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Why am I here?

To work across boundaries...

• as a mathematician work on problems in near subsurface
science with BSU collaborators in geophysics and
hydrology, and other collaborators in earth sciences.

• combine probabilistic/statistical models with mathematical
models to take advantage of both.

• the intersection of inversion, data assimilation and
uncertainty.



Uncertainty Quantification

• Accurate prior knowledge is critical for UQ success, and
can be estimated by

• additional parameters in parameter estimation problem
(Bayesian)

• covariance models (Statistics)
• regularization parameters (Inversion)
• weights in a deterministic setting (Data Assimilation)



Data Assimilation

• Strengths include the ability to incorporate different types
of information into complex models.

• Kalman filter, variational assimilation use least squares
• assumes Gaussian distributed error,
• smoothes solutions

• Alternatively, use least squares without Gaussian
assumption

• Covariance matrix weights give piecewise smooth solutions



Inverse Methods

• The focus is typically on Regularization whereby we make
an ill-posed problem well-posed.

• The problem is ill-posed because we don’t have enough
information to get a solution.

• Regularization can be viewed as adding information to the
problem.

• Finding a regularization parameter amounts to finding
weights or uncertainties for the added information.



Oceanographic float data in the North Atlantic
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Oceanographic example with simulated data

Data: Lagrangian float data

d = [λ θ h]T + ε

Mathematical model: Lagrangian shallow water equations
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Minimum mean square estimator

Variational Formulation
Find dynamics that fit data within specified errors

(λ̂, θ̂, ĥ) = argmin
(λ,θ,h)

J
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Representer solution
Bennett, “Inverse Modeling of the Ocean and Atmosphere”,
Cambridge University Press, 2002



Choice of error variances

Std. dev. as % of range of reasonable values
dynamics initial conditions data

acceleration position and velocity depth and domain
1 40 % 10% 10 %
2 0.1 % 0.01 % 20 %
3 1 % 1.0 % 10 %

• Experiment 1 heavily weights data.
• Experiment 2 heavily weights the dynamics.
• Experiment 3 doesn’t heavily weight either.

The solution will go wherever we place weight



Assimilation Results from Experiment 1
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Assimilation Results from Experiment 2
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Assimilation Results from Experiment 3
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χ2 Tests

• How do we know if our uncertainties/weights, are correct?

χ2 test : J (x̂) ≈ number of data

Applies to non-Gaussian errors
• Alternatively, use test to find uncertainties/weights

• Discrepancy principle (Regularization)

Jdata(x̂) ≈ number of data

• χ2 Method (Mead and Renaut 2009, Inverse Problems)

J (x̂) ≈ number of data



Soil Moisture Estimation

Two different types of data
• In-situ measurements of soil moisture and pressure head.

• Collect soil samples, measure % of sand, silt, clay etc. and
input in neural network algorithm (Rosetta).







χ2 Method

• Uses the well known χ2 test to “back out” uncertainty
information.

• Computationally efficient, statistically justified with minimal
assumptions, but not statistically deep.

• Extensions
• More dense uncertainty estimates/weights can be

estimated with multiple χ2 tests (Mead 2012, in revision)
• χ2 tests for nonlinear problems

(Mead and Hammerquist 2012, submitted)
• Statistical tests with L1 functional

(Mead and Nelson, in preparation)

J (x) = ‖d−Ax‖22 + λ‖L(x− x0)‖1

J (x̂) ≈ Number of data
λ ≈ σ−1

Lx


