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Surface loading
Surface-loading topographyH11 is in instantaneous elastic balance with the sub-

surface topographyH12, according to the biharmonic equation:(
∇4 +

g∆2

D

)
H12(x) = −g∆1

D
H11(x). (1)

Subsurface loading
Similarly, subsurface-loading topography H22 is balanced at the surface by H21

following the same equation:(
∇4 +

g∆1

D

)
H21(x) = −g∆2

D
H22(x). (2)

We want to find D, the flexural rigidity.

Turcotte & Schubert (1982)
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Thus the free-air anomaly dGij(k) due to the topographic perturbation dHij(k),

at the jth interface resulting from the ith loading process, is given by

dGij(k) = 2πG∆jdHij(k)ekzj . (3)

The observable free-air anomaly is the sum of all contributions of this kind:

dG◦◦(k) = dG11(k) + dG12(k) + G21(k) + G22(k). (4)

The Bouguer gravity anomaly is calculated from the free-air anomaly by subtract-

ing the gravitational effect from the observable surface topography dH◦1(k),

dG◦2(k) = dG12(k) + dG22(k). (5)
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What do we want to know? 9/25

• Given a whole lot of high-quality gravity and topography data, we want to

find one single parameter, the rigidity, D, that describes their relation.

• The rigidity parameter embodies a mechanical equilibrium

to initial, unknown, system inputs at two lithospheric interfaces.

• We only observe the sum of the outputs.

• We allow ourselves to assume a certain proportionality between the power-

spectral densities of the inputs: f 2.

• We specify a joint structure to the initial inputs that also allows

for their correlation: r.

Simons & Olhede, in revision, 2012
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H◦1 is the “visible topography” and G◦2 the “Bouguer gravity anomaly”.

Both stochastic harmonizable processes amenable to 〈ensemble averaging〉.

Define the admittance:

Q′
◦(k) =

〈dG◦2(k) dH∗
◦1(k)〉

〈dH◦1(k) dH∗
◦1(k)〉

.

Define the coherence-squared:

γ′2
◦ (k) =

|〈dG◦2(k) dH∗
◦1(k)〉|2

〈dH◦1(k) dH∗
◦1(k)〉〈dG◦2(k) dG∗◦2(k)〉

.

The forward model is a very doable function of D, f 2, and r.

Bendat & Piersol (2000)



Admittance and Coherence — II
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Admittance and Coherence — III
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Measurements of coherence 13/25
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McKenzie, JGR, 2003
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Pérez-Gussinyé et al., JGR, 2004
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Find a robust estimator for D, f 2 and r using proper statistical theory.

Spatial-domain topography and gravity may or may not be Gaussian, and

spectral-domain admittance and coherence certainly are not.

Build a spectral observation vector (and attempt to calculate it)

dH(k) =

dH◦1(k)

dG◦2(k)

 ←−

H◦1(k)

G◦2(k)

 = H(k).

Perhaps surprisingly, H is (complex proper) Gaussian:

pH = NC(0,S) ,

and S is something that we can perfectly well calculate within the model.

Miller, SIAM Review, 1969
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The variance term contains the power spectral density of the loading process and

the effect of the isostatic compensation mechanism:

S = S11
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2 φ ∆2

1∆
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2 + f 2∆4
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−4
2 φ2

 ξ−2,

with φ(D) and ξ(D). Not pretty. Not linear. But perfectly tractable.

Note that the forms for admittance and coherence are ratios of the terms in this

variance matrix. In our formulation, we simply retain the individual terms, which

lead to Gaussian forms, rather than forming the spectral ratios, which don’t.

Olhede & Simons, in preparation, 2010
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Now we can form the log-likelihood of observing H under their being given by a

loading process S11 and a lithospheric response characterized by D and f 2:

L(θ) =
1

K

[
ln

∏
k

exp(−HHS−1H)

detS

]
.

To make everything analytical, we also parameterize S11:

• Assuming isotropy, we choose a three-parameter Matérn form for the initial

driving loads. Anisotropy is next.

The maximum-likelihood is the best, minimum-variance, unbiased estimate of

the new (three lithospheric, three spectral) parameter vector:

θ = [D f 2 r σ2 ν ρ ]T .

Simons & Olhede, in revision, 2012



The (isotropic) Matérn spectral class
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Does it work? Results 21/25
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Does it work? Modeling the residuals
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• In its simplest form, this is 1950s Whittle likelihood theory.

• There were issues with discretization and finite-field effects.

• There were issues with simulation.

• There were issues with developing likelihood-ratio tests.

• There are issues with convincing some very prominent geoscientists

that they need this much statistics.

• The full problem: anisotropic inputs, anisotropic responses, multilayer sys-

tems... is still out there.

• The connections in marrying deterministic forward models with stochastic

inputs and observables are fruitful and widespread.

Simons & Olhede, in revision, 2012
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is a very non-optimal thing to do. A robust method keeps the power of the

abundance of data by forming a Whittle maximum-likelihood estimator.

• Simulations verify that the estimates are normally distributed, and unbiased

and closely track the variance predicted by the fully analytic theory, which is

minimized. Confidence intervals are symmetric, and covariance between the

estimated D and f 2 is small. Though no longer needed, predicting admittance

and coherence in retrospect vastly tightens their error bars.

• Our current method successfully takes into account r-correlated loads, small

data sets, irregular domains. Anisotropy in both the loading and the response

is further down the line. Then, the statistics will be interesting.


