Environmental change 60 Ma in Zumaia, Spain was not paced by periodic changes in Earth’s orbit.
Paleocene Eocene Thermal Maximum (PETM)

- extreme global warming event about 55.9 Myr ago
Paleocene Eocene Thermal Maximum (PETM)

- extreme global warming event about 55.9 Myr ago
- closest rate of carbon emissions to present day (Cui et al. 2011)

Image credit: Zachos et al. (2001)
Paleocene Eocene Thermal Maximum (PETM)

- extreme global warming event about 55.9 Myr ago
- closest rate of carbon emissions to present day (Cui et al. 2011)
- mass extinction of benthic foraminifera, largest mammalian turnover of Cenozoic (McInerny and Wing 2011)

Image credit: Zachos et al. (2001)
Paleocene Eocene Thermal Maximum (PETM)

- extreme global warming event about 55.9 Myr ago
- closest rate of carbon emissions to present day (Cui et al. 2011)
- mass extinction of benthic foraminifera, largest mammalian turnover of Cenozoic (McInerny and Wing 2011)
- don’t know exactly how long ancient warming or extinction took → study geologic record of this time period to find out for anthropocene

Image credit: Zachos et al. (2001)
Orbital Components

- Eccentricity - the shape of Earth’s orbit around the sun
 - varies from elliptical to near circular
 - every \(\sim 400 \text{ kyr and 100 kyr} \)
Orbital Components

- **Eccentricity** - the shape of Earth’s orbit around the sun
 - varies from elliptical to near circular
 - every ~400 kyr and 100 kyr
- **Obliquity** - the tilt of Earth’s axis
 - varies between 22.1° and 24.5°
 - every 41 kyr
Orbital Components

- Eccentricity - the shape of Earth’s orbit around the sun
 - varies from elliptical to near circular
 - every ~400 kyr and 100 kyr
- Obliquity - the tilt of Earth’s axis
 - varies between 22.1° and 24.5°
 - every 41 kyr
- Precession - the wobble of the axis of rotation
 - when modulated by eccentricity, determines where on the orbit the seasons occur
 - increases seasonal contrast in one hemisphere, decreases in other
 - every 19 kyr and 23 kyr
Orbital forcing of Earth’s climate

Changes in Earth’s orbital geometry (eccentricity, tilt, precession)

Changes in the seasonal distribution of Insolation (heat) as a function of latitude

Glacial-interglacial climate change

Amplified by other processes

ice albedo feedback: cooling leads to increased ice, increases reflectivity (albedo), reduces solar energy absorbed, increases cooling and vice versa

Milutin Milankovitch (Serbian mathematician, 1879-1958)
- studied Earth’s orbit while imprisoned during WWI
• limestone-marl couplets show cyclic variation of bioproductivity dependent on orbital forcing (Batenburg et al. 2012)
limestone-marl couplets show cyclic variation of bioproductivity dependent on orbital forcing (Batenburg et al. 2012)

- warm periods - increased organic production (plankton)
 - thicker limestone beds
- limestone-marl couplets show cyclic variation of bioproductivity dependent on orbital forcing (Batenburg et al. 2012)
 - warm periods - increased organic production (plankton)
 - thicker limestone beds
 - cool periods - decreased organic production
 - thin limestone beds
 - accounts for adjacent marl layers - “crowded couplets”
Batenburg et al. 2012

- each couplet represents precessional cycle (~20kyr)
Batenburg et al. 2012

- each couplet represents precessional cycle (~20kyr)
- bundles of five couplets represent short eccentricity cycle (~100kyr)
each couplet represents precessional cycle (~20kyr)
- bundles of five couplets represent short eccentricity cycle (~100kyr)
- four bundles represent long eccentricity cycle (~405kyr)
Batenburg et al. 2012

- each couplet represents precessional cycle (~20kyr)
- bundles of five couplets represent short eccentricity cycle (~100kyr)
- four bundles represent long eccentricity cycle (~405kyr)
Batenburg et al. 2012

- each couplet represents precessional cycle (~20kyr)
- bundles of five couplets represent short eccentricity cycle (~100kyr)
- four bundles represent long eccentricity cycle (~405kyr)
- used to decrease age uncertainties, provide dates for planktonic events
New Methodology
New Methodology

1. Did not assume coupling
LIMESTONE

MARL

Image credit:
Adam Maloof
Image credit: Adam Maloof
New Methodology

1. Did not assume coupling 2. Removed turbidites

vs

vs
marl beds

missing bases

Image credit: Adam Maloof
TURBIDITE

< 1 day

thousands of years
New Methodology

1. Did not assume coupling
2. Removed turbidites
3. Did not tune data

vs

marl beds

missing bases
Tuning

signal

time

signal

time

The diagram illustrates the process of tuning, showing how the signal changes over time.
1. Better not to tune if signal-to-noise ratio is less than ~1 (Proistosescu et al. 2012)
Tuning

