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Abstract

One of Jupiter’s most prominent atmospheric features, the Great Red Spot (GRS), has been observed for more than
two centuries, yet little is known about its structure and dynamics below its observed cloud level. While its
anticyclonic vortex appearance suggests it might be a shallow weather-layer feature, the very long time span for
which it was observed implies it is likely deeply rooted, otherwise it would have been sheared apart by Jupiter’s
turbulent atmosphere. Determining the GRS depth will shed light not only on the processes governing the GRS,
but on the dynamics of Jupiter’s atmosphere as a whole. The Juno mission single flyby over the GRS (PJ7)
discovered using microwave radiometer measurements that the GRS is at least a couple hundred kilometers deep.
The next flybys over the GRS (PJ18 and PJ21), will allow high-precision gravity measurements that can be used to
estimate how deep the GRS winds penetrate below the cloud level. Here we propose a novel method to determine
the depth of the GRS based on the new gravity measurements and a Slepian function approach that enables an
effective representation of the wind-induced spatially confined gravity signal, and an efficient determination of the
GRS depth given the limited measurements. We show that with this method the gravity signal of the GRS should
be detectable for wind depths deeper than 300 km, with reasonable uncertainties that depend on depth (e.g.,
±100 km for a GRS depth of 1000 km).

Key words: gravitation – hydrodynamics – planets and satellites: atmospheres – planets and satellites: gaseous
planets

1. Introduction

Jupiter’s Great Red Spot (GRS) has been an iconic feature in
the solar system for centuries. Ever since it was discovered,
hundreds of years ago, it perplexed astronomers with its shape,
color, and consistency. Nonetheless, little is known about the
GRS, particularly about how deep into the gaseous planet this
anticyclonic vortex extends. On the one hand, it resembles an
Earth-like atmospheric vortex, suggesting it is driven by
shallow atmospheric processes, and should be shallow and
confined to some weather-layer (Dowling & Inger-
soll 1988, 1989). On the other, its centuries-long existence
within Jupiter’s turbulent atmosphere suggests that it must
contain significant mass otherwise it would have been sheared
apart by the jets and other vortices. The depth to which it
extends carries with it great implications on the mechanisms
driving and maintaining it. Until recently, the depth of Jupiter’s
atmosphere itself was unknown, but recent gravity measure-
ments by the Juno spacecraft (Iess et al. 2018) allowed for the
determination that the atmospheric jets on Jupiter extend down
to depths of thousands of kilometers (∼105 bars in pressure,
Kaspi et al. 2018). The goal of this study is to propose a new
methodology for interpreting the Juno gravity measurements in
order to determine the depth of the GRS.

The Juno spacecraft orbits Jupiter every 53 days on a polar,
highly eccentric orbit with perijove at 4000 km above Jupiter’s
cloud level (Bolton et al. 2017; Folkner et al. 2017). To allow a
full coverage of the planet, every perijove is at a different
longitude with a planned longitudinal separation of 11°.25 over
the entire mission. As the GRS drifts by ∼110° eastward every

year (Simon et al. 2018) this provides, in principle, several
opportunities for passes over the GRS. The first of these has
been on orbit 7 (PJ7), where microwave radiometer measure-
ments suggested that the GRS is at least a couple hundred
kilometers deep (Li et al. 2017). However, because but this
orbit was devoted to microwave measurements, radio science
operated only in the X-band, thus preventing the application of
the plasma calibration scheme, which requires simultaneous
Ka-band data (Iess et al. 2018). Orbits 18 (PJ18) and 21 (PJ21)
will fly over the GRS in gravity mode, meaning they will
operate with the more accurate Ka-band.
Differently than the depth estimate of the zonal jets, which is

obtained using the zonal gravity harmonics, for the case of the
GRS a nonzonal localized field is required. Parisi et al. (2016)
used the tesseral gravity field to estimate the depth, and found
that the GRS must be at least 2000 km deep in order to be
detected. However, that estimate of the gravity signature
required the determination of a large number of spherical
harmonics, resulting in a considerable uncertainty in the
solution. Here we propose a new approach, using Slepian
functions that are designed specifically for isolated gravity
measurements of local spatial features (e.g., Simons &
Dahlen 2006; Simons et al. 2009; Harig & Simons 2012;
Plattner & Simons 2017). We demonstrate its applicability to
the GRS problem and examine the detectability of the GRS
depth with the method, given the limited measurements
expected.
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2. Methods

2.1. Definition of Slepian Functions

Given a phenomenon such as the GRS winds and its
accompanying gravity field, that is confined to a specific
region, the Slepian functions form a basis set specifically to
maximize the phenomenon representation inside the region,
and minimize it outside the region. This is in contrast to the
traditional spherical harmonics that are set to represent global
signals with no preferences to specific regions. We follow here
the derivation given by Simons et al. (2006), Sections 3.3 and
4.1, for Slepian functions concentrated over an arbitrarily
shaped region constructed from a band-limited set of spherical
harmonic functions. Let g r( ˆ), a real-valued function on a unit
sphere, be given by a spherical harmonic expansion to
bandwidth L,
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The ratio 0 1l< < is a measure of the spatial concentration.
Using Equations (1) and (2) this measure can be written as
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The problem can now be formulated as an
L L1 12 2+ ´ +( ) ( ) algebraic eigenvalue problem

