Computational Issues Relating to Inversion of Practical Data: Where is the Uncertainty? Can we solve $A \mathrm{x}=\mathrm{b}$?

Rosemary Renaut
http://math.asu.edu/~rosie

Bridging the Gap?
 Ост 2, 2012

Discussion

- Yuen: Solve large scale problems efficiently - find solutions and features - edge resolution
- Reusable kernels -effective libraries - better utilize HPC/GPU environments
- How can you "differentiate" your data
- Solve for solution and features together
- Does this all mesh together successfully?
- How does analysis of computation fit?

Discussion

- Yuen: Solve large scale problems efficiently - find solutions and features - edge resolution
- Reusable kernels -effective libraries - better utilize HPC/GPU environments
- How can you "differentiate" your data
- Solve for solution and features together
- Does this all mesh together successfully?
- How does analysis of computation fit?

Discussion

- Yuen: Solve large scale problems efficiently - find solutions and features - edge resolution
- Reusable kernels -effective libraries - better utilize HPC/GPU environments
- How can you "differentiate" your data
- Solve for solution and features together
- Does this all mesh together successfully?
- How does analysis of computation fit?

Discussion

- Yuen: Solve large scale problems efficiently - find solutions and features - edge resolution
- Reusable kernels -effective libraries - better utilize HPC/GPU environments
- How can you "differentiate" your data
- Solve for solution and features together
- Does this all mesh together successfully?
- How does analysis of computation fit?

Discussion

- Yuen: Solve large scale problems efficiently - find solutions and features - edge resolution
- Reusable kernels -effective libraries - better utilize HPC/GPU environments
- How can you "differentiate" your data
- Solve for solution and features together
- Does this all mesh together successfully?
- How does analysis of computation fit?

Discussion

- Yuen: Solve large scale problems efficiently - find solutions and features - edge resolution
- Reusable kernels -effective libraries - better utilize HPC/GPU environments
- How can you "differentiate" your data
- Solve for solution and features together
- Does this all mesh together successfully?
- How does analysis of computation fit?

Goals

- Numerical instability?
- Impact on solving ill-posed problems?
- What problem did we actually solve?
- Example - linear case least squares?
- Little mathematics - many images
- Nonlinear LS use multiple LLS cases

Illustration:Blurred Signal Restoration

Figure: Standard blurred signal, desire to find signal and its features

Inverse Problem given model A, Condition $1.8679 e+05$ data b find x, noise . 0001
$x=A^{-1} b$ (inverse crime) - need an alternative feasible solution

Tikhonov Regularized Solutions $\mathbf{x}(\lambda)$ and derivative $L \mathbf{x}$ for changing λ

Figure: We cannot capture $L \mathrm{x}$ (red) from the solution (green): Notice that $\|L \mathrm{x}\|$ decreases as λ increases

Example TV Solution: 1D: No Updates for the parameters

Noise level 7.2769e-05 Comparing fixed 7

Example TV Solution: 1D Updates for the parameters

TV Solutions - Solve for both $L \mathrm{x}$ and x concurrently: Split Bregman Formulation (Goldstein and Osher, 2009)

Introduce $\mathbf{d} \approx L \mathbf{x}$ and let $R(\mathbf{x})=\frac{\lambda^{2}}{2}\|\mathbf{d}-L \mathbf{x}\|_{2}^{2}+\mu\|\mathbf{d}\|_{1}$

$$
(\mathbf{x}, \mathbf{d})(\lambda, \mu)=\arg \min _{\mathbf{x}, \mathbf{d}}\left\{\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\frac{\lambda^{2}}{2}\|\mathbf{d}-L \mathbf{x}\|_{2}^{2}+\mu\|\mathbf{d}\|_{1}\right\}
$$

Alternating minimization separates steps for d from x
Various versions of the iteration can be defined. Fundamentally:

$$
\begin{aligned}
& \mathrm{S} 1: \mathbf{x}^{(k+1)}=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\frac{\lambda^{2}}{2}\left\|L \mathbf{x}-\left(\mathbf{d}^{(k+1)}-\mathbf{g}^{(k)}\right)\right\|_{2}^{2}\right\} \\
& \mathrm{S} 2: \mathbf{d}^{(k+1)}=\arg \min _{\mathbf{d}}\left\{\frac{\lambda^{2}}{2}\left\|\mathbf{d}-\left(L \mathbf{x}^{(k+1)}+\mathbf{g}^{(k)}\right)\right\|_{2}^{2}+\mu\|\mathbf{d}\|_{1}\right\} \\
& \mathrm{S} 3: \mathbf{g}^{(k+1)}=\mathbf{g}^{(k)}+L \mathbf{x}^{(k+1)}-\mathbf{d}^{(k+1)} .
\end{aligned}
$$

So how does this go?