1. better not to tune if signal-to-noise ratio is less than ~1 (Proistosescu et al. 2012)
2. tuning was employed in previous work because data were defined as Milankovitch cycles to begin with
 - artificially increased signal
Tuning

1. better not to tune if signal-to-noise ratio is less than ~1 (Proistosescu et al. 2012)
2. tuning was employed in previous work because data were defined as Milankovitch cycles to begin with
 ○ artificially increased signal
3. our data were too noisy for reliable tuning → did not tune
New Methodology

1. Did not assume coupling
2. Removed turbidites
3. Assessed applicability of tuning

vs

marl beds
missing bases
Check percent marl per meter for Milankovitch cycles using fast Fourier transform.
Check percent marl per meter for Milankovitch cycles using fast Fourier transform.
Check percent marl per meter for Milankovitch cycles using fast Fourier transform.

None, maybe some parts of section were noisier than others.
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform → None, maybe some parts of section were noisier than others → Apply wavelet analysis to look at power spectra
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform → None, maybe some parts of section were noisier than others → Apply wavelet analysis to look at power spectra
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform → None, maybe some parts of section were noisier than others → Apply wavelet analysis to look at power spectra → No consistent frequencies
Check percent marl per meter for Milankovitch cycles using fast Fourier transform.

None, maybe some parts of section were noisier than others.

Apply wavelet analysis to look at power spectra.

No consistent frequencies.

Define couplets and checking them for cyclicity using fast Fourier transform.
Check percent marl per meter for Milankovitch cycles using fast Fourier transform

None, maybe some parts of section were noisier than others

Apply wavelet analysis to look at power spectra

No consistent frequencies

Define couplets and checking them for cyclicity using fast Fourier transform

Fast Fourier Transform of a Couplet Thickness

27.0 = 175.6 kyr
3.00 = 19.51 kyr
3.47 = 22.54 kyr

No consistent frequencies
Check percent marl per meter for Milankovitch cycles using fast Fourier transform.

Define couplets and checking them for cyclicity using fast Fourier transform.

1. None, maybe some parts of section were noisier than others.

2. Apply wavelet analysis to look at power spectra.

No consistent frequencies.

Fast Fourier Transform of a Couplet Thickness

- 3.00 = 19.51 kyr
- 3.47 = 22.54 kyr
- 27.0 = 175.6 kyr
- 27.0 = 175.6 kyr
- 3.00 = 19.51 kyr

![Fast Fourier Transform Graph]

Power

Frequency [cycles/couplet]
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform.
 - None, maybe some parts of section were noisier than others
 - Apply wavelet analysis to look at power spectra
 - No consistent frequencies

2. Define couplets and checking them for cyclicity using fast Fourier transform
 - Found 19/22 kyr peaks (precession)
 - Try to improve: Remove turbidites
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform

 → None, maybe some parts of section were noisier than others

 → Apply wavelet analysis to look at power spectra

 → No consistent frequencies

2. Define couplets and checking them for cyclicity using fast Fourier transform

 → Found 19/22 kyr peaks (precession)

 → Try to improve:
 Remove turbidites

 32.27 = 412.1 kyr
 4.30 = 54.94 kyr
 2.63 = 33.63 kyr
 6.79 = 86.75 kyr
Check percent marl per meter for Milankovitch cycles using fast Fourier transform → None, maybe some parts of section were noisier than others → Apply wavelet analysis to look at power spectra → No consistent frequencies

Define couplets and checking them for cyclicity using fast Fourier transform → Found 19/22 kyr peaks (precession) → Try to improve: Remove turbidites → Milankovitch cycles no longer appear in fast Fourier transform
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform
 None, maybe some parts of section were noisier than others
 Apply wavelet analysis to look at power spectra
 No consistent frequencies

2. Define couplets and checking them for cyclicity using fast Fourier transform
 Found 19/22 kyr peaks (precession)
 Try to improve: Remove turbidites
 Milankovitch cycles no longer appear in fast Fourier transform
 No tuning: better with noisy data
Check percent marl per meter for Milankovitch cycles using fast Fourier transform

None, maybe some parts of section were noisier than others

Apply wavelet analysis to look at power spectra

No consistent frequencies

Found 19/22 kyr peaks (precession)

Try to improve: Remove turbidites

Milankovitch cycles no longer appear in fast Fourier transform

No tuning: better with noisy data

Define couplets and checking them for cyclicity using fast Fourier transform

1.

