Bridging the Gap: Harnessing advanced Computational Libraries for coupled multi-physics problems

Marc Spiegelman^{1,2} and Cian R. Wilson¹ Plus enormous contributions from PETSc, FEniCS and AMCG groups

¹Lamont-Doherty Earth Observatory, Columbia University, New York

²DEES/DAPAM, Columbia University, New York

BTG, Princeton, 1-2 October 2012

Motivation

- Computation is essential for exploring non-linear multi-physics problems in Geosciences
- Major advances in hardware, software and algorithms make complex problems more accessible.
- However, still a considerable gap between Geosciences and Computational Sciences/Math.
- Some Existing Barriers:
 - Overall Complexity of both software libraries and models
 - Lack of transparency/reproducibility/reusability of current models
 - Language/Training issues between computation and Earth Sciences

Motivation

- Computation is essential for exploring non-linear multi-physics problems in Geosciences
- Major advances in hardware, software and algorithms make complex problems more accessible.
- However, still a considerable gap between Geosciences and Computational Sciences/Math.
- Some Existing Barriers:
 - Overall Complexity of both software libraries and models
 - Lack of transparency/reproducibility/reusability of current models
 - Language/Training issues between computation and Earth Sciences
- We need better tools for exploring complex (and simple) models and making advanced computation accessible to more general users.

Target Application : multi-physics models of magmatic plate boundaries

image courtesy of the Neptune project (www.neptune.washington.edu)

• Central to Solid Earth Geosciences: Essential for understanding

- Seismic, Volcanic and Tsunamagenic Natural Hazards
- global tectonics and geochemical cycling

Target Application : multi-physics models of magmatic plate boundaries

image courtesy of the Neptune project (www.neptune.washington.edu)

• Central to Solid Earth Geosciences: Essential for understanding

- Seismic, Volcanic and Tsunamagenic Natural Hazards
- global tectonics and geochemical cycling
- Multi-physics: Tightly coupled non-linear systems
 - Coupled fluid-solid mechanics
 - Complex solid rheologies
 - Coupled thermodynamics/geodynamics

Target Application : multi-physics models of magmatic plate boundaries

image courtesy of the Neptune project (www.neptune.washington.edu)

• Central to Solid Earth Geosciences: Essential for understanding

- Seismic, Volcanic and Tsunamagenic Natural Hazards
- global tectonics and geochemical cycling
- Multi-physics: Tightly coupled non-linear systems
 - Coupled fluid-solid mechanics
 - Complex solid rheologies
 - Coupled thermodynamics/geodynamics

• **Considerable uncertainty** in equations, constitutive relations and coupling

User Flexibility:

- Choice of **equations**, geometry, elements, constitutive relations, coupling
- Wide choice of solvers/preconditioners for **coupled non-linear** problems
- Ability to rapidly compose a range of models from simple process models to regional geodynamic models
- All choices available at or near run time

Infrastructure:

- Residual monitoring for the full coupled problem
- Model reproducibility:
 - Transparent options system
 - Regression tested
- Generic model services:
 - Standardized I/O
 - Checkpointing
 - Monitoring and detectors
- Parallel, scaleable, open source, version controlled, regression tested... free

Transparent Finite Element Rapid Model Assembler

Application: Fluid Migration in Subduction Zones

$$\nabla \cdot \left(2\eta \left(\frac{\nabla \mathbf{v}_{s} + \nabla \mathbf{v}_{s}^{T}}{2}\right)\right) = \nabla p^{*} + \varphi_{0}\varphi \mathbf{k}$$
$$\nabla \cdot \mathbf{v}_{s} = \varphi_{0}\frac{\mathcal{P}}{\zeta}$$
$$-\nabla \cdot \frac{K}{\mu}\nabla \mathcal{P} + \frac{\mathcal{P}}{\zeta} = -\nabla \cdot \left(\frac{K}{\mu}\mathbf{k} - \nabla p^{*}\right)$$
$$+\Gamma\frac{\Delta \rho}{\rho_{f}\varphi_{0}}$$
$$\frac{D\varphi}{Dt} = (1 - \varphi_{0}\varphi)\frac{\mathcal{P}}{\zeta} + \frac{\Gamma}{\varphi_{0}}$$

