimal estimation for practical implementation over large space-time domains

Gauss-Markovian methods in real space

- A multiscale Kalman-Filtering methodology [SRE: scale-recursive estimation] by Chou et. al (1994) has been used for fusion of rainfall data (e.g. Gorenburg, McLaughlin, and Entekhabi 2001; Tustison, Harris and Foufoula-Georgiou 2001; Gupta, Venugopal and Foufoula-Georgiou, 2003).
- Assumptions: Linear Multiscale Gauss-Markovian representation of rainfall data on a quad-tree like structure in real spatial (or log-transformed space).

• Markovian structure assumption of the tree makes the linear least squares estimation optimal:

$$\hat{\mathbf{x}} = \boldsymbol{\Sigma}_{\mathbf{x}} \mathbf{c}^T \left[\mathbf{c} \boldsymbol{\Sigma}_{\mathbf{x}} \mathbf{c}^T + \mathbf{R} \right]^{-1} \mathbf{y} \qquad \mathbf{w} \sim N(\mathbf{0}, \mathbf{R})$$

Spatial Structure of Precipitation

10

Dim: [550 650]

Rainfall is very Sparse in the Gradient Domain

□ Storm of 1998/11/13 (02:00 UTC) over TRMM-GV site in Houston, TX.

Probability Models

Generalized Gaussian (GG)

$$p_X(x) \propto \exp\left(-\left|\frac{x}{s}\right|^{\alpha}\right)$$

a=2 Gaussian, a=1 Laplace

Gaussian Scale Mixture (GSM)

 $x \propto \sqrt{z} u$

z: scalar multiplier u: Gaussian random variable

$$p_X(x) = \int_0^\infty p_{x|z}(x \mid z) p_z(z) dz$$
$$= \int_0^\infty \frac{1}{\sqrt{2\pi z \sigma_u^2}} \exp\left(\frac{-x^2}{2z\sigma_u}\right) p_z(z) dz$$

(Andrew, 1973; West, 1987)

Data Fusion: Random Cascade on Wavelet tree

• Because of the Decorrelation effect of the wavelet transform this estimation can be performed locally (cutting a local neighborhood) of the wavelet tree

 Local estimation and fusion of neighborhoods of wavelet coefficients with a prior GSM probability distribution

$$d(s) = \sqrt{z} \odot x(s)$$

$$\Sigma_{d(s)} = E[z]\Sigma_{x(s)} \qquad z \sim LN(\mu_z, \sigma_z)$$

$$x(s): \text{ MAR process on tree, controls the covariance and parent-to-child dynamics}$$

Implementation for Multi-senso

SRE-Fusion of the NEXRAD and TRMM-PR snapshot SNR=5.5 dB (Overly smooth representation!)

Size:[224 784]; Range:[0 49]

Size:[224 784]; Range:[0 50]

A Transect which shows how GSM-fusion can better incorporate the detail structure of rain-cells and TRMM-PR data in the fusion process.

GSM-Fusion with similar magnitude of measurement error, SNR=5.5 dB.

(More Detailed Structure of local rain cells)

Ebtehaj, M., and E. Foufoula-Georgiou, Statistics of Precipitation Images and Cascade of Gaussian Scale Mixtures in the Wavelet Domain, J. Geophys. Res., 2011.

Ebtehaj, M., and E.Foufoula-Georgiou, Adaptive Fusion of Multi-sensor Precipitation using Gaussian Scale Mixture in the Wavelet Domain , *J. Geophys.Res.*, 2011.

 <u>Sparse Inverse Estimation</u>: Define the downscaling problem as an inverse ill-posed problem and solve it via non-linear constrained optimization

Sparse Inverse Estimator

Testing of the SParse Downscaling (SPaD) Methodology

Ebtehaj, A.M., E.Foufoula-Georgiou and G. Lerman (2011), Sparse Regularization for Precipitation Downscaling, J. Geophys. Res., 117, D08107, doi:10.1029/2011JD017057, 2012

A Unified Framework: Discrete Linear Inverse Problems

$\begin{array}{ll} \underline{\text{Downscaling}} & \underline{\text{Fusion and assimilation}} \\ \mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{v} \\ \mathbf{v} \sim \mathcal{N}(0, \mathbf{R}) & \mathbf{y}^{i} = \mathbf{H}^{i}\mathbf{x} + \mathbf{v} \\ \mathbf{x}^{b} = \mathbf{x} + \mathbf{w} \\ \mathbf{w} \sim \mathcal{N}(0, \mathbf{B}) \end{array}$

Ill-posed problems:

