Boundary Perturbation Methods for Interface Reconstruction

David P. Nicholls

Department of Mathematics, Statistics,
and Computer Science
University of Illinois at Chicago

Bridging the Gap Workshop, Princeton (October 2012)

Collaborators and References

Collaborators on this project:

- Alison Malcolm (Earth Sciences, MIT)
- Zheng Fang (UIC)

Thanks to:

- NSF (DMS-1115333, DMS-0810958)
- DOE (DE-SC0001549)

References:

- Malcolm \& DPN, "A Boundary Perturbation Method for Recovering Interface Shapes in Layered Media," Inverse Problems, 27 (2011).
- Malcolm \& DPN, "Operator Expansions and Constrained Quadratic Optimization for Interface Reconstruction: Impenetrable Acoustic Media," submitted.

The Objective: What We Would Like to Do

- We would like to model the earth as a three-dimensional, layered media with a general crust-atmosphere interface.
- We would like to accommodate "illumination" of this structure by incident waves either from below (e.g., earthquakes) or at the surface.
- From (many) such measurements we would like to determine properties of the structure, e.g.
- Wave speeds in each layer,
- Thickness of each layer,
- Interface shapes between each layer.

What We Can Do: Single-Layered Acoustic Media

- Simplify to two dimensions.
- Simplify to the Helmholtz equation.
- Simplify to a single layer with known velocity.
- Measure at $y=0$.
- Suppose that the interface has shape $y=\bar{g}+g(x)$.
- Seek the interface depth: \bar{g}.
- Seek the interface shape: $g(x)$.

Numerical Methods

- A variety of numerical methods have been brought to bear on this problem.
- Finite Differences: Easy to implement, but expensive (volumetric) and awkward for complicated geometries.
- Finite Elements: More involved to implement but accommodate complicated geometries. However, also expensive (volumetric).
- Integral Equations: Efficient (surface) but require subtle quadratures near singularities.
- IE methods also give rise to dense, non-SPD, linear systems requiring sophisticated iterative methods (e.g., GMRES accelerated by Fast Multipole Method).
- Boundary Perturbation Methods (BPM): Fast (surface) methods which require neither special quadrature rules nor the solution of dense linear systems.
- Idea: Apply a BPM to layered media.

Previous Work (Sample)

- Moczo, Robertsson, Eisner, "The finite-difference time-domain method for modeling of seismic wave propagation," Adv. Geophys. 48 (2007).
- Komatitsch and Tromp, "Spectral-element simulations of global seismic wave propagation," Geophys. J. Inter. 149 (2002).
- Bouchon, "A review of the discrete wavenumber method," J. Pure Appl. Geophys. 160 (2003).
- Bruno and Reitich, "Numerical solution of diffraction problems: A method of variation of boundaries," J. Opt. Soc. Am. A 10 (1993).
- Milder, "An improved formalism for wave scattering from rough surfaces," J. Acoust. Soc. Am. 89 (1991).
- Ito and Reitich, "A high-order perturbation approach to profile reconstruction," Inverse Problems 15 (1999).

Periodic Gratings

- Consider a d-periodic grating shaped by $y=\bar{g}+g(x)$,

$$
g(x+d)=g(x)
$$

defining the region

$$
\Omega:=\{y>\bar{g}+g(x)\} .
$$

- We suppose $\bar{g}<0, \bar{g}+|g|_{L \infty}<0$, and make "observations" at $y=0$.
- This is filled by with a constant-density acoustic medium with velocity c.

Plane-Wave Scattering

- We begin with the Forward Problem: We "illuminate" our structure from above with a downward propagating plane-wave

$$
\bar{u}^{i}(x, y, t)=e^{i(\alpha x-\beta y-i \omega t)}=: u^{i}(x, y) e^{-i \omega t} .
$$

- Solving for the reduced field, u, the well-known "time-harmonic" governing equations for a sound-soft material are

$$
\begin{array}{ll}
\Delta u+k^{2} u=0 & \text { in } \Omega \\
\mathcal{P}\{u\}=0 & y \rightarrow \infty \\
u=\zeta & z=\bar{g}+g(x) \\
u(x+d, y)=e^{i \alpha d} u(x, y), &
\end{array}
$$

where:

- $\alpha^{2}+\beta^{2}=k^{2}$ and $k=\omega / c$.
- \mathcal{P} is the outgoing (upward) propagating operator,
- the Dirichlet data is:

$$
\zeta(x)=-u^{i}(x, \bar{g}+g(x))=-e^{i(\alpha x-\beta(\bar{g}+g(x)))} .
$$

Boundary Formulation: Unknown

- We aim towards a Boundary Perturbation approach to the forward problem of determining the scattered field u given known structure (α, β, \bar{g}, and g).
- We begin by formulating on the boundary, and thus define

$$
U(x):=u(x, \bar{g}+g(x))
$$

the "Dirichlet trace" of the function u.