$$-\nabla \cdot \left[2 \ \mu \ \left(\frac{\nabla v + \nabla v^{T}}{2}\right)\right] + \nabla p - Tk = 0,$$
$$\nabla \cdot v = 0,$$
$$\frac{\partial T}{\partial t} + v \ \cdot \nabla T + \frac{1}{\text{Ra}} \nabla^{2} T = 0$$

$$-\nabla \cdot \left[2 \ \mu \ \left(\frac{\nabla v + \nabla v^{T}}{2}\right)\right] + \nabla p - Tk = 0,$$
$$\nabla \cdot v = 0,$$
$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T + \frac{1}{\mathrm{Ra}} \nabla^{2} T = 0$$

$$-\nabla \cdot \left[2\mu\left(\frac{\nabla v + \nabla v^{T}}{2}\right)\right] + \nabla p - Tk = 0,$$
$$\nabla \cdot v = 0,$$
$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T + \frac{1}{\mathrm{Ra}}\nabla^{2}T = 0$$

$$-\nabla \cdot \left[2\mu\left(\frac{\nabla v + \nabla v^{T}}{2}\right)\right] + \nabla p - Tk = 0,$$
$$\nabla \cdot v = 0,$$
$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T + \frac{1}{\mathrm{Ra}}\nabla^{2}T = 0$$

Let
$$u = (v, p, T)$$

$$u_{i+1} = u_i - \alpha J(u_i)^{-1} r(u_i)$$

Example: FEniCS Equation Description

Given function u = (v, p, T), test function $u_t = (v_t, p_t, T_t)$ and trial function $u_a = (v_a, p_a, T_a)$:

Weak form of residual, r(u):

$$\begin{split} r_{V} &= \int_{\Omega} \left[\left(\frac{\nabla v_{t} + \nabla v_{t}^{T}}{2} \right) : 2\mu \left(\frac{\nabla v + \nabla v^{T}}{2} \right) - \nabla \cdot v_{t} p - (v_{t})_{z} T \right], \\ r_{p} &= \int_{\Omega} p_{t} \nabla \cdot v, \\ r_{T} &= \int_{\Omega} \left[T_{t} \left((T - T_{n}) + \Delta t v_{\theta} \cdot \nabla T_{\theta} \right) + \frac{\Delta t}{\text{Ra}} \nabla T_{t} \cdot \nabla T_{\theta} \right] \\ r &= r_{V} + r_{p} + r_{T} \end{split}$$

Weak form of Jacobian, J(u):

$$J = r'(u)$$

Example: FEniCS Equation Description

Given function u = (v, p, T), test function $u_t = (v_t, p_t, T_t)$ and trial function $u_a = (v_a, p_a, T_a)$:

Weak form of residual, r(u):

$$r = r_v + r_p + r_T$$

Weak form of Jacobian, J(u):

$$J(u_i)\delta u = -r(u_i)$$

$$J = \begin{pmatrix} K_{11} & K_{12} & G_1 & C_1 \\ K_{21} & K_{22} & G_2 & C_2 \\ G_1^T & G_2^T & \mathbf{0} & \mathbf{0} \\ B_1 & B_2 & \mathbf{0} & A \end{pmatrix}$$

$$J(u_i)\delta u = -r(u_i)$$

$$J = \begin{pmatrix} K_{11} & K_{12} & G_1 & C_1 \\ K_{21} & K_{22} & G_2 & C_2 \\ G_1^T & G_2^T & \mathbf{0} & \mathbf{0} \\ B_1 & B_2 & \mathbf{0} & \mathbf{A} \end{pmatrix}$$

$$\tilde{J}_{\mathsf{PC}}(u_i)^{-1}J(u_i)\delta u = -\tilde{J}_{\mathsf{PC}}(u_i)^{-1}r(u_i)$$

