Climate cycles on an ice-free planet:

magnetic susceptibility as a metric for Late Paleocene environmental fluctuations in Zumaia, Spain

ARTEMIS EYSTER & AMBER Y. LIN

Image Credit: Adam Maloof

A Eccentricity: 400 ka and 100 ka

B Obliquity: 41 kyr 25 23 400 600 800 1000 400 600 800 1000

C Axial precession: 23 kyr

Milankovitch Cycles

TODAY: Obliquity

PALEOCENE: Eccentricity modulated precession

Image credit: NASA Earth Observatory

Image source:http://www.skepticalscience.com

Sedimentation Cycles

Image credit: Adam Maloof

Image source: dawn.com

Image source: wnpr.org

Image Source: mri-q.com

Bartington Instruments MS2k Surface Scanning Sensor

Image Source: bartington.com

CONTROL SAMPLE

Image credit: Adam Maloof

Past findings of Milankovitch cycles in Zumaia

Batenburg et al. 2014Ellwood et. al 2008

K-T boundary

Image source: Ellwood et. al

magnetic susceptibility

MS independent of facies

Remove Turbidites

MS all				MS with turbidities and ribbons removed					
Period (cm)	Period (beds)	Period (kyr)	Variance reduction	Period (cm)	Period (beds)	Period (kyr)	Variance reduction		
37.2	5.7	16.3	3.3						
39.0	5.9	17.1	3.8	38.9	7.6	17.1	4.0		
41.1	6.3	18.1	5.1	41.1	8.0	18.1	4.9		
70.1	10.7	30.8	5.2	70.5	13.7	31.1	4.7		
112.9	17.3	49.7	5.4	111.1	21.6	48.9	6.2		
234	35.9	103.1	5.1	236.8	46.0	104.37	7.1		
630	96.9	277.6	9.5	650	126.5	286.5	10.4		
				1090		480.5	16.68		

Larger variance reduction

Smaller variance reduction

New cycles

MS all				MS with turbidities and ribbons removed					
Period (cm)	Period (beds)	Period (kyr)	Variance reduction	Period (cm)	Period (beds)	Period (kyr)	Variance reduction		
37.2	5.7	16.3	3.3		2				
39.0	5.9	17.1	3.8	38.9	7.6	17.1	4.0		
41.1	6.3	18.1	5.1	41.1	41.1 8.0		<mark>4.9</mark>		
70.1	10.7	30.8	5.2	70.5	13.7	31.1	<mark>4.7</mark>		
112.9	17.3	49.7	5.4	111.1	21.6	48.9	6.2		
234	35.9	103.1	5.1	236.8	46.0	104.37	7.1		
630	96.9	277.6	9.5	650	126.5	286.5	10.4		
				1090		480.5	16.68		

What is tuning?

Increasing sedimentation rate

Tune to 18K (~21K)

Tune to 18K (~21K)

MS all				MS with turbidities and ribbons removed				Tuned to 41.1 cm (18.1 kyr)			
Period (cm)	Period (beds)	Period (kyr)	Variance reduction	Period (cm)	Period (beds)	Period (kyr)	Variance reduction	Period (cm)	Period (beds)	Period (kyr)	Variance reduction
37.2	5.7	16.3	3.3								
39.0	5.9	17.1	3.8	38.9	7.6	17.1	4.0	41.1	6.3	18.1	19.8
41.1	6.3	18.1	5.1	41.1	8.0	18.1	4.9	42.9	6.6	22.6	4.15
70.1	10.7	30.8	5.2	70.5	13.7	31.1	4.7	71.5	11.0	31.5	7.4
112.9	17.3	49.7	5.4	111.1	21.6	48.9	6.2	106.5	16.4	47.0	5.75
234	35.9	103.1	5.1	236.8	46.0	104.37	7.1	240	36.9	105.8	4.3
630	96.9	277.6	9.5	650	126.5	286.5	10.4				
		ie ie		1090		480.5	16.68	1081	166.3	476.5	16.3

Larger variance reduction

Periods calculated in kiloyears using an average sedimentation rate of 2.687 cm/kyr