- Quite simply, the governing equation is now

$$
U=\zeta .
$$

- The unknown U may be useful for the forward problem where \bar{g} and $g(x)$ are known, however, it is useless for the inverse problem as this is data we cannot measure!

The Dirichlet-Propagator Operator (DPO)

- With the inverse problem in mind we pose a new "far field" unknown

$$
\tilde{u}(x):=u(x, 0) .
$$

- By solving the Helmholtz equation we can recover ũ from U and denote this by P, the "Dirichlet-Propagator Operator" (DPO):

$$
P=P(\bar{g}, g): U \rightarrow \tilde{u}
$$

- Our governing equations become

$$
\tilde{u}=P[U], \quad U=\zeta,
$$

or, more simply,

$$
\tilde{u}=P[\zeta] .
$$

Boundary Perturbation Method

If $g=\varepsilon f$ then P and ζ are analytic in ε, e.g.,

$$
P(\varepsilon)=\sum_{n \geq 0} P_{n} \varepsilon^{n}, \quad \zeta(x ; \varepsilon)=\sum_{n \geq 0} \zeta_{n}(x) \varepsilon^{n}
$$

it can be shown that \tilde{u} is also analytic in ε so:

$$
\tilde{u}(x ; \varepsilon)=\sum_{n=0}^{\infty} \tilde{u}_{n}(x) \varepsilon^{n} .
$$

Inserting these forms into our governing equation gives:

$$
\sum_{n=0}^{\infty} \tilde{u}_{n} \varepsilon^{n}=\sum_{n=0}^{\infty} P_{n} \varepsilon^{n}\left[\sum_{m=0}^{\infty} \zeta_{m} \varepsilon^{m}\right]
$$

At order zero we find $\tilde{u}_{0}=P_{0}\left[\zeta_{0}\right]$.

Boundary Perturbation Method: Higher Orders

- At order $n>0$ we recover:

$$
\tilde{u}_{n}=\sum_{m=0}^{n} P_{n-m}\left[\zeta_{m}\right] .
$$

- The ζ_{n} can be found via Taylor expansions.
- We compute the DNO P by "Operator Expansions" (Milder, 1991; Craig \& Sulem, 1993).
- This gives, at order zero,

$$
P_{0}[\xi]=e^{-i \bar{g} \beta_{D}} \xi:=\sum_{p=-\infty}^{\infty} e^{-i \bar{g} \beta_{p}} \hat{\xi}_{p}
$$

- For $n>0$

$$
P_{n}(f)[\xi]=-\sum_{m=0}^{n-1} P_{m}(f)\left[F_{n-m}\left(i \beta_{D}\right)^{n-m_{\xi}} \xi\right]
$$

Boundary Perturbation Method: Forward Problem

- Recall that in our BP framework we need to solve

$$
\tilde{u}_{n}=\sum_{m=0}^{n} P_{n-m}\left[\zeta_{m}\right] .
$$

The right-hand side can now be evaluated using our OE formulas and the Fourier coefficients of \tilde{u} recovered from these.

- Numerical Method: In brief, the OE method is a Fourier Collocation/Taylor method enhanced by Padé summation.
- We approximate the far-field, \tilde{u}, by

$$
\tilde{u} \approx \tilde{u}^{N_{x}, N}=\sum_{n=0}^{N} \sum_{p=-N_{x} / 2}^{N_{x} / 2-1} e^{i \alpha_{p} x} \varepsilon^{n} \tilde{u}_{p, n} .
$$

- Convolution products are computed via the FFT.

Nontrivial Analytic Profile

- Consider the analytic interface with Fourier coefficients

$$
\hat{f}_{p}=\left\{\begin{array}{ll}
\frac{1}{2}(2 \rho)^{(|p|-1) /(M-1)} & p \neq 0 \\
0 & p=0
\end{array} .\right.
$$

- We note that f has mean zero, f is "cosine-like" as

$$
\hat{f}_{1}=\hat{f}_{-1}=1 / 2
$$

$$
\text { and } \hat{f}_{M}=\hat{f}_{-M}=\rho
$$

- At left we plot this profile with $M=10, \rho=10^{-16}$, and scaled by a factor $\varepsilon=0.01$.