$$J = \begin{pmatrix} K_{11} & K_{12} & G_1 & C_1 \\ K_{21} & K_{22} & G_2 & C_2 \\ G_1^T & G_2^T & \mathbf{0} & \mathbf{0} \\ B_1 & B_2 & \mathbf{0} & A \end{pmatrix}$$
$$J_{PC} = \begin{pmatrix} K_{11} & K_{12} & G_1 & C_1 \\ K_{21} & K_{22} & G_2 & C_2 \\ G_1^T & G_2^T & M & \mathbf{0} \\ B_1 & B_2 & \mathbf{0} & A \end{pmatrix}$$

$$\tilde{J}_{\mathsf{PC}}(u_i)^{-1}J(u_i)\delta u = -\tilde{J}_{\mathsf{PC}}(u_i)^{-1}r(u_i)$$

$$J = \begin{pmatrix} K_{11} & K_{12} & G_1 & C_1 \\ K_{21} & K_{22} & G_2 & C_2 \\ G_1^T & G_2^T & \mathbf{0} & \mathbf{0} \\ B_1 & B_2 & \mathbf{0} & A \end{pmatrix}$$
$$J_{PC} = \begin{pmatrix} K_{11} & K_{12} & G_1 & C_1 \\ K_{21} & K_{22} & G_2 & C_2 \\ G_1^T & G_2^T & M & \mathbf{0} \\ B_1 & B_2 & \mathbf{0} & A \end{pmatrix}$$

System (fgmres, fieldsplit)

$$\tilde{J}_{\mathsf{PC}}(u_i)^{-1}J(u_i)\delta u = -\tilde{J}_{\mathsf{PC}}(u_i)^{-1}r(u_i)$$

$$\tilde{J}_{\mathsf{PC}}(u_i)^{-1}J(u_i)\delta u = -\tilde{J}_{\mathsf{PC}}(u_i)^{-1}r(u_i)$$

$$\tilde{J}_{\mathsf{PC}}(u_i)^{-1}J(u_i)\delta u = -\tilde{J}_{\mathsf{PC}}(u_i)^{-1}r(u_i)$$

Transparent Finite Element Rapid Model Assembler

Example: TerraFERMA Options

File Edit View Validate Tools Help				
Node	Option Properties			
bucket_options	Ontions describing a system			
▶ geometry	A system consists of a DOLFIN functionspace, the fields on this functionspace, the for			
▶ io	describing the solvers and preconditioners that act on that functionspace and the coefficient			
▶ timestepping	that appear in those forms.			
nonlinear_systems	he system hane matt be and a anongst any salar systems			
▶ global_parameters				
 system (Convection) 				
system	Attributes			
	Name Value			
	Data			
	No data			
	Comment			
	No comment			
/system::Convection				

Example: TerraFERMA Options

File Edit View Validate Tools Help				
lode	Option Properties Description			
bucket_options	Options describing a system.			
> geometry	A system consists of a DOLFIN functionspace, the fields on this functionspace, the forms describing the solvers and preconditioners that act on that functionspace and the coefficients			
▶ timestenning	that appear in those forms.			
nonlinear systems	The system name must be unique amongst any other systems.			
 global parameters 				
▼ system (Convection)				
mesh (Mesh)	Attributes			
ufl symbol	Name Value			
► field (Velocity)	name Convection			
▶ field (Pressure)				
Field (Temperature)				
field				
coefficient (RayleighNumber)				
coefficient	Data			
boundary_condition	Data No data			
nonlinear_solver (Preliminary)				
▶ nonlinear_solver (Solver)				
nonlinear_solver				
solve (in_timeloop)				
system				
	Comment			
	No comment			
system::Convection	5 ¹			