Smaller variance reduction

New cycles

MS all				MS with turbidities and ribbons removed				Tuned to 41.1 cm (18.1 kyr)			
Period (cm)	Period (beds)	Period (kyr)	Variance reduction	Period (cm)	Period (beds)	Period (kyr)	Variance reduction	Period (cm)	Period (beds)	Period (kyr)	Variance reduction
37.2	5.7	16.3	3.3								
39.0	5.9	17.1	3.8	38.9	7.6	17.1	4.0	41.1	6.3	18.1	19.8
41.1	6.3	18.1	5.1	41.1	8.0	18.1	<mark>4.9</mark>	42.9	6.6	22.6	<mark>4.15</mark>
70.1	10.7	30.8	5.2	70.5	13.7	31.1	<mark>4.7</mark>	71.5	11.0	31.5	7.4
112.9	17.3	49.7	5.4	111.1	21.6	48.9	6.2	106.5	16.4	47.0	<mark>5.75</mark>
234	35.9	103.1	5.1	236.8	46.0	104.37	7.1	240	36.9	105.8	<mark>4.3</mark>
630	96.9	277.6	9.5	650	126.5	286.5	<mark>10.4</mark>				
	1.	1		1090		480.5	16.68	1081	166.3	476.5	16.3

- 1. Failed 2 tests of Milankovitch theory
 - a. Milankovitch cycles could be present... but many others present as well
 - b. Tuning to a supposed Milankovitch cycle does not increase variance reduction
- 2. What is the explanation?
 - a. Noise swamps signal
 - b. Milankovitch cycles do not exist in this time
- 3. **NOT** what most other studies have shown

1. Failed 2 tests of Milankovitch theory

1. Failed 2 tests of Milankovitch theory

a. Milankovitch cycles could be present... but many others present as well

- 1. Failed 2 tests of Milankovitch theory
 - a. Milankovitch cycles could be present... but many others present as well
 - b. Tuning to a supposed Milankovitch cycle does not increase variance reduction

- 1. Failed 2 tests of Milankovitch theory
 - a. Milankovitch cycles could be present... but many others present as well
 - b. Tuning to a supposed Milankovitch cycle does not increase variance reduction
- 2. What is the explanation?

- 1. Failed 2 tests of Milankovitch theory
 - a. Milankovitch cycles could be present... but many others present as well
 - b. Tuning to a supposed Milankovitch cycle does not increase variance reduction
- 2. What is the explanation?a. Noise swamps signal

- 1. Failed 2 tests of Milankovitch theory
 - a. Milankovitch cycles could be present... but many others present as well
 - b. Tuning to a supposed Milankovitch cycle does not increase variance reduction
- 2. What is the explanation?
 - a. Noise swamps signal
 - b. Milankovitch cycles do not affect sedimentation

- 1. Failed 2 tests of Milankovitch theory
 - a. Milankovitch cycles could be some of the many significant cycles
 - b. Tuning to a supposed Milankovitch cycle does not increase variance reduction
- 2. What is the explanation?
 - a. Noise swamps signal
 - b. Milankovitch cycles do not affect sedimentation
- 3. **NOT** what other studies have shown

Perhaps in a greenhouse world... climate is not as affected by Milankovitch cycles

Thank you.

Image credit: Amanda WIlkins

APPENDIX

Ellwood et. al 2008

- Location: 8.91 centered around boundary
- Methods:
 - Tested every 5 cm
 - \circ ~ Tested with susceptibility bridge
 - Create varying sedimentation rate

• Results:

Human

- Obliquity more in danian than saladian
- \circ \quad Eccentricity more in salandian than danian
- Precession in upper danian

Zumaia Beach

Image provided by Ellwood et. al

Batenburg et al. 2014

- Location:140 meters before K-PG Boundary
- Methods:
 - $\circ \quad \text{Eight samples per couplet} \\$
 - Average 8cm between each sample
 - All samples measured twice and alternated with blanks
 - \circ ~ band-pass filter centered at 405 kyr ~
- Results: Main periodicities of 415, 409, 23.6, 22.3, 17.9 kyr
- Conclusion: Eccentricity modulated precession 405 kyr

Diamagnetic, Para/Ferromagnetic and Field Direction