Physical and Numerical Parameters

- We now present results of a numerical experiment with a one-layer structure.
- We choose a $d=2 \pi$-periodic interface at mean level $\bar{g}=-1.5$, shaped by $g(x)=\varepsilon f(x)$.
- This grating is illuminated by incident radiation specified by $\alpha=0$, $\beta=5.5$.
- We will select $(\varepsilon, M)=(0.1,30)$.
- We choose numerical parameters $N_{x}=128$ and $N_{\max }=12$.
- We compute the "energy defect":

$$
\delta:=1-\sum_{p \in \mathcal{U}} e_{p}:=1-\sum_{p \in \mathcal{U}} \frac{\beta_{p}}{\beta}\left|\tilde{u}_{p}\right|^{2}
$$

Convergence: Results $((\varepsilon, M)=(0.1,30))$

Energy defect versus number of Taylor series terms retained in a simulation of scattering by a singly layered structure. Numerical parameters were $N_{x}=128$ and $N_{\max }=12$ for $(\varepsilon, M)=(0.1,30)$.

N	δ (Taylor)	δ (Padé)
2	0.01196	0.1572
4	0.0002475	0.0003088
6	2.806×10^{-6}	3.08×10^{-6}
8	2.045×10^{-8}	8.376×10^{-9}
10	1.079×10^{-10}	9.633×10^{-12}
12	4.38×10^{-13}	4.294×10^{-13}

The Inverse Problem

- We now have an algorithm for the "forward problem": Given incident radiation (α, β) and an interface shape $\bar{g}+g(x)$, determine the scattered (far field) data, $\tilde{u}(x):=u(x, 0)$, from

$$
\tilde{u}=P(g)[U(x ; g)]=P(g)[\zeta(x ; g)] .
$$

- Question: If we know far-field data, can we recover \bar{g} and $g(x)$? (For brevity assume we have \bar{g})
- Typically gather the "efficiencies"

$$
e_{p}:=\left(\beta_{p} / \beta\right)\left|\tilde{u}_{p}\right|^{2}, \quad p \in \mathcal{U}
$$

so we are asking for a little more.

- As with the forward problem, we adopt a Boundary Perturbation philosophy for the inverse problem.

Linear Approximation (LA): Formula for g

- Write our equation with linear term explicit

$$
\tilde{u}=P_{0}\left[\zeta_{0}\right]+\left\{P_{1}(\cdot)\left[\zeta_{0}\right]+P_{0}\left[\zeta_{1}(\cdot)\right]\right\}[g]+\mathcal{O}\left(g^{2}\right)
$$

- Defining the function, b, and operator, M,

$$
b:=P_{0}\left[\zeta_{0}\right], \quad M:=\left\{P_{1}(\cdot)\left[\zeta_{0}\right]+P_{0}\left[\zeta_{1}(\cdot)\right]\right\},
$$

and truncating at linear order we find $\tilde{u}=b+M g$.

- Setting $\tilde{u}=\eta$ we can solve for g via

$$
g=M^{-1}[\eta-b]
$$

- III-Posedness: The ill-posedness of this problem is displayed by M^{-1}. It is not difficult to see that

$$
M=P_{0}\left[-g\left(i \gamma_{D}\right) \zeta_{0}+\zeta_{1}(\cdot)\right]
$$

so that M^{-1} involves P_{0}^{-1}, a terrible operator:

$$
P_{0}^{-1}[\xi]=\sum_{n} e^{i \beta_{p} \bar{g}} \hat{\xi}_{p} e^{i \alpha_{p} x}
$$

Numerical Experiments: Inverse Problem

- Consider a 2π-periodic, singly layered medium with interface at $\bar{g}=-1.5$ and deviation $g=\varepsilon f$:

$$
\hat{f}_{p}= \begin{cases}\frac{1}{2}(2 \rho)^{(|p|-1) /(M-1)} & p \neq 0 \\ 0 & p=0\end{cases}
$$

with $\rho=10^{-16}$.

- Plane-wave illumination with $(\alpha, \beta)=(0,5.5)$.
- Investigate the performance of this "Linear Approximation" (LA) for $(\varepsilon, M)=(0.01,10)$.

