
Boundary Perturbation Methods for Interface
Reconstruction

David P. Nicholls

Department of Mathematics, Statistics,
and Computer Science

University of Illinois at Chicago

Bridging the Gap Workshop, Princeton (October 2012)

David P. Nicholls (UIC) BP Method for Interface Reconstruction BtG, Princeton (October 2012) 1 / 33



Collaborators and References

Collaborators on this project:
Alison Malcolm (Earth Sciences, MIT)
Zheng Fang (UIC)

Thanks to:
NSF (DMS–1115333, DMS–0810958)
DOE (DE–SC0001549)

References:
Malcolm & DPN, “A Boundary Perturbation Method for Recovering
Interface Shapes in Layered Media,” Inverse Problems, 27 (2011).
Malcolm & DPN, “Operator Expansions and Constrained
Quadratic Optimization for Interface Reconstruction: Impenetrable
Acoustic Media,” submitted.

David P. Nicholls (UIC) BP Method for Interface Reconstruction BtG, Princeton (October 2012) 2 / 33



Introduction

The Objective: What We Would Like to Do

We would like to model the earth as a three–dimensional, layered
media with a general crust–atmosphere interface.
We would like to accommodate “illumination” of this structure by
incident waves either from below (e.g., earthquakes) or at the
surface.
From (many) such measurements we would like to determine
properties of the structure, e.g.

Wave speeds in each layer,
Thickness of each layer,
Interface shapes between each layer.
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Introduction

What We Can Do: Single–Layered Acoustic Media

y = ḡ + g(x)

y = 0

∆u + k2u = 0

(α, −β )

Simplify to two dimensions.
Simplify to the Helmholtz
equation.
Simplify to a single layer with
known velocity.
Measure at y = 0.
Suppose that the interface has
shape y = ḡ + g(x).
Seek the interface depth: ḡ.
Seek the interface shape: g(x).
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Introduction

Numerical Methods

A variety of numerical methods have been brought to bear on this
problem.
Finite Differences: Easy to implement, but expensive (volumetric)
and awkward for complicated geometries.
Finite Elements: More involved to implement but accommodate
complicated geometries. However, also expensive (volumetric).
Integral Equations: Efficient (surface) but require subtle
quadratures near singularities.
IE methods also give rise to dense, non–SPD, linear systems
requiring sophisticated iterative methods (e.g., GMRES
accelerated by Fast Multipole Method).
Boundary Perturbation Methods (BPM): Fast (surface) methods
which require neither special quadrature rules nor the solution of
dense linear systems.
Idea: Apply a BPM to layered media.
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Introduction
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Governing Equations

Periodic Gratings

y = ḡ + g(x)

y = 0

∆u + k2u = 0

(α, −β )

Consider a d–periodic grating
shaped by y = ḡ + g(x),

g(x + d) = g(x),

defining the region

Ω := {y > ḡ + g(x)}.

We suppose ḡ < 0, ḡ + |g|L∞ < 0,
and make “observations” at y = 0.
This is filled by with a
constant–density acoustic
medium with velocity c.
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Governing Equations

Plane–Wave Scattering

We begin with the Forward Problem: We “illuminate” our structure
from above with a downward propagating plane–wave

ūi(x , y , t) = ei(αx−βy−iωt) =: ui(x , y)e−iωt .

Solving for the reduced field, u, the well–known “time–harmonic”
governing equations for a sound–soft material are

∆u + k2u = 0 in Ω

P{u} = 0 y →∞
u = ζ z = ḡ + g(x)

u(x + d , y) = eiαdu(x , y),

where:
α2 + β2 = k2 and k = ω/c.
P is the outgoing (upward) propagating operator,
the Dirichlet data is:

ζ(x) = −ui (x , ḡ + g(x)) = −ei(αx−β(ḡ+g(x))).
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Forward Problem

Boundary Formulation: Unknown

We aim towards a Boundary Perturbation approach to the forward
problem of determining the scattered field u given known structure
(α, β, ḡ, and g).
We begin by formulating on the boundary, and thus define

U(x) := u(x , ḡ + g(x)),

the “Dirichlet trace” of the function u.
Quite simply, the governing equation is now

U = ζ.

