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Why am | here?

To work across boundaries...

¢ as a mathematician work on problems in near subsurface
science with BSU collaborators in geophysics and
hydrology, and other collaborators in earth sciences.

e combine probabilistic/statistical models with mathematical
models to take advantage of both.

e the intersection of inversion, data assimilation and
uncertainty.



Uncertainty Quantification

o Accurate prior knowledge is critical for UQ success, and
can be estimated by
o additional parameters in parameter estimation problem
(Bayesian)
e covariance models (Statistics)
e regularization parameters (Inversion)
e weights in a deterministic setting (Data Assimilation)



Data Assimilation

e Strengths include the ability to incorporate different types
of information into complex models.
o Kalman filter, variational assimilation use least squares

e assumes Gaussian distributed error,
e smoothes solutions

o Alternatively, use least squares without Gaussian
assumption

e Covariance matrix weights give piecewise smooth solutions



Inverse Methods

e The focus is typically on Regularization whereby we make
an ill-posed problem well-posed.

e The problem is ill-posed because we don’t have enough
information to get a solution.

e Regularization can be viewed as adding information to the
problem.

e Finding a regularization parameter amounts to finding
weights or uncertainties for the added information.



Oceanographic float data in the North Atlantic
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Oceanographic example with simulated data
Data: Lagrangian float data
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Mathematical model: Lagrangian shallow water equations
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Minimum mean square estimator

Variational Formulation
Find dynamics that fit data within specified errors
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Bennett, “Inverse Modeling of the Ocean and Atmosphere”,
Cambridge University Press, 2002




Choice of error variances

Std. dev. as % of range of reasonable values
dynamics initial conditions data
acceleration | position and velocity | depth and domain
1 40 % 10% 10 %
2 0.1 % 0.01 % 20 %
3 1% 1.0 % 10 %

o Experiment 1 heavily weights data.
e Experiment 2 heavily weights the dynamics.
e Experiment 3 doesn’t heavily weight either.

The solution will go wherever we place weight
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Assimilation Results from Experiment 1
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Assimilation Results from Experiment 2
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Assimilation Results from Experiment 3
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x? Tests

e How do we know if our uncertainties/weights, are correct?
x? test: J(x) ~ number of data

Applies to non-Gaussian errors
o Alternatively, use test to find uncertainties/weights
¢ Discrepancy principle (Regularization)

Jgata(X) ~ number of data
e x? Method (Mead and Renaut 2009, Inverse Problems)

J (%) ~ number of data



Soil Moisture Estimation

Two different types of data
e In-situ measurements of soil moisture and pressure head.

e Collect soil samples, measure % of sand, silt, clay etc. and
input in neural network algorithm (Rosetta).
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x? Method

 Uses the well known x? test to “back out” uncertainty
information.
o Computationally efficient, statistically justified with minimal
assumptions, but not statistically deep.

e Extensions
e More dense uncertainty estimates/weights can be
estimated with multiple x? tests (Mead 2012, in revision)
o x? tests for nonlinear problems
(Mead and Hammerquist 2012, submitted)
o Statistical tests with L; functional
(Mead and Nelson, in preparation)
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