- 1. Existence
- 2. Uniqueness
- 3. Stability of the solution (inverted noise)

Downscaling as an Inverse Problem

2.5 2 1.5 1.5 0.5 0.5 Frequentist Approach:

$$\hat{\mathbf{x}}_{ML} = \underset{\mathbf{x}}{\operatorname{argmax}} p(\mathbf{y} \mid \mathbf{x}) \qquad p(\mathbf{y} \mid \mathbf{x}) \approx \exp\left(-\frac{1}{2}(\mathbf{y} - \mathbf{H}\mathbf{x})^T \mathbf{R}^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x})\right)$$
$$\hat{\mathbf{x}}_{ML} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ \frac{1}{2}(\mathbf{y} - \mathbf{H}\mathbf{x})^T \mathbf{R}^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x}) \right\} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ \frac{1}{2} ||\mathbf{y} - \mathbf{H}\mathbf{x}||_{\mathbf{R}^{-1}}^2 \right\}$$

Bayesian Approach:

$$\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ -\log\left(\frac{p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}\right) \right\} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ -\log p(\mathbf{y} \mid \mathbf{x}) - \log p(\mathbf{x}) \right\}$$

Statistics of rainfall under the Laplacian transform

 $\log p(\mathbf{x}) \propto \left\| \mathbf{L} \mathbf{x} \right\|_{1}$

DS- Examples

High and low-res. counterparts

Downscaled

Metric	Observations		Tikhonov		Huber	
	4X4 km	8x8 km	4X4 km	8x8 km	4X4 km	8x8 km
RMSE	0.19	0.29	0.15	0.20	0.14	0.19
MAE	0.15	0.25	0.13	0.18	0.11	0.17
SSIM	0.71	0.56	0.78	0.66	0.80	0.66
PSNR	23.8	19.6	26.5	23.1	27.0	24.0

Dim: [114,150] Range: [0,43]

Dim: [57,75] Range: [0,40]

Dim: [456,600] Range: [0,44]

Dim: [456,600] Range: [0,41]

Dim: [456,600] Range: [0,45]

19

Downscaling: Example Results (zooming)

Huber

4x4 to 1x1

8x8 to 1x1

Observe the suppressed range of the Tikhonov

Data Fusion

Weighted Least Squares:

$$\mathbf{y}^{i} = \mathbf{H}^{i}\mathbf{x} + \mathbf{v},$$
$$\mathbf{y}^{i} \in \mathbb{R}^{n_{i}}, i = 1, \dots, N$$

Augmentation:

$$\begin{bmatrix} \mathbf{y}^{1} \\ \vdots \\ \mathbf{y}^{N} \end{bmatrix} = \begin{bmatrix} \mathbf{H}^{1} \\ \vdots \\ \mathbf{H}^{N} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{v}^{1} \\ \vdots \\ \mathbf{v}^{N} \end{bmatrix} \Rightarrow \underline{\mathbf{y}} = \underline{\mathbf{H}}\mathbf{x} + \underline{\mathbf{v}} \quad \underline{\mathbf{R}} = \mathbb{E}\begin{bmatrix} \underline{\mathbf{v}}\underline{\mathbf{v}}^{T} \end{bmatrix} = \begin{bmatrix} \mathbf{R}^{1} & 0 \\ 0 & \mathbf{R}^{N} \end{bmatrix}.$$
$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \left\{ \frac{1}{2} \Big| \Big| \underline{\mathbf{y}} - \underline{\mathbf{H}}\mathbf{x} \Big| \Big|_{\underline{\mathbf{R}}^{-1}}^{2} \right\} \qquad \text{Unstable solution} \qquad \left(\underline{\mathbf{H}}^{T} \underline{\mathbf{R}}^{-1} \underline{\mathbf{H}} \right) \hat{\mathbf{x}} = \underline{\mathbf{H}}^{T} \underline{\mathbf{R}}^{-1} \underline{\mathbf{y}}$$
$$\frac{\operatorname{Regularization:}}{\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \left\{ \frac{1}{2} \Big| \Big| \underline{\mathbf{y}} - \underline{\mathbf{H}}\mathbf{x} \Big| \Big|_{\underline{\mathbf{R}}^{-1}}^{2} + \lambda \psi_{\mathbf{L}}(\mathbf{x}) \right\} \qquad \qquad \psi_{\mathbf{L}}(\mathbf{x}) = \begin{cases} \| \mathbf{L}\mathbf{x} \|_{2} \to \operatorname{Tikhonov} (\mathbf{L}_{2}\operatorname{-norm}) \\ \| \mathbf{L}\mathbf{x} \|_{1} \to \mathbf{L}_{1}\operatorname{-norm} \\ \| \mathbf{L}\mathbf{x} \|_{Hub} \to \operatorname{Huber-norm} \end{cases}$$

