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Single Particle Cryo-Electron Microscopy: Model

Projection Pi

Molecule φ

Electronsource

Ri =





| | |
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i R2

i R3
i
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 ∈ SO(3)

◮ Projection images Pi (x , y) =
∫∞

−∞
φ(xR1

i + yR2
i + zR3

i ) dz + “noise”.

◮ φ : R3 7→ R is the electric potential of the molecule.
◮ Cryo-EM problem: Find φ and R1, . . . ,Rn given P1, . . . ,Pn.
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Toy Example
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E. coli 50S ribosomal subunit: sample images

Fred Sigworth, Yale Medical School
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Movie by Lanhui Wang and Zhizhen (Jane) Zhao

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
o
u
ri
er

S
h
el
l
C
o
rr
el
a
ti
o
n

Spatial frequency (Å
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Algorithmic Pipeline

◮ Particle Picking: manual, automatic or experimental image
segmentation.

◮ Class Averaging: classify images with similar viewing directions,
register and average to improve their signal-to-noise ratio (SNR).
S, Zhao, Shkolnisky, Hadani, SIIMS, 2011.

◮ Orientation Estimation:

S, Shkolnisky, SIIMS, 2011.

◮ Three-dimensional Reconstruction: a 3D volume is generated by a
tomographic inversion algorithm.

◮ Iterative Refinement

Assumptions for Today’s talk:

◮ Trivial point-group symmetry

◮ Homogeneity
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What mathematics do we use to solve the inverse problem?

◮ Tomography

◮ Convex optimization and semidefinite programming

◮ Random matrix theory (in several places)

◮ Representation theory of SO(3) (spherical harmonics)

◮ Spectral graph theory, (vector) diffusion maps

◮ Fast randomized algorithms

◮ ...
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Orientation Estimation: Fourier projection-slice theorem

Projection Pi

Projection Pj

P̂i

P̂j

3D Fourier space

3D Fourier space

(xij , yij)

(xji , yji )

Ricij cij = (xij , yij , 0)
T

Ricij = Rjcji
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Angular Reconstitution (Van Heel 1987, Vainshtein and Goncharov 1986)
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Experiments with simulated noisy projections
◮ Each projection is 129x129 pixels.

SNR =
Var(Signal)

Var(Noise)
,

(a) Clean (b) SNR=20 (c) SNR=2−1 (d) SNR=2−2 (e) SNR=2−3

(f) SNR=2−4 (g) SNR=2−5 (h) SNR=2−6 (i) SNR=2−7 (j) SNR=2−8
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Fraction of correctly identified common lines and the SNR

◮ Define common line as being correctly identified if both radial lines
deviate by no more than 10◦ from true directions.

◮ Fraction p of correctly identified common lines increases by PCA

log2(SNR) p

20 0.997
0 0.980
-1 0.956
-2 0.890
-3 0.764
-4 0.575
-5 0.345
-6 0.157
-7 0.064
-8 0.028
-9 0.019
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Least Squares Approach

◮ Consider the unit directional vectors as three-dimensional vectors:

cij = (xij , yij , 0)
T ,

cji = (xji , yji , 0)
T .

◮ Being the common-line of intersection, the mapping of cij by Ri must
coincide with the mapping of cji by Rj : (Ri ,Rj ∈ SO(3))

Ricij = Rjcji , for 1 ≤ i < j ≤ n.

◮ Least squares or Energy minimization:

min
R1,R2,...,Rn∈SO(3)

∑

i 6=j

‖Ricij − Rjcji‖
2

◮ Non-convex... Exponentially large search space...
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Spectral Relaxation for Uniformly Distributed Rotations

R̃i =

[

| |
R1
i R2

i

| |

]

=

[

x1i x2i
y1
i y2

i

z1i z2i

]

, i = 1, . . . , n.

◮ Define 3 vectors of length 2n

x =
[

x11 x21 x12 x22 · · · x1n x2n
]T

y =
[

y11 y21 y12 y22 · · · y1n y2n
]T

z =
[

z11 z21 z12 z22 · · · z1n z2n
]T

◮ Rewrite the objective function as

max
R1,...,Rn∈SO(3)

∑

i 6=j

〈Ricij ,Rjcji 〉 = max
R1,...,Rn∈SO(3)

xTCx + yTCy + zTCz

◮ By symmetry, if rotations are uniformly distributed over SO(3), then
the top eigenvalue of C has multiplicity 3 and corresponding
eigenvectors are x , y , z from which we recover R1,R2, . . . ,Rn!

Amit Singer (Princeton University) October 2012 13 / 14



Spectrum of C
◮ Numerical simulation with n = 1000 rotations sampled from the Haar

measure; no noise.
◮ Bar plot of positive (left) and negative (right) eigenvalues of C :

0 10 20 30 40 50 60
0

100

200

300

400

500

600

λ

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

−
λ

◮ Eigenvalues: λl ≈ n
(−1)l+1

l(l+1) , l = 1, 2, 3, . . .. (12 ,−
1
6 ,

1
12 , . . .)

◮ Multiplicities: 2l + 1.
◮ Two basic questions:

1. Why this spectrum? Answer: Representation Theory of SO(3)
(Hadani, S, 2011)

2. Is it stable to noise? Answer: Yes, due to random matrix theory.
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