The unknown U may be useful for the forward problem where ḡ
and g(x) are known, however, it is useless for the inverse problem
as this is data we cannot measure!
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Forward Problem

The Dirichlet–Propagator Operator (DPO)

With the inverse problem in mind we pose a new “far field”
unknown

ũ(x) := u(x ,0).

By solving the Helmholtz equation we can recover ũ from U and
denote this by P, the “Dirichlet–Propagator Operator” (DPO):

P = P(ḡ,g) : U → ũ.

Our governing equations become

ũ = P[U], U = ζ,

or, more simply,
ũ = P[ζ].
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Forward Problem

Boundary Perturbation Method

If g = εf then P and ζ are analytic in ε, e.g.,

P(ε) =
∑
n≥0

Pnε
n, ζ(x ; ε) =

∑
n≥0

ζn(x)εn,

it can be shown that ũ is also analytic in ε so:

ũ(x ; ε) =
∞∑

n=0

ũn(x)εn.

Inserting these forms into our governing equation gives:

∞∑
n=0

ũnε
n =

∞∑
n=0

Pnε
n

[ ∞∑
m=0

ζmε
m

]
.

At order zero we find ũ0 = P0[ζ0].

David P. Nicholls (UIC) BP Method for Interface Reconstruction BtG, Princeton (October 2012) 11 / 33



Forward Problem

Boundary Perturbation Method: Higher Orders

At order n > 0 we recover:

ũn =
n∑

m=0

Pn−m[ζm].

The ζn can be found via Taylor expansions.
We compute the DNO P by “Operator Expansions” (Milder, 1991;
Craig & Sulem, 1993).
This gives, at order zero,

P0 [ξ] = e−i ḡβDξ :=
∞∑

p=−∞
e−i ḡβp ξ̂p.

For n > 0

Pn(f ) [ξ] = −
n−1∑
m=0

Pm(f )
[
Fn−m(iβD)n−mξ

]
.
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Forward Problem

Boundary Perturbation Method: Forward Problem

Recall that in our BP framework we need to solve

ũn =
n∑

m=0

Pn−m[ζm].

The right–hand side can now be evaluated using our OE formulas
and the Fourier coefficients of ũ recovered from these.
Numerical Method: In brief, the OE method is a Fourier
Collocation/Taylor method enhanced by Padé summation.
We approximate the far–field, ũ, by

ũ ≈ ũNx ,N =
N∑

n=0

Nx/2−1∑
p=−Nx/2

eiαpxεnũp,n.

Convolution products are computed via the FFT.
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Forward Problem

Nontrivial Analytic Profile

y = ḡ + g(x)

y = 0

∆u + k2u = 0

(α, −β )

Consider the analytic interface
with Fourier coefficients

f̂p =

{
1
2(2ρ)(|p|−1)/(M−1) p 6= 0
0 p = 0

.

We note that f has mean zero, f is
“cosine–like” as

f̂1 = f̂−1 = 1/2,

and f̂M = f̂−M = ρ.
At left we plot this profile with
M = 10, ρ = 10−16, and scaled by
a factor ε = 0.01.
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Forward Problem

Physical and Numerical Parameters

We now present results of a numerical experiment with a
one–layer structure.
We choose a d = 2π–periodic interface at mean level ḡ = −1.5,
shaped by g(x) = εf (x).
This grating is illuminated by incident radiation specified by α = 0,
β = 5.5.
We will select (ε,M) = (0.1,30).
We choose numerical parameters Nx = 128 and Nmax = 12.
We compute the “energy defect”:

δ := 1−
∑
p∈U

ep := 1−
∑
p∈U

βp

β
|ũp|2 .
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Forward Problem

Convergence: Results ((ε,M) = (0.1,30))

Energy defect versus number of Taylor series terms retained in a
simulation of scattering by a singly layered structure. Numerical
parameters were Nx = 128 and Nmax = 12 for (ε,M) = (0.1,30).

N δ (Taylor) δ (Padé)
2 0.01196 0.1572
4 0.0002475 0.0003088
6 2.806× 10−6 3.08× 10−6

8 2.045× 10−8 8.376× 10−9

10 1.079× 10−10 9.633× 10−12

12 4.38× 10−13 4.294× 10−13
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Inverse Problem

The Inverse Problem

We now have an algorithm for the “forward problem”: Given
incident radiation (α, β) and an interface shape ḡ + g(x),
determine the scattered (far field) data, ũ(x) := u(x ,0), from

ũ = P(g)[U(x ; g)] = P(g)[ζ(x ; g)].