Data Fusion - Examples

Weighted Least Squares:

Classic 3D-VAR:

$$\mathcal{J}_{3D}(\mathbf{x}_{k}) = \frac{1}{2} \left\| \mathbf{x}_{k}^{b} - \mathbf{x}_{k} \right\|_{\mathbf{B}^{-1}}^{2} + \frac{1}{2} \left\| \mathbf{y}_{k} - \mathbf{H} \mathbf{x}_{k} \right\|_{\mathbf{R}^{-1}}^{2}.$$
$$\mathbf{x}_{k}^{a} = \operatorname{argmin}_{\mathbf{x}_{k}} \left\{ \mathcal{J}_{3D}(\mathbf{x}_{k}) \right\} \qquad \mathbf{x}_{k}^{a} = \left(\mathbf{B}^{-1} + \mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H} \right)^{-1} \left(\mathbf{B}^{-1} \mathbf{x}_{k}^{b} + \mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{y}_{k} \right)$$

Regularized DA:

$$\mathbf{x}_{k}^{a} = \underset{\mathbf{x}_{k}}{\operatorname{argmin}} \left\{ \mathcal{J}_{3D}(\mathbf{x}_{k}) + \lambda \psi_{L}(\mathbf{x}_{k}) \right\} \qquad \psi_{L}(\mathbf{x}) = \begin{cases} \|\mathbf{L}\mathbf{x}\|_{2} \to \operatorname{Tikhonov}(L_{2}\operatorname{-norm}) \\ \|\mathbf{L}\mathbf{x}\|_{1} \to L_{1}\operatorname{-norm} \\ \|\mathbf{L}\mathbf{x}\|_{\operatorname{Hub}} \to \operatorname{Huber-norm} \end{cases}$$

Weighted Least Squares:

$$\frac{3D-VAR:}{\mathcal{J}_{3D}}(\mathbf{x}_{k}) = \frac{1}{2} \|\mathbf{x}_{k}^{b} - \mathbf{x}_{k}\|_{\mathbf{B}^{-1}}^{2} + \frac{1}{2} \|\mathbf{y}_{k} - \mathbf{H}\mathbf{x}_{k}\|_{\mathbf{R}^{-1}}^{2}.$$

$$\mathbf{x}_{k}^{a} = \operatorname*{argmin}_{\mathbf{x}_{k}} \{\mathcal{J}_{3D}(\mathbf{x}_{k})\} \qquad \mathbf{x}_{k}^{a} = (\mathbf{B}^{-1} + \mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{H})^{-1} (\mathbf{B}^{-1}\mathbf{x}_{k}^{b} + \mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{y}_{k})$$

$$\frac{4D-VAR:}{\mathcal{J}_{4D}}(\mathbf{x}_{k}) = \frac{1}{2} \|\mathbf{x}_{k}^{b} - \mathbf{x}_{k}\|_{\mathbf{B}^{-1}}^{2} + \frac{1}{2}\sum_{i=k}^{K+T} (\|\mathbf{y}_{i} - \mathbf{H}\mathbf{M}_{k,i}\mathbf{x}_{k}\|_{\mathbf{R}_{i}^{-1}}^{2})$$

Regularized DA:

Frequentist Approach (3D-VAR): $\hat{\mathbf{x}}_{ML} = \underset{\mathbf{x}}{\operatorname{argmax}} p(\underline{\mathbf{y}} | \mathbf{x}_k)$ Maximum Likelihood (ML) $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{v}$ $\mathbf{v} \sim \mathcal{N}(0, \mathbf{R})$ $\mathbf{x}_k^b = \mathbf{x}_k + \mathbf{w}$ $\mathbf{w} \sim \mathcal{N}(0, \mathbf{R})$ $\underline{\mathbf{y}} = \underline{\mathbf{H}}\mathbf{x}_k + \underline{\mathbf{v}}$, where, $\underline{\mathbf{y}} = \begin{bmatrix} \left(\mathbf{x}_k^b\right)^T, \mathbf{y}_k^T \end{bmatrix}^T$, $\underline{\mathbf{H}} = \begin{bmatrix} \mathbf{I}, \mathbf{H}^T \end{bmatrix}^T$, and $\underline{\mathbf{v}} \sim \mathcal{N}(0, \mathbf{R})$ $\underline{\mathbf{R}} = \begin{bmatrix} \mathbf{B} & 0\\ 0 & \mathbf{R} \end{bmatrix}$ Knowing that the log-likelihood is:

$$-\log p(\underline{\mathbf{y}} | \mathbf{x}_{k}) \propto \frac{1}{2} (\underline{\mathbf{y}} - \underline{\mathbf{H}} \mathbf{x}_{k})^{T} \underline{\mathbf{R}}^{-1} (\underline{\mathbf{y}} - \underline{\mathbf{H}} \mathbf{x}_{k})$$

$$\mathbf{x}_{\mathbf{ML}} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ \frac{1}{2} \left\| \mathbf{x}_{k}^{b} - \mathbf{x}_{k} \right\|_{\mathbf{B}^{-1}}^{2} + \frac{1}{2} \left\| \mathbf{y}_{k} - \mathbf{H}\mathbf{x}_{k} \right\|_{\mathbf{R}^{-1}}^{2} \right\}$$

25

Bayesian Approach (3D-VAR): $\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x}}{\operatorname{argmax}} p(\mathbf{x} | \mathbf{y})$ $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{v}$ $\mathbf{v} \sim \mathcal{N}(0, \mathbf{R})$ $\mathbf{x}_{k} = \mathbf{x}_{k}^{b} + \mathbf{W}$ $\mathbf{w} \sim \mathcal{N}(0, \mathbf{B})$ $p(\mathbf{x}_{k}) \sim \mathcal{N}(\mathbf{x}_{k}^{b}, \mathbf{B})$

$$\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ -\log\left(\frac{p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}\right) \right\}$$
$$= \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ -\log p(\mathbf{y} \mid \mathbf{x}) - \log p(\mathbf{x}) \right\}$$

$$\hat{\mathbf{x}}_{\text{MAP}} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ \frac{1}{2} \left\| \mathbf{x}_{k}^{b} - \mathbf{x}_{k} \right\|_{\mathbf{B}^{-1}}^{2} + \frac{1}{2} \left\| \mathbf{y}_{k} - \mathbf{H}\mathbf{x}_{k} \right\|_{\mathbf{R}^{-1}}^{2} \right\}$$

Does not go beyond WLS estimator!

Bayesian Approach (Regularized 3D-VAR):

$$p(\mathbf{x}_{k}) \propto \lambda \boldsymbol{\psi}_{\mathbf{L}}(\mathbf{x}_{k})$$
$$\mathbf{x}_{k}^{a} = \operatorname*{argmin}_{\mathbf{x}_{k}} \left\{ \mathcal{J}_{3D}(\mathbf{x}_{k}) + \lambda \boldsymbol{\psi}_{\mathbf{L}}(\mathbf{x}_{k}) \right\}$$

The Regularized 3D-VAR might be interpreted as a MAP estimator which also accounts for an independent prior $p(\mathbf{x}_k) \propto \lambda \psi_{\mathrm{L}}(\mathbf{x}_k)$

MAP estimator in the derivative space or in general in a transform domain!

observa

classic

On the is the o

a Gaus

determi Therefo

Gaussia

In conc we folle classic distribu

5.3 I

The pro

27

LaTeX Source

using Bay that the

Regularized Data Assimilation: Example 1-D Heat equation

- >> Estimation of the initial condition from diffused and noisy observations: an ill-posed deconvolution problem
- >> Space-time representation of the 1-D scalar quantity x(s,t):

$$\frac{\partial x(s,t)}{\partial t} = \gamma \nabla^2 x(s,t)$$
$$x(s,0) = x_0(s)$$

>> Solution:

$$x(s,t) = \int K(s-r,t) x_0(r) dr,$$

where $K(s,t) = (4\pi t)^{-m/2} \exp\left(\frac{-|s|^2}{4t}\right)$

Example: 1-D Heat equation

Ebtehaj, A.M., and E.Foufoula-Georgiou, Variational Downscaling, Fusion, and Assimilation of Hydrometeorological 30 states via Regularized Estimation, reprint, 2012.

Fresh perspectives to old problems

- 1. Desire to preserve spatial coherency, abrupt gradients, and extremes (geometrically structured fields and non-Gaussian statistics)
- 2. Computationally efficient optimal estimation for large-scale applications

EXPLORE:

- 1. Sparsity in a transformed domain (gradient or wavelet domain)
- 2. Regularized Inverse Estimation (L2, L1, Huber norms of Lx)
- 3. Conditionally Gaussian form (GSM) of PDF: exploit linear estimation theory in an adaptive way and in locally defined operations