Data Assimilation in Geosciences: A highly multidisciplinary enterprise

Adrian Sandu *Computational Science Laboratory* Department of Computer Science Virginia Tech

Data assimilation fuses information from prior, model, and observations, to best describe a physical system

Background state

Virginia

Tech

Transport

Meteorology

Chemical kinetics

Data assimilation fuses information from prior, model, and observations, to best describe a physical system

Background state

Tech

Transport

Meteorology

Data assimilation fuses information from prior, model, and observations, to best describe a physical system

Bridging the Gap, Princeton, 8/1/2012. [http://csl.cs.vt.edu]

Tech

Data assimilation fuses information from prior, model, and observations, to best describe a physical system

Background state

Transport

Data assimilation fuses information from prior, model, and observations, to best describe a physical system

Background state

Tech

Transport

Meteorology

Some conventional and remote data sources used at ECMWF for numerical weather prediction

Lars Isaksen (http://www.ecmwf.int)

Challenge: data assimilation problems of practical interest are large-scale and computationally intensive

How many observations are being assimilated? All data assimilated at ECMWF 1996-2010 How large are the models? Typically O (10⁸) variables, and O(10) different physical processes

lèch

Bridging the Gap, Princeton, 8/1/2012

PoI: develop algorithms and implementations for large scale parallel machines, accelerator architectures

Bridging the Gap, Princeton, 8/1/2012

How does a data assimilation system work?

Lars Isaksen (http://www.ecmwf.int)

Bridging the Gap, Princeton, 8/1/2012. [http://csl.cs.vt.edu]

Virginia

lèch

A **Bayesian framework** is employed to derive the analysis, which encapsulates all our knowledge

• The analysis (posterior) probability density $\mathcal{P}^{a}(\mathbf{x})$:

Bayes:
$$\mathcal{P}^{a}(\mathbf{x}) = \mathcal{P}(\mathbf{x}|\mathbf{y}) = \frac{\mathcal{P}(\mathbf{y}|\mathbf{x}) \cdot \mathcal{P}^{b}(\mathbf{x})}{\mathcal{P}(\mathbf{y})}.$$

[Picture from J.L. Anderson]

PoI: build correct, and computationally efficient, models to quantify background (prior) errors

$$\log P = -\frac{1}{2} \left(\mathbf{x}^{\mathbf{0}} - \mathbf{x}^{\mathbf{b}} \right)^{\mathrm{T}} \mathbf{B}^{-1} \left(\mathbf{x}^{\mathbf{0}} - \mathbf{x}^{\mathbf{b}} \right) + \dots$$

- Background error representation determines the spread of information, and impacts the assimilation results
- Needs: high rank, capture dynamic dependencies, efficient computations
- Traditionally estimated empirically (NMC, Hollingsworth-Lonnberg)

Bridging the Gap, Princeton, 8/1/2012. [http://csl.cs.vt.edu]

lech

Practical approach: KF too expensive for large scale models; EnKF, PF use MC for covariance equations

Practical approach: MAP estimator calculates the most likely state conditioned by observations

4D-Var MAP estimate via model-constrained optimization problem

$$\mathcal{J}(\mathbf{x}_{0}) = \frac{1}{2} \|\mathbf{x}_{0} - \mathbf{x}_{0}^{b}\|_{\mathbf{B}_{0}^{-1}}^{2} + \frac{1}{2} \sum_{i=1}^{N} \|\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i}\|_{\mathbf{B}_{i}^{-1}}^{2}$$

$$\begin{array}{rcl} \mathbf{x}_{0}^{\mathrm{a}} &=& \arg\min\mathcal{J}\left(\mathbf{x}_{0}\right)\\ && \text{subject to: } \mathbf{x}_{i}=\mathcal{M}_{t_{0}\rightarrow t_{i}}\left(\mathbf{x}_{0}\right)\,, \ \ i=1,\cdots,N \end{array}$$

CSL

X

Bridging the Gap, Princeton, 8/1/2012. [http://csl.cs.vt.edu]

ech

Example: The Lorenz three-variable system. 4D-Var solution, 2 optimization iterations

