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Discussion

I Yuen: Solve large scale problems efficiently - find solutions
and features - edge resolution

I Reusable kernels -effective libraries - better utilize
HPC/GPU environments

I How can you “differentiate” your data
I Solve for solution and features together
I Does this all mesh together successfully?
I How does analysis of computation fit?
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Goals

I Numerical instability?
I Impact on solving ill-posed problems?
I What problem did we actually solve?
I Example - linear case least squares?
I Little mathematics - many images
I Nonlinear LS use multiple LLS cases



Illustration:Blurred Signal Restoration

Figure: Standard blurred signal, desire to find signal and its
features



Inverse Problem given model A, Condition 1.8679e+ 05data b find x,
noise .0001

x = A−1b (inverse crime) - need an alternative feasible solution



Tikhonov Regularized Solutions x(λ) and derivative Lx for changing λ

Figure: We cannot capture Lx (red) from the solution (green): Notice
that ‖Lx‖ decreases as λ increases



Example TV Solution: 1D: No Updates for the parameters

Figure: γ = 200 Low noise. Without updating λ left and updated right.
SB UPRE uses the estimated λ from UPRE for all SB steps. Update
SB, updates λ each step. SB IRN updates and iteratively reweights
‖d‖1.



Example TV Solution: 1D Updates for the parameters

Figure: γ = 200 Low noise. Without updating λ left and updated right.
SB UPRE uses the estimated λ from UPRE for all SB steps. Update
SB, updates λ each step. SB IRN updates and iteratively reweights
‖d‖1.



TV Solutions - Solve for both Lx and x concurrently: Split Bregman
Formulation (Goldstein and Osher, 2009)

Introduce d ≈ Lx and let R(x) = λ2

2 ‖d− Lx‖
2
2 + µ‖d‖1

(x,d)(λ, µ) = arg min
x,d
{1

2
‖Ax− b‖22 +

λ2

2
‖d− Lx‖22 + µ‖d‖1}

Alternating minimization separates steps for d from x

Various versions of the iteration can be defined. Fundamentally:

S1 : x(k+1) = arg min
x
{1

2
‖Ax− b‖22 +

λ2

2
‖Lx− (d(k+1) − g(k))‖22}

S2 : d(k+1) = arg min
d
{λ

2

2
‖d− (Lx(k+1) + g(k))‖22 + µ‖d‖1}

S3 : g(k+1) = g(k) + Lx(k+1) − d(k+1).



So how does this go?

1. Inverse problem we need regularization
2. For feature extraction we need more than Tikhonov

Regularization - e.g. TV
3. The TV iterates over many Tikhonov solutions
4. Both techniques are parameter dependent
5. Moreover the parameters are needed
6. We need to fully understand the Tikhonov and ill-posed

problems
7. Can we do blackbox solvers?
8. Be careful



Decompositions: SVD A = UΣV T , GSVD A = UGZT , L = VMZT

1. A (full column rank): ui, vi left and right singular vectors,
σi spectral values of A

x =

n∑
i=1

uTi b

σi
vi

A weighted linear combination of the basis vectors vi
2. Tikhonov Regularization I is a spectral filtering

xfilt =

n∑
i=1

γi(
uTi b

σi
)vi

3. Generalized Tikhonov: Generalized SVD expansion

x(k+1) =

p∑
i=1

(
νiu

T
i b

ν2
i + λ2µ2

i

+
λ2µiv

T
i h

(k)

ν2
i + λ2µ2

i

)
zi +

n∑
i=p+1

(uTi b)zi

x(λ) =

p∑
i=1

νi
ν2
i + λ2µ2

i

(uTi b)z̃i +
n∑

i=p+1

(uTi b)z̃i

z̃i is column of non orthogonal matrix Z occurring in GSVD



An example: n = 32 Left Singular Vectors and Basis Depend on A

Figure: The first few left singular vectors ui and basis vectors vi. Can
we use these basis vectors



Second example: n = 84 Left Singular Vectors and Basis Depend on A

Figure: The first few left singular vectors ui and basis vectors vi. Can
we use these basis vectors



Not Always so Bad a case with n = 64

Figure: Left singular vectors ui and basis vectors vi. Can we use
these basis vectors



Solutions expressed with respect to a basis

I Given A is the basis a good representation for “true” basis
of A?

I Mathematical ”backward” stability - for SVD the basis is
”not too far” from appropriate ”orthogonal” manifold

I But although the basis is ”orthogonal” - it eventually
contributes “ noise”

I When we look at residual for r = Ax− b is ‖r‖ small
sufficient? What is “small”

I Need to start looking at the noise entering the residual.
I Need to extend statistical techniques to examining the

stability in a new context?