1. Inverse problem we need regularization
2. For feature extraction we need more than Tikhonov Regularization - e.g. TV
3. The TV iterates over many Tikhonov solutions
4. Both techniques are parameter dependent
5. Moreover the parameters are needed
6. We need to fully understand the Tikhonov and ill-posed problems
7. Can we do blackbox solvers?
8. Be careful

Decompositions: SVD $A=U \Sigma V^{T}$, GSVD $A=U G Z^{T}, L=V M Z^{T}$

1. A (full column rank): $\mathbf{u}_{i}, \mathrm{v}_{i}$ left and right singular vectors, σ_{i} spectral values of A

$$
\mathbf{x}=\sum_{i=1}^{n} \frac{\mathbf{u}_{i}^{T} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i}
$$

A weighted linear combination of the basis vectors v_{i}
2. Tikhonov Regularization I is a spectral filtering

$$
\mathbf{x}_{\mathrm{filt}}=\sum_{i=1}^{n} \gamma_{i}\left(\frac{\mathbf{u}_{i}^{T} \mathbf{b}}{\sigma_{i}}\right) \mathbf{v}_{i}
$$

3. Generalized Tikhonov: Generalized SVD expansion

$$
\mathbf{x}^{(k+1)}=\sum_{i=1}^{p}\left(\frac{\nu_{i} \mathbf{u}_{i}^{T} \mathbf{b}}{\nu_{i}^{2}+\lambda^{2} \mu_{i}^{2}}+\frac{\lambda^{2} \mu_{i} \mathbf{v}_{i}^{T} \mathbf{h}^{(k)}}{\nu_{i}^{2}+\lambda^{2} \mu_{i}^{2}}\right) \mathbf{z}_{i}+\sum_{i=p+1}^{n}\left(\mathbf{u}_{i}^{T} \mathbf{b}\right) \mathbf{z}_{i}
$$

An example: $n=32$ Left Singular Vectors and Basis Depend on A

Figure: The first few left singular vectors \mathbf{u}_{i} and basis vectors v_{i}. Can we use these basis vectors

Second example: $n=84$ Left Singular Vectors and Basis Depend on A

Figure: The first few left singular vectors \mathbf{u}_{i} and basis vectors v_{i}. Can we use these basis vectors

Not Always so Bad a case with $n=64$

Solutions expressed with respect to a basis

- Given A is the basis a good representation for "true" basis of A ?
- Mathematical "backward" stability - for SVD the basis is "not too far" from appropriate "orthogonal" manifold
- But although the basis is "orthogonal" - it eventually contributes " noise"
- When we look at residual for $\mathbf{r}=A \mathbf{x}-\mathbf{b}$ is $\|\mathbf{r}\|$ small sufficient? What is "small"
- Need to start looking at the noise entering the residual.
- Need to extend statistical techniques to examining the stability in a new context?

Cumulative Periodogram for the left / right singular vectors

Figure: On left the left singular vectors and on the right the basis vectors \mathbf{v}. Low frequency vectors lie above the diagonal and high frequency below the diagonal. White noise follows the diagonal

Second Example Cumulative Periodogram for the left / right singular vectors

Figure: On left the left singular vectors and on the right the basis vectors \mathbf{v}. Low frequency vectors lie above the diagonal and high frequency below the diagonal. White noise follows the diagonal

Cumulative Periodogram for the left / right singular vectors

Figure: On left the left singular vectors and on the right the basis vectors \mathbf{v}. Low frequency vectors lie above the diagonal and high frequency below the diagonal. White noise follows the diagonal

Measure Deviation from Straight Line: testing for white noise

Total Deviation from Noise for basis vectors

Figure: Calculate the cumulative periodogram, measure deviation from "white noise" line, assess proportion of vector outside Kolmogorov Smirnov test at a 5% confidence level.
Cannot expect to use more than 9 vectors in the expansion for x. Additional terms are contaminated by noise - independent of noise in b

Measure Deviation from Straight Line: testing for white noise

Deviation from Noise for basis vectors

Figure: Calculate the cumulative periodogram, measure deviation from "white noise" line, assess proportion of vector outside Kolmogorov Smirnov test at a 5% confidence level. Cannot expect to use more than 12 vectors in the expansion for x. Additional terms are contaminated by noise - independent of noise in b

Measure Deviation from Straight Line: testing for white noise

Deviation from Noise for basis vectors

Figure: Calculate the cumulative periodogram, measure deviation from "white noise" line, assess proportion of vector outside Kolmogorov Smirnov test at a 5% confidence level.