2.
Check percent marl per meter for Milankovitch cycles using fast Fourier transform

Define couplets and checking them for cyclicity using fast Fourier transform

Try to improve:
- Remove turbidites
- Milankovitch cycles no longer appear in fast Fourier transform

Apply wavelet analysis to look at power spectra

Found 19/22 kyr peaks (precession)

No tuning: better with noisy data

Milankovitch cycles no longer appear in fast Fourier transform

None, maybe some parts of section were noisier than others

No consistent frequencies
Check percent marl per meter for Milankovitch cycles using fast Fourier transform → None, maybe some parts of section were noisier than others → Apply wavelet analysis to look at power spectra → No consistent frequencies

1. Define couplets and checking them for cyclicity using fast Fourier transform

2. Found 19/22 kyr peaks (precession) → Try to improve: Remove turbidites → Milankovitch cycles no longer appear in fast Fourier transform

No tuning: better with noisy data

Limestone-marl couplets are not caused by precession and eccentricity
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform
 → None, maybe some parts of section were noisier than others
 → Apply wavelet analysis to look at power spectra
 → No consistent frequencies

2. Define couplets and checking them for cyclicity using fast Fourier transform
 → Found 19/22 kyr peaks (precession)
 → Try to improve: Remove turbidites
 → Milankovitch cycles no longer appear in fast Fourier transform
 → No tuning: better with noisy data

Turbidites are periodic

Limestone-marl couplets are not caused by precession and eccentricity
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform
2. Define couplets and checking them for cyclicity using fast Fourier transform

None, maybe some parts of section were noisier than others

Found 19/22 kyr peaks (precession)

Try to improve: Remove turbidites

Apply wavelet analysis to look at power spectra

No consistent frequencies

No tuning: better with noisy data

Turbidites are periodic

Limestone-marl couplets are not caused by precession and eccentricity
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform
 → None, maybe some parts of section were noisier than others
 → Apply wavelet analysis to look at power spectra
 → No consistent frequencies

2. Define couplets and checking them for cyclicity using fast Fourier transform
 → Found 19/22 kyr peaks (precession)
 → Try to improve: Remove turbidites
 → Milankovitch cycles no longer appear in fast Fourier transform
 → No tuning: better with noisy data

Turbidites are periodic

Limestone-marl couplets are not caused by precession and eccentricity
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform
 → None, maybe some parts of section were noisier than others
 → Apply wavelet analysis to look at power spectra
 → No consistent frequencies

2. Define couplets and checking them for cyclicity using fast Fourier transform
 → Found 19/22 kyr peaks (precession)
 → Try to improve: Remove turbidites
 → Milankovitch cycles no longer appear in fast Fourier transform
 → No tuning: better with noisy data

Turbidites are periodic

Limestone-marl couplets are not caused by precession and eccentricity
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform
 None, maybe some parts of section were noisier than others
 Apply wavelet analysis to look at power spectra
 No consistent frequencies

2. Define couplets and checking them for cyclicity using fast Fourier transform
 Found 19/22 kyr peaks (precession)
 Try to improve: Remove turbidites
 Milankovitch cycles no longer appear in fast Fourier transform
 No tuning: better with noisy data

Turbidites are periodic

Limestone-marl couplets are not caused by precession and eccentricity
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform

2. Define couplets and checking them for cyclicity using fast Fourier transform

Turbidites are periodic

None, maybe some parts of section were noisier than others

Try to improve: Remove turbidites

Applying wavelet analysis to look at power spectra

Limestone-marl couplets are not caused by precession and eccentricity

Found 19/22 kyr peaks (precession)

No tuning: better with noisy data

Milankovitch cycles no longer appear in fast Fourier transform

No consistent frequencies

19/22 kyr peaks (precession)
Check percent marl per meter for Milankovitch cycles using fast Fourier transform

None, maybe some parts of section were noisier than others

Apply wavelet analysis to look at power spectra

No consistent frequencies

Try to improve: Remove turbidites

Milankovitch cycles no longer appear in fast Fourier transform

No tuning: better with noisy data

Found 19/22 kyr peaks (precession)

Limestone-marl couplets are not caused by precession and eccentricity

Turbidites are periodic

1. Define couplets and checking them for cyclicity using fast Fourier transform

2. Limestone-marl couplets are not caused by precession and eccentricity
Check percent marl per meter for Milankovitch cycles using fast Fourier transform → None, maybe some parts of section were noisier than others → Apply wavelet analysis to look at power spectra → No consistent frequencies

Define couplets and checking them for cyclicity using fast Fourier transform → Found 19/22 kyr peaks (precession) → Try to improve: Remove turbidites → Milankovitch cycles no longer appear in fast Fourier transform

Turbidites are periodic

Everything is a turbidite

Limestone-marl couplets are not caused by precession and eccentricity
Try to improve:
- Remove turbidites
- Milankovitch cycles no longer appear in fast Fourier transform
- No tuning: better with noisy data

Limestone-marl couplets are not caused by precession and eccentricity

1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform
2. Define couplets and checking them for cyclicity using fast Fourier transform
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform

2. Define couplets and checking them for cyclicity using fast Fourier transform

 None, maybe some parts of section were noisier than others

 Found 19/22 kyr peaks (precession)

 Apply wavelet analysis to look at power spectra

 No consistent frequencies

 Try to improve: Remove turbidites

 Milankovitch cycles no longer appear in fast Fourier transform

 No tuning: better with noisy data

 Turbidites are periodic

 Everything is a turbidite

Limestone-marl couplets are not caused by precession and eccentricity
Check percent marl per meter for Milankovitch cycles using fast Fourier transform.