Example: Setting Equations in TerraFERMA

File Edit View Validate Tools Help					
Node	Option Properties				
bucket_options	Description uff code form describing a linear residual form (must return a linear form). Any system, field or coefficient ufl symbols defined in this options file may be used in this form as well as any symbols defined in the preamble above.				
▶ geometry					
▶ io					
timestepping					
nonlinear_systems					
global_parameters					
 system (Convection) 					
mesh (Mesh)	Data				
ufl_symbol	D = 0.907/552789821368				
Field (Velocity)	2 mu - exp(-0-1_1)				
field (Pressure)	4 ry = (inner(sym(grad(y t)), 2.*mu*sym(grad(y i))) \				
 field (Temperature) 	5 - div(v_t)*p_i - T_i*v_t[1])*dx				
field	6 rp = p_t*div(v_i)*dx				
coefficient (RayleighNumber)	<pre>7 rT = (T_t*((T_i - T_n) + dt*inner(v_theta, grad(T_theta))) \</pre>				
coefficient	<pre>8 + (dt/Ra)*inner(grad(T_t), grad(T_theta)))*dx</pre>				
boundary_condition					
nonlinear_solver (Preliminary)	10 r = rv + rp + ri				
 nonlinear_solver (Solver) 					
▼ type (SNES)					
preamble					
▶ form (Residual)					
▶ form (Jacobian)	Revert data Store data				
▶ form (JacobianPC)	Comment				
quadrature_degree	· (string)				
▶ snes_type (ls)					
system::Convection/nonlinear_solver::Solver/type::SNES/form::Residual					

Example: Setting Equations in TerraFERMA

File Edit View Validate Tools Help	
ode	Option Properties
bucket_options	UB code form describing a jacobian bilinear form (must return a bilinear form) Any system
▶ geometry	field or coefficient ufl symbols defined in this options file may be used in this form as well as
▶ io	any symbols defined in the preamble and residual linear form above.
▶ timestepping	£
nonlinear_systems	
global_parameters	
 system (Convection) 	
mesh (Mesh)	Data
ufl_symbol	1 a = derivative(r, u_i, u_a)
▶ field (Velocity)	1
▶ field (Pressure)	1
▶ field (Temperature)	1
field	
 coefficient (RayleighNumber) 	1
coefficient	
boundary_condition	
nonlinear_solver (Preliminary)	a
nonlinear_solver (Solver)	
▼ type (SNES)	
preamble	
▶ form (Residual)	
 form (Jacobian) 	Revert data Store data
▶ form (JacobianPC)	Comment
quadrature_degree	· (string)
▶ snes_type (Is)	
ystem::Convection/nonlinear_solver::Solver/type::SNES/form::Jacobian	

ile Edit View Validate Tools Help ode v linear_solver	Option Properties Description Options describing a linear solver.		
 iterative_method (fgmres) preconditioner (fieldsplit) composite_type (multiplicative) 	* * *		
 v fieldsplit (Temperature) ▶ field (Temperature) field ▶ monitors 	System (fgmres, fieldsplit)		
 linear_solver iterative_method (gmres) preconditioner (ilu) remove_null_space fieldsplit (Stokes) field (Pressure) field (Velocity) field monitors linear_solver 	*		
 iterative_method (fgmres) preconditioner (fieldsplit) composite_type (multiplicative) fieldsplit (Velocity) fieldsplit (Pressure) fieldsplit 			
remove_null_space fieldsolit rstem:Stokes/nonlinear_solver:Solver/type::SNES/linear_solver	* *	PTC 2012	

Example: Benchmark (Blankenbach, 1989)