Question: If we know far–field data, can we recover ḡ and g(x)?
(For brevity assume we have ḡ)
Typically gather the “efficiencies”

ep := (βp/β) |ũp|2 , p ∈ U ,

so we are asking for a little more.
As with the forward problem, we adopt a Boundary Perturbation
philosophy for the inverse problem.
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Inverse Problem

Linear Approximation (LA): Formula for g

Write our equation with linear term explicit

ũ = P0[ζ0] + {P1(·)[ζ0] + P0[ζ1(·)]} [g] +O(g2)

Defining the function, b, and operator, M,

b := P0[ζ0], M := {P1(·)[ζ0] + P0[ζ1(·)]} ,
and truncating at linear order we find ũ = b + Mg.
Setting ũ = η we can solve for g via

g = M−1[η − b].

Ill–Posedness: The ill–posedness of this problem is displayed by
M−1. It is not difficult to see that

M = P0 [−g(iγD)ζ0 + ζ1(·)]

so that M−1 involves P−1
0 , a terrible operator:

P−1
0 [ξ] =

∑
p

eiβp ḡ ξ̂peiαpx
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Inverse Problem

Numerical Experiments: Inverse Problem

y = ḡ + g(x)

y = 0

∆u + k2u = 0

(α, −β )

Consider a 2π–periodic, singly
layered medium with interface at
ḡ = −1.5 and deviation g = εf :

f̂p =

{
1
2(2ρ)(|p|−1)/(M−1) p 6= 0
0 p = 0

with ρ = 10−16.
Plane–wave illumination with
(α, β) = (0,5.5).
Investigate the performance of
this “Linear Approximation” (LA)
for (ε,M) = (0.01,10).
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Inverse Problem

Results: LA (ε,M) = (0.01,10) [Nx = 32]
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Consider the analytic profile f with
(ε,M) = (0.01,10).
Plot of relative L∞ error in
reconstructed solution (compared
to exact solution) for LA algorithm.
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Inverse Problem

Results: LA (ε,M) = (0.01,10) [Nx = 128]
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Consider the analytic profile f with
(ε,M) = (0.01,10).
Plot of relative L∞ error in
reconstructed solution (compared
to exact solution) for LA algorithm.
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Inverse Problem

Nonlinear Approximation (NLA): Iteration for g

Write our equation with order Ni term explicit

ũ = P0[ζ0] + {P1(·)[ζ0] + P0[ζ1(·)]} [g] + R(g) +O(gNi +1),

where

R(g) :=

Ni∑
n=2

n∑
m=0

Pm(g)[ζn−m(x ; g)].

Recalling our definitions for b and M, and truncating at order Ni
we find ũ = b + Mg + R(g).
Once again, setting ũ = η we can solve for g via

g = M−1[η − b − R(g)].

To solve this “Nonlinear Approximation” (NLA) we set up the
iteration

g(k+1) = M−1[η − b − R(g(k))],

using g(0) = M−1[η − b].
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Inverse Problem

Results: LA, NLA (ε,M) = (0.01,10) [Nx = 32]
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Consider the analytic profile f with
(ε,M) = (0.01,10).
Plot of relative L∞ error in
reconstructed solution (compared
to exact solution) for LA, NLA
algorithms.
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Inverse Problem

Results: LA, NLA (ε,M) = (0.01,10) [Nx = 128]
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Consider the analytic profile f with
(ε,M) = (0.01,10).
Plot of relative L∞ error in
reconstructed solution (compared
to exact solution) for LA, NLA
algorithms.
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Inverse Problem

The Inverse Problem: Regularization

While the direct method above is elegant and computationally
efficient, it is evidently problematic due to ill–conditioning.
We propose to regularize the problem by relaxing the demand that
we match the far–field pattern exactly.
For this we consider the quadratic form

q̃(ũ,g) := (1/2) ‖ũ − η‖2L2 + (τ/2) ‖g‖2H1 .