Dg g. 4l= ( )

The solutions to this equation form the Slepian basis of
concentrated functions in the region R. Each solution g is a
vector including the amplitudes of each of the L 1 2+( )
spherical harmonics used in the definition. The number of
meaningful functions (that are well concentrated in the region R
of area A) depends on the bandwidth and the fractional area of
the region of concentration, and can be calculated using the
Shannon number
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where il are the solutions to Equation (4).
We can now define the basis of Slepian functions for the

region of interest. We define it as an ellipse centered at 273°E
and 16°S that spans 20° in longitude and 30° in latitude. This is
similar in longitudinal range to the region of strong winds

(Figure 1(b)), but is larger in latitudinal range and somewhat
shifted northward to account for the actual gravity signal
(discussed in Section 3).
Equations (1)–(5) define the canonical Slepian functions of

Simons et al. (2006), but here we restrict the range of all of the
sums to only include harmonics with l=1 through l=30 and
m=1 through m=l. Furthermore, as the zonal harmonics
(m= 0 for all l) are used in the Juno gravity analysis we
exclude them from the Slepian functions. We also exclude all m
for l=1 through l=4 because the low-degree tesseral field
may be related to large-scale structure and might be needed for
the overall Juno analysis. This ensures that when incorporating
the GRS Slepian functions in the Juno gravity analysis, there
will be no ambiguity in the values of the spherical harmonics.
Our Slepian functions are selectively band-passed rather than
band-limited, and they remain mutually orthonormal as well as
orthogonal to the spherical harmonics of the excluded degrees
and orders, avoiding contamination with their previously
determined coefficients. The calculated first eight Slepian
functions are shown in Figure 2, and with the Shannon number
being N=10 we will use in the analysis the first 10 functions
to reconstruct the GRS gravity field.

2.2. The GRS-induced Gravity Signal

We define the flow structure involved in the GRS similarly
to Parisi et al. (2016) and Galanti et al. (2017a) to be

u ur r
a r

H
, , , , exp , 6cylq f q f= -

-⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

where u u r v r, , , , ,cyl cyl cylq f q f= [ ( ) ( )] is the observed
cloud-level wind (Figure 1(b)), projected along cylinders after
its zonal mean is subtracted, a=69,911 km is the planet mean
radius, and H is the exponential decay scale of the cloud-level
wind. Note that the exact nature of the decay function might
change for the analysis of the actual measurements (e.g., Kaspi
et al. 2018).
Due to the strong winds around the vortex the geostrophic

gradient creates a density anomaly with respect to its
surroundings, that can be calculated via thermal wind balance,
namely

u g2 , 70W  r r=  ¢ ´( · )[ ] ( )

where u r u v,0 0=( ) [ ] is the 3D velocity, W is the planetary
rotation rate, rr ( ) is the background density field, g r0 ( ) is the
mean gravity vector, and r, ,r q f¢( ) is the dynamical density
anomaly (Pedlosky 1987; Kaspi et al. 2009). Other effects not
included in this balance, such as the anomalous gravity and
centrifugal forces induced by the density anomalies (Zhang
et al. 2015; Cao & Stevenson 2017), were shown, for the large-
scale stronger zonal flows, to have a small effect on the gravity
solutions (Galanti et al. 2017b; Kaspi et al. 2018). In the case of
the GRS winds, where the zonally mean wind is excluded, this
holds even more so as the induced density anomalies are local
to the GRS region and the induced gravity anomalies are
negligible. The balance also does not include the effect of the
centrifugal force acting due to curvature of the flow (gradient
flow, Holton 2004). This effect implies, for the GRS winds, an
increase of about 5% in the accompanying density anomalies.
The gravity signal at the surface of the planet resulting from

the density perturbations r¢ can be calculated (Galanti et al.
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2017a) either directly or using spherical harmonics coefficients
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where l 2 and m 0 are the degree and order of the
expansion, respectively. The spatially dependent gravity field
in the radial direction is then
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2.3. Using Slepian Functions to Define the GRS Gravity

Given a set of Slepian functions gi (Equation (4)), expressed
as a combination of spherical harmonics Clm

gi and Slm
gi , and a

thermal wind solution for the GRS gravity signal defined by
Clm

TW and Slm
TW (Equations (8) and (9)), the combination of the

Slepian functions that best describe the GRS gravity field can
be found by minimizing
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where ia (the amplitude of the Slepian functions) are the
parameters to be optimized. A solution for ia is found by

solving
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Therefore, given a gravity field concentrated in the GRS region
(expressed in terms of spherical harmonics coefficients
C S,lm lm

TW T W) that field can be represented by a set of Slepian
functions C S,lm

g
lm
gi i weighted by the coefficients ia .