		Nu	Vrms	q_1	q 2	T_e	Ze
$Ra = 10^4$ isoviscous	$\begin{array}{c} 32 \times 32 \\ 64 \times 64 \\ 128 \times 128 \\ \end{array}$ Benchmark	4.887 4.885 4.885 4.884	42.865 42.865 42.865 42.865	8.060 8.059 8.059 8.059	0.589 0.589 0.589 0.589	0.422 0.422 0.422 0.422	0.226 0.226 0.225 0.225
$Ra = 10^5$ isoviscous	$\begin{array}{c} 32 \times 32 \\ 64 \times 64 \\ 128 \times 128 \\ \end{array}$ Benchmark	10.539 10.535 10.534 10.534	193.222 193.215 193.215 193.214	19.081 19.080 19.080 19.079	0.722 0.723 0.723 0.723	0.428 0.428 0.428 0.428	0.114 0.111 0.112 0.112
${ m Ra}=10^6$ isoviscous	$\begin{array}{c} 32 \times 32 \\ 64 \times 64 \\ 128 \times 128 \\ \end{array}$ Benchmark	21.982 21.971 21.972 21.972	834.024 833.990 833.989 833.990	46.008 45.972 45.967 45.964	0.877 0.877 0.877 0.877	0.432 0.432 0.432 0.432	0.059 0.058 0.058 0.058
$Ra = 10^4$ <i>T</i> -dep viscosity	$\begin{array}{c} 32 \times 32 \\ 64 \times 64 \\ 128 \times 128 \\ \end{array}$ Benchmark	10.069 10.066 10.064 10.066	479.951 480.385 480.257 480.433	17.533 17.531 17.528 17.531	1.007 1.008 1.008 1.009	0.739 0.740 0.740 0.741	0.062 0.063 0.063 0.062

Current Benchmarks

- Incompressible 2D Convection (Blankenbach et al, 1989)
- Incompressible 3D Convection (Busse et al., 1994)
- Cylindrical Laminar Plumes (Vatteville et al., 2009)
- Compressible 2D Convection (King et al., 2009)
- Kinematic Subduction Zones (van Keken et al., 2008)
- Linearized Free Surface Evolution (Kramer et al., 2012)
- Non-linear magma waves (Simpson and Spiegelman, 2011)
- Cylindrical Convection (Rhodri Davies: rhodri.davies@imperial.ac.uk)

Conclusions

- Many important problems in Earth Sciences can be described by non-linear coupled systems of partial differential equations.
- Much of the complexity modelling these systems stems from the nature of multi-physics where small changes in the coupling between fields or constitutive relations can lead to radical changes in behavior and the resulting demands on discretizations and solvers.
- Many established "single-physics" models have locked in solution strategies that are unsuited or difficult to extend to the more challenging non-linear behaviour of a multi-physics system.
- We require a significant increase in flexibility for users for both composing problems (from simple model problems to more 'realistic' coupled simulations) and changing solver strategies.
- Several advanced, open-source computational libraries mean that it is now possible to provide much greater flexibility to the user.
- TerraFERMA is a model building framework that gives access to these libraries while also providing a transparent description of the model.

Solid flow for solid velocity, \mathbf{v}_{s} , and dynamic pressure, p^{*} :

$$\nabla \cdot \left(2 \eta \left(\frac{\nabla \mathbf{v_s} + \nabla \mathbf{v_s}^{T}}{2}\right)\right) = \nabla p^* + \varphi_0 \varphi \mathbf{k}$$
$$\nabla \cdot \mathbf{v_s} = \varphi_0 \frac{\mathcal{P}}{\zeta}$$

Fluid flow for pore pressure, \mathcal{P} , and porosity, φ :

$$-\nabla \cdot \frac{K}{\mu} \nabla \mathcal{P} + \frac{\mathcal{P}}{\zeta} = -\nabla \cdot \left(\frac{K}{\mu} \mathbf{k} - \nabla p^* \right) + \Gamma \frac{\Delta \rho}{\rho_f \varphi_0}$$
$$\frac{D\varphi}{Dt} = \left(1 - \varphi_0 \varphi \right) \frac{\mathcal{P}}{\zeta} + \frac{\Gamma}{\varphi_0}$$

Constitutive relations:

$$\eta = \eta (T, \dot{\epsilon}, \varphi) , \quad \zeta = \eta \varphi^{-m} , \quad K = \varphi^{n}$$

Spiegelman and Wilson

Solid flow for solid velocity, \mathbf{v}_{s} , and dynamic pressure, p^{*} :

$$\nabla \cdot \left(2 \eta \left(\frac{\nabla \mathbf{v}_{s} + \nabla \mathbf{v}_{s}^{T}}{2}\right)\right) = \nabla p^{*} + \varphi_{0} \varphi \mathbf{k}$$
$$\nabla \cdot \mathbf{v}_{s} = \varphi_{0} \frac{\mathcal{P}}{\zeta}$$

