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Constitutive Relations

I Given a quasi-static R3-valued magnetization M,

I the magnetic-flux density B and the magnetic field H satisfy

B = µ0(H + M). (1)

I Maxwell’s equations give ∇×H = 0 and ∇ · B = 0.

I Hence H = −∇φ where φ is the magnetic scalar potential,
and taking divergence in (1)

∆φ = ∇ ·M (2)



Potentials and Magnetizations

I which can be recast in the form

φ(r) =
1

4π

∫∫∫
M(r′) · (r − r′)

|r − r′|3
dr′, r /∈ supp M. (3)

I SCA: Assume support of M is a distribution of the form

M(x, z) = m(x)δ0(z) =: (mT (x),m3(x))δ0(z),

where mT = (m1,m2) and m1,m2,m3 ∈ Lp(R2). Then

φ(x, z) =
1

4π

∫∫ (
mT (x′) · (x− x′)

(|x− x′|2 + z2)3/2
+

m3(x′)z

(|x− x′|2 + z2)3/2

)
dx′,

for all (x, z) such that either z 6= 0 or x /∈ supp. m.



Thin plate potentials as convolutions

Then

φ(x, z) =
1

2
(Hz ∗mT (x) + Pz ∗m3(x))

=
1

2
P|z| ∗

(
R1(m1) + R2(m2) +

z

|z |
m3

)
(x),

where

Pz(x) :=
1

2π

z

(|x|2 + z2)3/2
, Hz(x) :=

1

2π

x

(|x|2 + z2)3/2

and R1 and R2 are Riesz transforms.



Riesz transforms

I For f ∈ Lp(R2), p ∈ (1,∞), the Riesz transforms of f ,
denoted by R1(f ) and R2(f ), are defined by

Rj(f )(x) := lim
ε→0

1

2π

∫∫
R2\B(x,ε)

f (x′)
(xj − x ′j )

|x− x′|3
dx′. (4)

I The limit (4) exists a.e. and Rj continuously maps Lp(R2)
into itself.

I In the Fourier domain R̂j f (κ) = −i
κj
|κ| f̂ (κ).



Silent sources

I A magnetization m is silent from above (resp. below) if it is
equivalent from above (resp. below) to the null
magnetization. It is silent if it is silent from above and below.

I Since the Poisson transform is injective, the magnetization m
is silent from above if and only if R1(m1) + R2(m2) + m3 = 0
and silent from below if and only if
R1(m1) + R2(m2)−m3 = 0.

I Hence, m is silent if and only if R1(m1) + R2(m2) = 0 and
m3 = 0, i.e., if and only if m3 = 0 and mT is divergence free.



The Hardy-Hodge decomposition
Let

H+ := {(R1(f ),R2(f ), f ) : f ∈ Lp} and H− := {(−R1(f ),−R2(f ), f ) : f ∈ Lp}.

Theorem
For p > 1, we have the following direct sum:(

Lp(R2)
)3

= H+ ⊕ H− ⊕ S.

The sum is orthogonal sum when p = 2.
Specifically, m = (m1,m2,m3) = PH+(m) + PH−(m) + PS(m),
where

PH+(m) =
(

R1(m+),R2(m+),m+
)
, 2m+ := −Σ2

j=1Rj(mj) + m3

PH−(m) =
(
−R1(m−),−R2(m−),m−

)
, 2m− := Σ2

j=1Rj(mj) + m3

PS(m) =
(
−R2(d),R1(d), 0

)
, d := R2(m1)− R1(m2).



Equivalence via Hardy-Hodge decomposition

Theorem
Let m ∈

(
Lp(R2)

)3
.

I The magnetization m is silent from above (resp. below) if and
only if PH−(m) = 0 (resp. PH+(m) = 0).

I The magnetization m is silent from above and below if and
only if it belongs to S; that is, if and only if mT is
divergence-free and m3 = 0.

I If suppm 6= R2, then m is silent from above if and only if it is
silent from below.



Unidirectional Magnetizations

I A magnetization m is unidirectional if m = Qu for some fixed
u ∈ R3 and some Q ∈ Lp(R2).

I Unidirectional magnetizations occur naturally for materials
formed in a uniform external magnetic field.



Unidirectional Magnetizations

Theorem

I A unidirectional magnetization m ∈
(
Lp(R2)

)3
is determined

uniquely by its direction and the field it generates from above
(or below). In particular, m is silent from above (or below) if,
and only if m = 0.

I For u = (u1, u2, u3) ∈ R3 with u3 6= 0, any magnetization in(
Lp(R2)

)3
is equivalent from above to a unidirectional

magnetization of the form Q(x)u.

I A compactly supported unidirectional magnetization is
equivalent from above (or below) to no other compactly
supported unidirectional magnetization.



Compactly supported bidirectional silent sources

Theorem
Suppose m(x) = Q(x)u + R(x)v where u = (u1, u2, u3) and
v = (v1, v2, v3) are nonzero vectors in R3 while Q, R are
distributions with compact support.

1. If u3 or v3 is nonzero, then m is silent iff m = 0.

2. If u3 = v3 = 0, then m is silent iff
mT (x) = Q(x)(u1, u2) + R(x)(v1, v2) is divergence free.
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Summary: Generating good point sets

I Given: a d-rectifiable set A with Hd(A) > 0 that is contained
in a d-regular set and a positive and continuous density ρ(x)
on A.

I To distribute points on A according to ρ, choose s > d and

w(x , y) := (ρ(x)ρ(y))−s/2d ,

I Compute configurations that (nearly) minimizes the weighted
s-energy:

Ew
s ({x1, x2, ..., xN}) :=

N∑
i=1

N∑
j=1
j 6=i

w(xi , xj)

|xi − xj |s

I Any sequence of such configurations will have limiting
distribution ρ and is quasi-uniform.



Summary: Generating good point sets

I Given: a d-rectifiable set A with Hd(A) > 0 that is contained
in a d-regular set and a positive and continuous density ρ(x)
on A.

I To distribute points on A according to ρ, choose s > d and

w(x , y) := (ρ(x)ρ(y))−s/2d ,

I Compute configurations that (nearly) minimizes the weighted
s-energy:

Ew
s (ωN) :=

N∑
i=1

N∑
j=1
j 6=i

w(xi , xj)

|xi − xj |s
Φ(
|xi − xj |

rN
)

I Any sequence of such configurations will have limiting
distribution ρ and is quasi-uniform.



Spherical Shell - for geoscience models

500K points in
spherical shell
.55 < r < 1, ‘low’
s = 3.5 energy