Use all but last 2 vectors in the expansion for x. Additional terms are contaminated by noise - independent of noise in b

Testing for the GSVD Basis

Figure: First Example: It pays to truncate the SVD before finding the GSVD to give the basis for x

Testing for the GSVD Basis

Total Deviation from Noise for basis vectors

Figure: Second Example: It pays to truncate the SVD before finding the GSVD to give the basis for x

Observations

- Libraries need to include additional methods for assessing reliability of the residual
- Even when committing the inverse crime we will not achieve the solution if we cannot approximate the basis correctly.
- We need all basis vectors which contain the high frequency terms in order to approximate a solution with high frequency components - e.g. edges.
- Reminder - this is independent of the data.
- But is an indication of an ill-posed problem. In this case the data that is modified exhibits in the matrix A decomposition.

Summary/Conclusions/Computational Issues

- Basis vectors are subject to noise and contaminate the solution independent the data.
- Nonlinear least squares use repeated solutions of least squares problems - SVD/GSVD analysis is relevant
- Solutions are obtained in a contaminated basis
- if we do not recognize the noise from the basis- how can we estimate uncertainty due to noise in data
- Analysis here in terms of SVD/GSVD - but equivalent results apply when using Krylov methods, need to examine the basis
- We have to truncate the basis but implies that we will not see high frequency in the solutions
- This is work in progress - lots to discuss

Power Spectrum for detecting white noise : a time series analysis technique

Suppose for a given vector y that it is a time series indexed by position, i.e. index i.
Diagnostic 1 Does the histogram of entries of y generate histogram consistent with $\mathbf{y} \sim \mathbb{N}(0,1)$? (i.e. independent normally distributed with mean 0 and variance 1) Not practical to automatically look at a histogram and make an assessment
Diagnostic 2 Test the expectation that y_{i} are selected from a white noise time series. Take the Fourier transform of y and form cumulative periodogram z from power spectrum c

$$
\mathbf{c}_{j}=\left\lvert\,\left(\left.\operatorname{dft}(\mathbf{y})_{j}\right|^{2}, \quad \mathbf{z}_{j}=\frac{\sum_{i=1}^{j} \mathbf{c}_{j}}{\sum_{i=1}^{q} \mathbf{c}_{i}}, \quad j=1, \ldots, q,\right.\right.
$$

Automatic: Test is the line $\left(z_{j}, j / q\right)$ close to a straight line with slope 1 and length $\sqrt{5} / 2$?

Advantages of the SB formulation

Update for g : updates the Lagrange multiplier g

$$
\text { S3: } \mathbf{g}^{(k+1)}=\mathbf{g}^{(k)}+L \mathbf{x}^{(k+1)}-\mathbf{d}^{(k+1)}
$$

This is just - a vector update
Update for d :

$$
\begin{aligned}
\mathrm{S} 2: \mathbf{d} & =\arg \min _{\mathbf{d}}\left\{\mu\|\mathbf{d}\|_{1}+\frac{\lambda^{2}}{2}\|\mathbf{d}-\mathbf{c}\|_{2}^{2}\right\}, \quad \mathbf{c}=L \mathbf{x}+\mathbf{g} \\
& =\arg \min _{\mathbf{d}}\left\{\|\mathbf{d}\|_{1}+\frac{\gamma}{2}\|\mathbf{d}-\mathbf{c}\|_{2}^{2}\right\}, \quad \gamma=\frac{\lambda^{2}}{\mu} .
\end{aligned}
$$

This is achieved using soft thresholding. - in place operation

The Tikhonov Step of the Algorithm

$$
\mathrm{S} 1: \mathbf{x}^{(k+1)}=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\frac{\lambda^{2}}{2}\left\|L \mathbf{x}-\left(\mathbf{d}^{(k+1)}-\mathbf{g}^{(k)}\right)\right\|_{2}^{2}\right\}
$$

Standard least squares update using a Tikhonov regularizer.

$$
\mathbf{x}=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\frac{\lambda^{2}}{2}\|L \mathbf{x}-\mathbf{h}\|_{2}^{2}\right\}, \quad \mathbf{h}=\mathbf{d}-\mathbf{g}
$$

Disadvantages of the formulation

update for x : A Tikhonov LS update each step
Right hand side deepndent on k
Regularization parameter λ-dependent on k ?
Threshold parameter μ-dependent on k ?

