The Inverse Problem of Cryo-Electron Microsopy

Amit Singer
Princeton University, Department of Mathematics and PACM

Bridging the Gap Between the Geosciences and Mathematics, Statistics, and Computer Science

October 2, 2012

Single Particle Cryo-Electron Microscopy: Model

- Projection images $P_{i}(x, y)=\int_{-\infty}^{\infty} \phi\left(x R_{i}^{1}+y R_{i}^{2}+z R_{i}^{3}\right) d z+$ "noise".
- $\phi: \mathbb{R}^{3} \mapsto \mathbb{R}$ is the electric potential of the molecule.
- Cryo-EM problem: Find ϕ and R_{1}, \ldots, R_{n} given P_{1}, \ldots, P_{n}.

Toy Example

E. coli 50S ribosomal subunit: sample images Fred Sigworth, Yale Medical School

Movie by Lanhui Wang and Zhizhen (Jane) Zhao

Algorithmic Pipeline

- Particle Picking: manual, automatic or experimental image segmentation.
- Class Averaging: classify images with similar viewing directions, register and average to improve their signal-to-noise ratio (SNR). S, Zhao, Shkolnisky, Hadani, SIIMS, 2011.
- Orientation Estimation: S, Shkolnisky, SIIMS, 2011.
- Three-dimensional Reconstruction: a 3D volume is generated by a tomographic inversion algorithm.
- Iterative Refinement

Assumptions for Today's talk:

- Trivial point-group symmetry
- Homogeneity

What mathematics do we use to solve the inverse problem?

- Tomography
- Convex optimization and semidefinite programming
- Random matrix theory (in several places)
- Representation theory of $\mathrm{SO}(3)$ (spherical harmonics)
- Spectral graph theory, (vector) diffusion maps
- Fast randomized algorithms

Orientation Estimation: Fourier projection-slice theorem

Angular Reconstitution (Van Heel 1987, Vainshtein and Goncharov 1986)

Experiments with simulated noisy projections

- Each projection is 129×129 pixels.

$$
\mathrm{SNR}=\frac{\operatorname{Var}(\text { Signal })}{\operatorname{Var}(\text { Noise })}
$$

(a) Clean

(f) $\mathrm{SNR}=2^{-4}$

(b) $\mathrm{SNR}=2^{0}$

(g) $\mathrm{SNR}=2^{-5}$
(h) $\mathrm{SNR}=2^{-6}$
(i) $\mathrm{SNR}=2^{-7}$

(e) $\mathrm{SNR}=2^{-3}$

(j) $\mathrm{SNR}=2^{-8}$

Fraction of correctly identified common lines and the SNR

- Define common line as being correctly identified if both radial lines deviate by no more than 10° from true directions.
- Fraction p of correctly identified common lines increases by PCA

$\log _{2}(\mathrm{SNR})$	p
20	0.997
0	0.980
-1	0.956
-2	0.890
-3	0.764
-4	0.575
-5	0.345
-6	0.157
-7	0.064
-8	0.028
-9	0.019

Least Squares Approach

- Consider the unit directional vectors as three-dimensional vectors:

$$
\begin{aligned}
c_{i j} & =\left(x_{i j}, y_{i j}, 0\right)^{T}, \\
c_{j i} & =\left(x_{j i}, y_{j i}, 0\right)^{T}
\end{aligned}
$$

- Being the common-line of intersection, the mapping of $c_{i j}$ by R_{i} must coincide with the mapping of $c_{j i}$ by $R_{j}:\left(R_{i}, R_{j} \in S O(3)\right)$

$$
R_{i} c_{i j}=R_{j} c_{j i}, \text { for } 1 \leq i<j \leq n .
$$

- Least squares or Energy minimization:

$$
\min _{R_{1}, R_{2}, \ldots, R_{n} \in S O(3)} \sum_{i \neq j}\left\|R_{i} c_{i j}-R_{j} c_{j i}\right\|^{2}
$$

- Non-convex... Exponentially large search space...

Spectral Relaxation for Uniformly Distributed Rotations

$$
\tilde{R}_{i}=\left[\begin{array}{cc}
\mid & \mid \\
R_{i}^{1} & R_{i}^{2} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{ll}
x_{i}^{1} & x_{i}^{2} \\
y_{i}^{1} & y_{i}^{2} \\
z_{i}^{1} & z_{i}^{2}
\end{array}\right], \quad i=1, \ldots, n .
$$

- Define 3 vectors of length $2 n$

$$
\begin{aligned}
& x=\left[\begin{array}{lllllll}
x_{1}^{1} & x_{1}^{2} & x_{2}^{1} & x_{2}^{2} & \cdots & x_{n}^{1} & x_{n}^{2}
\end{array}\right]^{T} \\
& y
\end{aligned}=\left[\begin{array}{lllllll}
y_{1}^{1} & y_{1}^{2} & y_{2}^{1} & y_{2}^{2} & \cdots & y_{n}^{1} & y_{n}^{2}
\end{array}\right]^{T},\left[\begin{array}{lllllll}
z_{1}^{1} & z_{1}^{2} & z_{2}^{1} & z_{2}^{2} & \cdots & z_{n}^{1} & z_{n}^{2}
\end{array}\right]^{T}, ~ l
$$

- Rewrite the objective function as

$$
\max _{R_{1}, \ldots, R_{n} \in S O(3)} \sum_{i \neq j}\left\langle R_{i} c_{i j}, R_{j} c_{j i}\right\rangle=\max _{R_{1}, \ldots, R_{n} \in S O(3)} x^{T} C x+y^{T} C y+z^{T} C z
$$

- By symmetry, if rotations are uniformly distributed over $S O(3)$, then the top eigenvalue of C has multiplicity 3 and corresponding eigenvectors are x, y, z from which we recover $R_{1}, R_{2}, \ldots, R_{n}$!

Spectrum of C

- Numerical simulation with $n=1000$ rotations sampled from the Haar measure; no noise.
- Bar plot of positive (left) and negative (right) eigenvalues of C :

- Eigenvalues: $\lambda_{I} \approx n \frac{(-1)^{1+1}}{(I+1)}, \quad I=1,2,3, \ldots\left(\frac{1}{2},-\frac{1}{6}, \frac{1}{12}, \ldots\right)$
- Multiplicities: $2 l+1$.
- Two basic questions:

1. Why this spectrum? Answer: Representation Theory of SO(3) (Hadani, S, 2011)
2. Is it stable to noise? Answer: Yes, due to random matrix theory.