èch

PoI (4D-Var DA): constructing adjoints is workintensive, error-prone. Automatic implementation (KPP)

Chemical mechanism

#INCLUDE atoms **#DEFVAR** O = O; O1D = O;03 = 0 + 0 + 0: NO = N + O: NO2 = N + O + O;**#DEFFIX** O2 = O + O; M = ignore;**#EQUATIONS** { Small Stratospheric } O2 + hv = 2O : 2.6E-10*S; O + O2 = O3 : 8.0E-17; O3 + hv = O + O2 : 6.1E-04*S; O + O3 = 2O2 : 1.5E-15; O3 + hv = O1D + O2 : 1.0E-03*S; O1D + M = O + M : 7.1E-11;O1D + O3 = 2O2 : 1.2E-10: NO + O3 = NO2 + O2; 6.0E-15; NO2 + O = NO + O2 : 1.0E-11;NO2 + hv = NO + O : 1.2E-02*S:

⁴ K P P

J.

Simulation code

[Damian et.al., 1996; S. et.al., 2002]

Challenge: sensitivity, optimization carried out with the discrete model, approximate continuous solutions?

Sensitivity analysis: how well does the derivative of the numerical solution approximate the continuous derivative?

Compute
$$\nabla J^h$$
 to represent ∇J

Inverse problems: how well does the discrete optimum approximate the continuous optimum?

$$\begin{aligned} \mathbf{x}_{opt} &= \operatorname{argmin}_{\mathbf{x}_{0}} J \\ \mathbf{x}_{opt}^{h} &= \operatorname{argmin}_{\mathbf{x}_{0}} J^{h} \\ \left\| \mathbf{x}_{opt}^{h} - \mathbf{x}_{opt} \right\| &\leq \operatorname{cond} \left(\nabla^{2} J(\mathbf{x}_{opt}) \right) \cdot \left\| \nabla J^{h} - \nabla J \right\| \end{aligned}$$

Challenge: continuous and discrete adjoints lead to different computational models

Active forward limiters act as pseudo-sources in adjoint Example: minmod

Virginia

ech

Example: LEnKF assimilation of ozone data from the ICARTT field campaign in Eastern U.S., July 2004

Ground level ozone at 2pm EDT, July 20, 2004 Observations: circles, color coded by O_3 mixing ratio

PoI (ensemble DA): represent uncertainty in many dimensions via small ensembles

$$\mathbf{x}_{f}^{k} = M\left(t^{k-1}, \mathbf{x}_{a}^{k-1}\right)$$

$$\mathbf{x}_{a}^{k} = \mathbf{x}_{f}^{k} + \mathbf{P}_{f}^{k} \mathbf{H}_{k}^{T} \left(\mathbf{R}_{k} + \mathbf{H}_{k} \mathbf{P}_{f}^{k} \mathbf{H}_{k}^{T}\right)^{-1} \left(\mathbf{y}_{obs}^{k} - \mathbf{H}_{k} \mathbf{x}_{f}^{k}\right)$$

$$\mathbf{Specify initial ensemble (sample B)}$$

$$\mathbf{Covariance inflation: Prevents filter divergence (additive, multiplicative, model-specific)$$

$$\mathbf{Covariance localization (limit long-distance spurious correlations)}$$

$$\mathbf{Correction localization (limit increments away from observations)$$

$$\mathbf{Correction localization} (limit increments away from observations)$$

$$\mathbf{Correction localization} (limit increments away from observations)$$

[Constantinescu, S., et al., 2007]

Ozonesonde S2 (18 EDT, July 20, 2004)

Virginia

Example: 4D-Var assimilation of TES ozone column, Aug. 2006. Validation against IONS-6 ozonesonde.

Limb View

Virginia

lech

TES is one of four instruments on the NASA EOS Aura platform, launched July 14 2004

Quality of TES ozone column assimilation results for several DA methods (August 1-15, 2006)

PoI: develop algorithms to configure the sensor network such as to maximize the information benefit