Results: $\operatorname{LA}(\varepsilon, M)=(0.01,10)\left[N_{x}=32\right]$

- Consider the analytic profile f with $(\varepsilon, M)=(0.01,10)$.
- Plot of relative L^{∞} error in reconstructed solution (compared to exact solution) for LA algorithm.

Results: $\operatorname{LA}(\varepsilon, M)=(0.01,10)\left[N_{x}=128\right]$

- Consider the analytic profile f with $(\varepsilon, M)=(0.01,10)$.
- Plot of relative L^{∞} error in reconstructed solution (compared to exact solution) for LA algorithm.

Nonlinear Approximation (NLA): Iteration for g

- Write our equation with order N_{i} term explicit

$$
\tilde{u}=P_{0}\left[\zeta_{0}\right]+\left\{P_{1}(\cdot)\left[\zeta_{0}\right]+P_{0}\left[\zeta_{1}(\cdot)\right]\right\}[g]+R(g)+\mathcal{O}\left(g^{N_{i}+1}\right),
$$

where

$$
R(g):=\sum_{n=2}^{N_{i}} \sum_{m=0}^{n} P_{m}(g)\left[\zeta_{n-m}(x ; g)\right]
$$

- Recalling our definitions for b and M, and truncating at order N_{i} we find $\tilde{u}=b+M g+R(g)$.
- Once again, setting $\tilde{u}=\eta$ we can solve for g via

$$
g=M^{-1}[\eta-b-R(g)]
$$

- To solve this "Nonlinear Approximation" (NLA) we set up the iteration

$$
g^{(k+1)}=M^{-1}\left[\eta-b-R\left(g^{(k)}\right)\right]
$$

using $g^{(0)}=M^{-1}[\eta-b]$.

Results: LA, NLA $(\varepsilon, M)=(0.01,10)\left[N_{x}=32\right]$

- Consider the analytic profile f with $(\varepsilon, M)=(0.01,10)$.
- Plot of relative L^{∞} error in reconstructed solution (compared to exact solution) for LA, NLA algorithms.

Results: LA, NLA $(\varepsilon, M)=(0.01,10)\left[N_{x}=128\right]$

- Consider the analytic profile f with $(\varepsilon, M)=(0.01,10)$.
- Plot of relative L^{∞} error in reconstructed solution (compared to exact solution) for LA, NLA algorithms.

The Inverse Problem: Regularization

- While the direct method above is elegant and computationally efficient, it is evidently problematic due to ill-conditioning.
- We propose to regularize the problem by relaxing the demand that we match the far-field pattern exactly.
- For this we consider the quadratic form

$$
\tilde{q}(\tilde{u}, g):=(1 / 2)\|\tilde{u}-\eta\|_{L^{2}}^{2}+(\tau / 2)\|g\|_{H^{1}}^{2} .
$$

- We do not change the class of minimizers by subtracting off a constant (in this case ($1 / 2$) $\|\eta\|_{L^{2}}^{2}$) so we focus on

$$
\begin{aligned}
q(\tilde{u}, g) & :=(1 / 2)\|\tilde{u}-\eta\|_{L^{2}}^{2}-(1 / 2)\|\eta\|_{L^{2}}^{2}+(\tau / 2)\|g\|_{H^{1}}^{2} \\
& =(1 / 2)\langle\tilde{u}, \tilde{u}\rangle-\langle\eta, \tilde{u}\rangle+(\tau / 2)\left(\langle g, g\rangle+\left\langle\partial_{x} g, \partial_{x} g\right\rangle\right)
\end{aligned}
$$

Constrained Minimization

- Integrating by parts gives

$$
q(\tilde{u}, g)=(1 / 2)\langle\tilde{u}, \tilde{u}\rangle-\langle\eta, \tilde{u}\rangle+(\tau / 2)\left\langle g,\left(1-\partial_{x}^{2}\right) g\right\rangle
$$

which we write as $q(X)=(1 / 2)\langle X, Q X\rangle-\langle c, X\rangle$, where

$$
X:=\binom{\tilde{u}}{g}, \quad Q:=\left(\begin{array}{cc}
1 & 0 \\
0 & \tau\left(1-\partial_{x}^{2}\right)
\end{array}\right), \quad c:=\binom{\eta}{0} .
$$