We do not change the class of minimizers by subtracting off a
constant (in this case (1/2) ‖η‖2L2) so we focus on

q(ũ,g) := (1/2) ‖ũ − η‖2L2 − (1/2) ‖η‖2L2 + (τ/2) ‖g‖2H1

= (1/2) 〈ũ, ũ〉 − 〈η, ũ〉+ (τ/2) (〈g,g〉+ 〈∂xg, ∂xg〉) .
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Inverse Problem

Constrained Minimization

Integrating by parts gives

q(ũ,g) = (1/2) 〈ũ, ũ〉 − 〈η, ũ〉+ (τ/2)
〈

g, (1− ∂2
x )g
〉

which we write as q(X ) = (1/2) 〈X ,QX 〉 − 〈c,X 〉, where

X :=

(
ũ
g

)
, Q :=

(
I 0
0 τ(1− ∂2

x )

)
, c :=

(
η
0

)
.

We constrain this with B(X ) = 0 where

B(X ) := B(ũ,g) = ũ − P(g)[ζ(g)].

With our BP philosophy in mind we record that

B(ũ, εf ) = ũ −
∞∑

n=0

n∑
m=0

Pm(f )[ζn−m(f )]εn

and that, to first order,

B(X ) ≈ B(1)(X ) = ũ − P0[ζ0]− {P1(·)[ζ0] + P0[ζ1(·)]}g.
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Inverse Problem

Inverse Problem: Regularized Linear Approx (RLA)

We approximate solutions of the inverse problem by solving the
linearly constrained quadratic optimization problem

min
X

q(X ) = min
X

(1/2) 〈X ,QX 〉+ 〈c,X 〉 , AX − b = 0,

where

A =
(
I −M

)
, M = P1(·)[ζ0] + P0[ζ1(·)], b = P0[ζ0].

After simplifying we find the “Regularized Linear Approx” (RLA)

y = b, z = K−1M∗[η − b], λ = ũ − η.
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Inverse Problem

Results: LA, NLA, RLA (ε,M) = (0.01,10) [Nx = 128]
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Consider the analytic profile f with
(ε,M) = (0.01,10).
Plot of relative L∞ error in
reconstructed solution (compared
to exact solution) versus the
regularization parameter τ for LA,
NLA, RLA algorithms.
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Inverse Problem

Inverse Problem: Regularized Nonlin Approx (RNLA)

We now approximate solutions of the inverse problem by solving
the nonlinearly constrained quadratic optimization problem

min
X

q(X ) = min
X

(1/2) 〈X ,QX 〉+ 〈c,X 〉 , B(X ) = 0,

where

B(X ) = AX − b − R(X ), R(X ) :=
∑Ni

n=2
∑n

m=0Pm(g)[ζn−m(g)].

Mimicking the Null Space Method, we attempt the iterative
scheme (“Regularized Nonlinear Approximation”–RNLA)

y (k+1) = b + R(X (k)), z(k+1) = K−1M∗[η − b − R(X (k))]

λ(k+1) = ũ(k+1) − η.

We start with X (0) generated by the RLA.
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Inverse Problem

Results: LA, NLA, RLA, RNLA (ε,M) = (0.01,10)
[Nx = 128]
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Consider the analytic profile f with
(ε,M) = (0.01,10).
Plot of relative L∞ error in
reconstructed solution (compared
to exact solution) versus the
regularization parameter τ for LA,
NLA, RLA, RNLA algorithms.
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Inverse Problem

Results: LA, NLA, RLA, RNLA (ε,M) = (0.03,20)
[Nx = 128]
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Consider the analytic profile f with
(ε,M) = (0.03,20).
Plot of relative L∞ error in
reconstructed solution (compared
to exact solution) versus the
regularization parameter τ for LA,
NLA, RLA, RNLA algorithms.
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Inverse Problem

Results: LA, NLA, RLA, RNLA (ε,M) = (0.05,30)
[Nx = 128]
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Consider the analytic profile f with
(ε,M) = (0.05,30).
Plot of relative L∞ error in
reconstructed solution (compared
to exact solution) versus the
regularization parameter τ for LA,
NLA, RLA, RNLA algorithms.
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Summary

Summary

Layered–media scattering is an idealized model of acoustic
propagation in the earth.
We have generalized the fast and accurate Operator Expansions
approach of Milder (1991) to produce far field data. More
importantly, we have further expanded the method (not discussed
today [DPN 2011]) to the multi–layer case.
We have also shown how this OE formulation can be used to
address the inverse problem of identifying internal boundary
shapes given surface measurements.
Future Directions: The method needs to be expanded in several
directions: Three dimensions, multiple layers, full equations of
elasticity, . . .
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