

Physical causes and modeling challenges of anomalous diffusion of sediment tracers

Douglas Jerolmack

Earth & Environmental Science, UPenn [sediment@sas.upenn.edu]

"Bridging the Gap", Princeton U., 2 Oct. 2012

"Bed load" transport: multi-phase flow problem

Grains supported by and in frequent contact with the bed. A well defined "layer" describable by:

- 1. Particle volume, $\delta v [L^3]$.
- 2. Average velocity, u_s , of bed load sediment [L/T].
- 3. Surface density, *n*, of moving particles $[\#/L^2]$.

Free surface Saltation Saltation Control 0, 10, 20, 30, 40, 50, 5, 10 Mean velocity (m s⁻¹) Free surface Saltation Particle number-density (mm⁻¹)

Side view

$$q_s = \delta v n u_s$$

Near threshold transport: "avalanching" and spatially heterogeneous dynamics(?)

[Charru et al., JFM, 2004]

IB. Active bed / no elevation change

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, F01014, doi:10.1029/2011JF002120, 2012

Using multiple bed load measurements: Toward the identification of bed dilation and contraction in gravel-bed rivers

G. A. Marquis¹ and A. G. Roy¹

Elevation decrease

Turbulence, granular collisions, grain size dispersion.

Intermittent transport under steady flow.

Laminar flow, uniform beads.

Intermittent transport \rightarrow collective grain motion.

nature physics | VOL 3 | APRIL 2007 | www.nature.com/naturephysics Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material

AARON S. KEYS1*, ADAM R. ABATE2*, SHARON C. GLOTZER1.3† AND DOUGLAS J. DURIAN2†

One solution: CFD coupled to DEM

Sedimentology (2003) 50, 279-301

Direct numerical simulation of bedload transport using a local, dynamic boundary condition

MARK W. SCHMEECKLE* and JONATHAN M. NELSON†

Orencio Durán,^{1, a)} Bruno Andreotti,¹ and Philippe Claudin¹

Numerical simulation of turbulent sediment transport, from bed load to saltation.

Stochastic particle transport: diffusion?

nature physics

Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid

ARTICLES

PUBLISHED ONLINE: 27 MARCH 2011 | DOI: 10.1038/NPHYS1953

Rongxin Huang¹, Isaac Chavez¹, Katja M. Taute¹, Branimir Lukić², Sylvia Jeney², Mark G. Raizen¹ and Ernst-Ludwig Florin^{1*}

Figure 1 | Schematic diagram of the experiment. A single micrometre-size particle in water is undergoing Brownian motion in the observation volume given by an optical trap.

Figure 4 | Experimental VACF and theoretical description. The VACF

Ballistic transport at short time

Figure 2 | Example MSD for silica particles 1 μm and 2.5 μm in diameter.

Bed load: Brownian motion with drift?

Momentum balance for particle in a turbulent shear flow:

[Martin, Jerolmack and Schumer, J. Geophys. Res., 2012]

Short timescales: yes, diffusive particle transport:

Statistical mechanics may be used to derive macroscopic transport laws from stochastic particle motions.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, F03031, doi:10.1029/2012JF002352, 2012

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, F03034, doi:10.1029/2012JF002356, 2012

A probabilistic description of the bed load sediment flux:

1. Theory

David Jon Furbish,¹ Peter K. Haff,² John C. Roseberry,¹ and Mark W. Schmeeckle³

A probabilistic description of the bed load sediment flux:
4. Fickian diffusion at low transport rates
David Jon Furbish,¹ Ashley E. Ball,² and Mark W. Schmeeckle³

But long-time dynamics governed by power-law waits

Particle transport in real rivers: Radio Frequency Identifier (RFID) Tags

- Intermittent floods drive particle motion.

- Measure position of "radio rocks" after each flood.

Dispersion: Superdiffusion due to power-law waits + drift

law waiting.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, F00A07, doi:10.1029/2008JF001246, 2009

Fractional advection-dispersion equations for modeling transport at the Earth surface

Rina Schumer,1 Mark M. Meerschaert,2 and Boris Baeumer3

Tracer particles spend much more time at rest than in motion.

Stochastic modeling approach:

Direct solution of fADE, if known, to determine dispersion.

Lagrangian particle tracking to determine dispersion from collection of particle motions.

But how to assess, a priori, what particle waiting times and hop lengths are?

→ Need better understanding of physics

Figure 9. When governed by a fractional-in-time ADE, particles have memory of the time that they arrive at a given point. Their probability of release decays as a power law from arrival time.

Anomalous Dispersion

Summary and directions

Thresholds of motion: stick-slip dynamics, stochastic transport

Direct simulation: possible path forward, difficult for natural systems

Statistical mechanics: useful framework for deriving transport equations but mobile/immobile partitioning complicates application

Fractional ADEs and Random Walk models: flexible for modeling anomalous diffusion, but must be informed by physics