- We constrain this with $B(X)=0$ where

$$
B(X):=B(\tilde{u}, g)=\tilde{u}-P(g)[\zeta(g)] .
$$

- With our BP philosophy in mind we record that

$$
B(\tilde{u}, \varepsilon f)=\tilde{u}-\sum_{n=0}^{\infty} \sum_{m=0}^{n} P_{m}(f)\left[\zeta_{n-m}(f)\right] \varepsilon^{n}
$$

and that, to first order,

$$
\underset{\text { Vicholls (UIC) }}{B(X)} \underset{\text { BP Method for Interface Reconstruction }}{B(1)}(X)=\tilde{u}-P_{0}\left[\zeta_{0}\right]-\left\{P_{1}(\cdot)\left[\zeta_{0}\right]+P_{0}\left[\zeta_{1}(\cdot)\right]\right\} g .
$$

Inverse Problem: Regularized Linear Approx (RLA)

- We approximate solutions of the inverse problem by solving the linearly constrained quadratic optimization problem

$$
\min _{X} q(X)=\min _{X}(1 / 2)\langle X, Q X\rangle+\langle c, X\rangle, \quad A X-b=0
$$

where

$$
A=(I \quad-M), \quad M=P_{1}(\cdot)\left[\zeta_{0}\right]+P_{0}\left[\zeta_{1}(\cdot)\right], \quad b=P_{0}\left[\zeta_{0}\right] .
$$

- After simplifying we find the "Regularized Linear Approx" (RLA)

$$
y=b, \quad z=K^{-1} M^{*}[\eta-b], \quad \lambda=\tilde{u}-\eta .
$$

Results: LA, NLA, RLA $(\varepsilon, M)=(0.01,10)\left[N_{x}=128\right]$

- Consider the analytic profile f with $(\varepsilon, M)=(0.01,10)$.
- Plot of relative L^{∞} error in reconstructed solution (compared to exact solution) versus the regularization parameter τ for LA, NLA, RLA algorithms.

Inverse Problem: Regularized Nonlin Approx (RNLA)

- We now approximate solutions of the inverse problem by solving the nonlinearly constrained quadratic optimization problem

$$
\min _{X} q(X)=\min _{X}(1 / 2)\langle X, Q X\rangle+\langle c, X\rangle, \quad B(X)=0
$$

where

$$
B(X)=A X-b-R(X), \quad R(X):=\sum_{n=2}^{N_{i}} \sum_{m=0}^{n} P_{m}(g)\left[\zeta_{n-m}(g)\right]
$$

- Mimicking the Null Space Method, we attempt the iterative scheme ("Regularized Nonlinear Approximation"-RNLA)

$$
\begin{gathered}
y^{(k+1)}=b+R\left(X^{(k)}\right), \quad z^{(k+1)}=K^{-1} M^{*}\left[\eta-b-R\left(X^{(k)}\right)\right] \\
\lambda^{(k+1)}=\tilde{u}^{(k+1)}-\eta .
\end{gathered}
$$

- We start with $X^{(0)}$ generated by the RLA.

Results: LA, NLA, RLA, RNLA $(\varepsilon, M)=(0.01,10)$ [$N_{x}=128$]

- Consider the analytic profile f with $(\varepsilon, M)=(0.01,10)$.
- Plot of relative L^{∞} error in reconstructed solution (compared to exact solution) versus the regularization parameter τ for LA, NLA, RLA, RNLA algorithms.

Results: LA, NLA, RLA, RNLA $(\varepsilon, M)=(0.03,20)$ [$N_{x}=128$]

- Consider the analytic profile f with $(\varepsilon, M)=(0.03,20)$.
- Plot of relative L^{∞} error in reconstructed solution (compared to exact solution) versus the regularization parameter τ for LA, NLA, RLA, RNLA algorithms.

Results: LA, NLA, RLA, RNLA $(\varepsilon, M)=(0.05,30)$ [$N_{x}=128$]

- Consider the analytic profile f with $(\varepsilon, M)=(0.05,30)$.
- Plot of relative L^{∞} error in reconstructed solution (compared to exact solution) versus the regularization parameter τ for LA, NLA, RLA, RNLA algorithms.

Summary

- Layered-media scattering is an idealized model of acoustic propagation in the earth.
- We have generalized the fast and accurate Operator Expansions approach of Milder (1991) to produce far field data. More importantly, we have further expanded the method (not discussed today [DPN 2011]) to the multi-layer case.
- We have also shown how this OE formulation can be used to address the inverse problem of identifying internal boundary shapes given surface measurements.
- Future Directions: The method needs to be expanded in several directions: Three dimensions, multiple layers, full equations of elasticity, ...