Cumulative Periodogram for the left / right singular vectors

Figure: On left the left singular vectors and on the right the basis
vectors v. Low frequency vectors lie above the diagonal and high
frequency below the diagonal. White noise follows the diagonal



Second Example Cumulative Periodogram for the left / right singular
vectors

Figure: On left the left singular vectors and on the right the basis
vectors v. Low frequency vectors lie above the diagonal and high
frequency below the diagonal. White noise follows the diagonal



Cumulative Periodogram for the left / right singular vectors

Figure: On left the left singular vectors and on the right the basis
vectors v. Low frequency vectors lie above the diagonal and high
frequency below the diagonal. White noise follows the diagonal



Measure Deviation from Straight Line: testing for white noise

Figure: Calculate the cumulative periodogram, measure deviation
from “white noise” line, assess proportion of vector outside
Kolmogorov Smirnov test at a 5% confidence level.
Cannot expect to use more than 9 vectors in the expansion for
x. Additional terms are contaminated by noise - independent
of noise in b



Measure Deviation from Straight Line: testing for white noise

Figure: Calculate the cumulative periodogram, measure deviation
from “white noise” line, assess proportion of vector outside
Kolmogorov Smirnov test at a 5% confidence level.
Cannot expect to use more than 12 vectors in the expansion for
x. Additional terms are contaminated by noise - independent
of noise in b



Measure Deviation from Straight Line: testing for white noise

Figure: Calculate the cumulative periodogram, measure deviation
from “white noise” line, assess proportion of vector outside
Kolmogorov Smirnov test at a 5% confidence level.

Use all but last 2 vectors in the expansion for x. Additional
terms are contaminated by noise - independent of noise in b



Testing for the GSVD Basis

Figure: First Example: It pays to truncate the SVD before finding the
GSVD to give the basis for x



Testing for the GSVD Basis

Figure: Second Example: It pays to truncate the SVD before finding
the GSVD to give the basis for x



Observations

I Libraries need to include additional methods for assessing
reliability of the residual

I Even when committing the inverse crime we will not
achieve the solution if we cannot approximate the basis
correctly.

I We need all basis vectors which contain the high
frequency terms in order to approximate a solution with
high frequency components - e.g. edges.

I Reminder - this is independent of the data.
I But is an indication of an ill-posed problem. In this case the

data that is modified exhibits in the matrix A
decomposition.



Summary/Conclusions/Computational Issues

I Basis vectors are subject to noise and contaminate the
solution independent the data.

I Nonlinear least squares use repeated solutions of least
squares problems - SVD/GSVD analysis is relevant

I Solutions are obtained in a contaminated basis
I if we do not recognize the noise from the basis- how can

we estimate uncertainty due to noise in data
I Analysis here in terms of SVD/GSVD - but equivalent

results apply when using Krylov methods, need to examine
the basis

I We have to truncate the basis but implies that we will not
see high frequency in the solutions

I This is work in progress - lots to discuss



Power Spectrum for detecting white noise : a time series analysis
technique

Suppose for a given vector y that it is a time series indexed by
position, i.e. index i.
Diagnostic 1 Does the histogram of entries of y generate

histogram consistent with y ∼ N(0, 1)? (i.e.
independent normally distributed with mean 0 and
variance 1) Not practical to automatically look at a
histogram and make an assessment

Diagnostic 2 Test the expectation that yi are selected from a
white noise time series. Take the Fourier transform
of y and form cumulative periodogram z from
power spectrum c

cj = |(dft(y)j |2, zj =

∑j
i=1 cj∑q
i=1 ci

, j = 1, . . . , q,

Automatic: Test is the line (zj , j/q) close to a straight line with
slope 1 and length

√
5/2?



Advantages of the SB formulation

Update for g: updates the Lagrange multiplier g

S3 : g(k+1) = g(k) + Lx(k+1) − d(k+1).

This is just - a vector update
Update for d:

S2 : d = arg min
d
{µ‖d‖1 +

λ2

2
‖d− c‖22}, c = Lx + g

= arg min
d
{‖d‖1 +

γ

2
‖d− c‖22}, γ =

λ2

µ
.

This is achieved using soft thresholding. - in place operation



The Tikhonov Step of the Algorithm

S1 : x(k+1) = arg min
x
{1

2
‖Ax− b‖22 +

λ2

2
‖Lx− (d(k+1) − g(k))‖22}

Standard least squares update using a Tikhonov regularizer.

x = arg min
x
{1

2
‖Ax− b‖22 +

λ2

2
‖Lx− h‖22}, h = d− g

Disadvantages of the formulation
update for x: A Tikhonov LS update each step
Right hand side deepndent on k
Regularization parameter λ - dependent on k?
Threshold parameter µ - dependent on k?