1.

Define couplets and checking them for cyclicity using fast Fourier transform.

2. Turbidites are periodic.

Turbidites are periodic.

Milankovitch cycles no longer appear in fast Fourier transform.

Apply wavelet analysis to look at power spectra.

None, maybe some parts of section were noisier than others.

No tuning: better with noisy data.

Found 19/22 kyr peaks (precession).

Try to improve: Remove turbidites.

Limestone-marl couplets are not caused by precession and eccentricity.

Everything is a turbidite.

No consistent frequencies.

Apply wavelet analysis to look at power spectra.

1. 2.

Turbidites are periodic.

Limestone-marl couplets are not caused by precession and eccentricity.
1. Check percent marl per meter for Milankovitch cycles using fast Fourier transform

2. Define couplets and checking them for cyclicity using fast Fourier transform

- No, maybe some parts of section were noisier than others
- Found 19/22 kyr peaks (precession)
- Apply wavelet analysis to look at power spectra
- No consistent frequencies

Limestone-marl couplets are not caused by precession and eccentricity

- Turbidites are periodic
- Everything is a turbidite

- No tuning: better with noisy data
- Apply wavelet analysis to look at power spectra

- Milankovitch cycles no longer appear in fast Fourier transform
Summary

1. Previous scientists started too high level: defined couplets in field, tuned
Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the layers of sediment in Zumaia
Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the layers of sediment in Zumaia
 2.1. Percent marl per meter → found no Milankovitch cycles
Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the layers of sediment in Zumaia
 2.1. Percent marl per meter → found no Milankovitch cycles
 2.2. Tried refining with couplet thickness → found peaks at 19/22 kyr
Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the layers of sediment in Zumaia
 2.1. Percent marl per meter → found no Milankovitch cycles
 2.2. Tried refining with couplet thickness → found peaks at 19/22 kyr
 2.3. Removed turbidites (noise) to amplify those peaks and find others → actually lost those cycles altogether
Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the layers of sediment in Zumaia
 2.1. Percent marl per meter → found no Milankovitch cycles
 2.2. Tried refining with couplet thickness → found peaks at 19/22 kyr
 2.3. Removed turbidites (noise) to amplify those peaks and find others → actually lost those cycles altogether
3. Conclusion: Environmental change 60 Ma in Zumaia, Spain was not paced by periodic changes in Earth’s orbit
Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the layers of sediment in Zumaia
 2.1. Percent marl per meter → found no Milankovitch cycles
 2.2. Tried refining with couplet thickness → found peaks at 19/22 kyr
 2.3. Removed turbidites (noise) to amplify those peaks and find others → actually lost those cycles altogether
3. Conclusion: Environmental change 60 Ma in Zumaia, Spain was not paced by periodic changes in Earth’s orbit
4. Possible explanations:
Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the layers of sediment in Zumaia
 2.1. Percent marl per meter → found no Milankovitch cycles
 2.2. Tried refining with couplet thickness → found peaks at 19/22 kyr
 2.3. Removed turbidites (noise) to amplify those peaks and find others → actually lost those cycles altogether
3. Conclusion: Environmental change 60 Ma in Zumaia, Spain was not paced by periodic changes in Earth’s orbit
4. Possible explanations
 4.1. Turbidites themselves are periodic
Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the layers of sediment in Zumaia
 2.1. Percent marl per meter → found no Milankovitch cycles
 2.2. Tried refining with couplet thickness → found peaks at 19/22 kyr
 2.3. Removed turbidites (noise) to amplify those peaks and find others → actually lost those cycles altogether
3. Conclusion: Environmental change 60 Ma in Zumaia, Spain was not paced by periodic changes in Earth’s orbit
4. Possible explanations
 4.1. Turbidites themselves are periodic
 4.2. Everything is part of a turbidite
Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the layers of sediment in Zumaia
 2.1. Percent marl per meter → found no Milankovitch cycles
 2.2. Tried refining with couplet thickness → found peaks at 19/22 kyr
 2.3. Removed turbidites (noise) to amplify those peaks and find others → actually lost those cycles altogether
3. Conclusion: Environmental change 60 Ma in Zumaia, Spain was not paced by periodic changes in Earth’s orbit
4. Possible explanations
 4.1. Turbidites themselves are periodic
 4.2. Everything is part of a turbidite

Questions?