Fluid flow for pore pressure, \mathcal{P} , and porosity, φ :

$$-\nabla \cdot \frac{K}{\mu} \nabla \mathcal{P} + \frac{\mathcal{P}}{\zeta} = -\nabla \cdot \left(\frac{K}{\mu} \mathbf{k} - \nabla \mathbf{p}^*\right) + \Gamma \frac{\Delta \rho}{\rho_f \varphi_0}$$
$$\frac{D\varphi}{Dt} = \left(1 - \varphi_0 \varphi\right) \frac{\mathcal{P}}{\zeta} + \frac{\Gamma}{\varphi_0}$$

Constitutive relations:

$$\eta = \eta (T, \dot{\epsilon}, \varphi) , \quad \zeta = \eta \varphi^{-m} , \quad K = \varphi^{n}$$

Spiegelman and Wilson

Solid flow for solid velocity, \mathbf{v}_{s} , and dynamic pressure, p^{*} :

$$\nabla \cdot \left(2 \eta \left(\frac{\nabla \mathbf{v}_{\mathbf{s}} + \nabla \mathbf{v}_{\mathbf{s}}^{T}}{2} \right) \right) = \nabla p^{*} + \varphi_{0} \varphi \mathbf{k}$$
$$\nabla \cdot \mathbf{v}_{\mathbf{s}} = \varphi_{0} \frac{\mathcal{P}}{\zeta}$$

Fluid flow for pore pressure, \mathcal{P} , and porosity, φ :

$$-\nabla \cdot \frac{\kappa}{\mu} \nabla \mathcal{P} + \frac{\mathcal{P}}{\zeta} = -\nabla \cdot \left(\frac{\kappa}{\mu} \mathbf{k} - \nabla \mathbf{p}^*\right) + \Gamma \frac{\Delta \rho}{\rho_f \varphi_0}$$
$$\frac{D\varphi}{Dt} = \left(1 - \varphi_0 \varphi\right) \frac{\mathcal{P}}{\zeta} + \frac{\Gamma}{\varphi_0}$$

Constitutive relations:

$$\eta = \eta(T, \dot{\epsilon}, \varphi), \quad \zeta = \eta \varphi^{-m}, \quad K = \varphi^{n}$$

Spiegelman and Wilson

TerraFERMA

Solid flow for solid velocity, \mathbf{v}_{s} , and dynamic pressure, p^{*} :

$$\nabla \cdot \left(2 \eta \left(\frac{\nabla \mathbf{v_s} + \nabla \mathbf{v_s}^{T}}{2}\right)\right) = \nabla p^* + \varphi_0 \varphi \mathbf{k}$$
$$\nabla \cdot \mathbf{v_s} = \varphi_0 \frac{\mathcal{P}}{\zeta}$$

Fluid flow for pore pressure, \mathcal{P} , and porosity, φ :

$$-\nabla \cdot \frac{K}{\mu} \nabla \mathcal{P} + \frac{\mathcal{P}}{\zeta} = -\nabla \cdot \left(\frac{K}{\mu} \mathbf{k} - \nabla p^* \right) + \Gamma \frac{\Delta \rho}{\rho_f \varphi_0}$$
$$\frac{D\varphi}{Dt} = \left(1 - \varphi_0 \varphi \right) \frac{\mathcal{P}}{\zeta} + \frac{\Gamma}{\varphi_0}$$

Constitutive relations:

$$\eta = \eta (T, \dot{\epsilon}, \varphi) , \quad \zeta = \eta \varphi^{-m} , \quad K = \varphi^{n}$$

Spiegelman and Wilson

Solid flow for solid velocity, \mathbf{v}_{s} , and dynamic pressure, p^{*} :

$$\nabla \cdot \left(2 \eta \left(\frac{\nabla \mathbf{v}_{s} + \nabla \mathbf{v}_{s}^{T}}{2}\right)\right) = \nabla p^{*} + \varphi_{0} \varphi \mathbf{k}$$
$$\nabla \cdot \mathbf{v}_{s} = \varphi_{0} \frac{\mathcal{P}}{\zeta}$$

Fluid flow for pore pressure, \mathcal{P} , and porosity, φ :

$$-\nabla \cdot \frac{K}{\mu} \nabla \mathcal{P} + \frac{\mathcal{P}}{\zeta} = -\nabla \cdot \left(\frac{K}{\mu} \mathbf{k} - \nabla \mathbf{p}^*\right) + \Gamma \frac{\Delta \rho}{\rho_f \varphi_0}$$
$$\frac{D\varphi}{Dt} = \left(1 - \frac{\varphi_0 \varphi}{\zeta}\right) \frac{\mathcal{P}}{\zeta} + \frac{\Gamma}{\varphi_0}$$

Constitutive relations:

$$\eta = \eta (T, \dot{\epsilon}, \varphi) , \quad \zeta = \eta \varphi^{-m} , \quad K = \varphi^{n}$$

Spiegelman and Wilson

Solid flow for solid velocity, \mathbf{v}_{s} , and dynamic pressure, p^{*} :

$$\nabla \cdot \left(2 \eta \left(\frac{\nabla \mathbf{v}_{\mathbf{s}} + \nabla \mathbf{v}_{\mathbf{s}}^{T}}{2} \right) \right) = \nabla p^{*}$$

$$abla \cdot \mathbf{v_s} = 0$$

Fluid flow for pore pressure, \mathcal{P} , and porosity, φ :

$$-\nabla \cdot \frac{K}{\mu} \nabla \mathcal{P} + \frac{\mathcal{P}}{\zeta} = -\nabla \cdot \frac{K}{\mu} \mathbf{k} + \Gamma \frac{\Delta \rho}{\rho_f \varphi_0}$$
$$\frac{D\varphi}{Dt} = \frac{\mathcal{P}}{\zeta} + \frac{\Gamma}{\varphi_0}$$

Constitutive relations:

$$\eta = \eta (T, \dot{\epsilon}, \varphi) , \quad \zeta = \eta \varphi^{-m} , \quad K = \varphi^{n}$$

Spiegelman and Wilson

TerraFERMA

Buoyancy and Pore Pressure:

$$\begin{split} -\nabla \cdot \frac{K}{\mu} \nabla \mathcal{P} + \frac{\mathcal{P}}{\zeta} &= -\nabla \cdot \frac{K}{\mu} \mathbf{k} + \Gamma \frac{\Delta \rho}{\rho_f \varphi_0} \\ \frac{D\varphi}{Dt} &= \frac{\mathcal{P}}{\zeta} + \frac{\Gamma}{\varphi_0} \end{split}$$

Constitutive relations:

$$\eta = \eta \left(T, \dot{\epsilon}, \varphi \right), \quad \zeta = \eta \varphi^{-m}, \quad K = \varphi^{n}$$

Buoyancy (zero compaction length approximation):

$$rac{Darphi}{Dt} = -
abla \cdot rac{\mathcal{K}}{\mu} \mathbf{k} + rac{\mathsf{\Gamma}}{arphi_0} \left(rac{\Delta
ho}{
ho_f} + 1
ight)$$

Buoyancy and Pore Pressure:

$$\begin{split} -\nabla \cdot \frac{K}{\mu} \nabla \mathcal{P} + \frac{\mathcal{P}}{\zeta} &= -\nabla \cdot \frac{K}{\mu} \mathbf{k} + \Gamma \frac{\Delta \rho}{\rho_f \varphi_0} \\ \frac{D\varphi}{Dt} &= \frac{\mathcal{P}}{\zeta} + \frac{\Gamma}{\varphi_0} \end{split}$$

Constitutive relations:

$$\eta = \eta \left(T, \dot{\epsilon}, \varphi \right), \quad \zeta = \eta \varphi^{-m}, \quad K = \varphi^{n}$$