The Slepian functions are defined at the planet’s surface, but
in practice they have to be projected upward to the location of
the Juno trajectory, where the gravitational pull on the
spacecraft is acting. Theoretically, this could lead to degrada-
tion in the orthogonality of the Slepian functions (Simons &
Dahlen 2006; Plattner & Simons 2017). The degree of the
degradation is a function of the ratio between the target altitude
and the radius of the planet, as well as the number and
complexity of the Slepian functions used. For the case of the
Juno trajectory over the GRS the altitudes of relevance range
are from around 4000 km at perijove to around 15,000 km.
Only at the outer edge of this range is the uncertainty in the
measurement expected to surpass the gravity signal generated
even in cases of very deep winds. The projection of gravity
signal resulting from both the TW solution and that
reconstructed using the Slepian functions can be calculated
by multiplying each coefficient Cl m

g
,

i , Sl m
g
,

i and Cl m,
TW, Sl m,

TW by the

factor a

a h

l 2

+

+( ) , where h is the altitude to which the gravity
field is projected and l is the degree of the spherical harmonics.
Performing this analysis for the range of wind depths discussed

Figure 1. (a) JunoCam picture of the GRS obtained on 2017 July 17 (Figure 4 from Sanchez-Lavega et al. 2018). (b) The nonzonally averaged winds (wind vectors in
arrows and magnitude in colors) in the GRS region based on the 2000 Cassini flyby (Choi & Showman 2011).
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here shows that for all altitudes the orthogonality of the Slepian
functions does not degrade substantially. In fact, the major
error in estimating the GRS depth with the Slepian functions
comes from the number of spherical harmonics used to define
the GRS region, and of course the largest errors arise from the
spatially limited Juno measurements.

2.4. Estimating the GRS Depth with the Trajectory Estimation
(TE) Model

Juno’s radio-science instrumentation is capable of providing
very accurate Doppler measurements, with accuracies as low as
10 μm s−1, at an integration time of 60 s. The Doppler
measurements are then analyzed with MONTE, JPL’s orbit
determination code, to determine parameters of Juno’s
dynamical model, such as Jupiter’s gravity harmonics or the
Slepian coefficients (Evans et al. 2016).

To assess Juno’s sensitivity to the gravitational signal
induced by the GRS, we simulate Juno’s gravity experiment
up until the end of the mission. We include all the designed
Juno’s gravity passes, with the inclusion of PJ7 (non-gravity-
dedicated). For the determination of the GRS gravity signal, the
largest contribution comes from the passes that fly over the
GRS, namely PJ7, and the gravity-dedicated PJ18 and PJ21.
We include all the passes planned until the end of the mission
because, in order to be able to determine the signal from the
GRS, a good knowledge of the zonally symmetric field is
required. The inclusion of the Slepian functions within the orbit
determination code is straightforward because each Slepian
function is a known linear combination of spherical harmonics.
Note that the partial derivative of the observables with respect
to the Slepian coefficient ia is also a linear combination of the
partial derivatives of the observables with respect to the
spherical harmonics (Han 2008; Goossens et al. 2012).

The simulations have been performed by generating 1 day
trajectories around Jupiter’s closest approach. Jupiter’s gravity
field is assumed to be composed from a zonally symmetric field
(following Iess et al. 2018) plus the addition of the signal of the

GRS, for the different depths, represented with the Slepian
functions.

3. Realizations of the GRS-induced Gravity Field

The GRS is constantly moving in the zonal direction with
respect to Jupiter system III with a rate of about 0°.3 day−1

(Simon et al. 2018), and therefore its longitudinal position has
to be determined with respect to PJ18 and PJ21. Other changes
to the GRS exist with time, such as its size and strength, but
these should not change much within the time interval between
the time in which the GRS shape is determined and the time of
the gravity measurements. An example of the GRS, as
observed recently in the cloud level (Figure4 from Sanchez-
Lavega et al. 2018), is shown in Figure 1(a). The strongest
winds are expected in the transition between the brown (belts)
and white (zones) clouds.
The GRS-induced gravity signal is calculated as defined in

Section 2.2, thus allowing the examination of the expected
gravity signal under different scenarios of wind depths. The
calculated gravity is shown in Figure 3 (top panels) for
e-folding depths of 300, 600, 1200, and 1800 km. For shallow
winds, the signal is mostly a dipole in the north–south direction
with a negative patch north of the positive one. The dipole
structure results from a combination of factors, coming from
the product of the background density and the winds, on the lhs
of Equation (7), because the former increases with depth and
the latter decreases with depth. As a result, the gradient in the
direction of the axis of rotation gives positive values in the
upper layers and negative values in the deeper layers, thus
creating a dipole structure in the radial direction. However,
because the winds extend inward in the direction of the axis of
rotation (Equation (7)), this vertical dipole is shifted such that
the negative density anomalies in the deeper layers are seated
northward of the positive density anomalies in the upper layers.
This slantwise density dipole, when integrated (Equations (8),
(9)), results in a north–south dipole in the gravity anomalies.
For deeper winds, the positive part of the gravity dipole

Figure 2. First eight Slepian functions (g g1 8- ) defined for the region of the GRS (marked by the black ellipse).
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becomes stronger compared to the negative part, with a slight
shift of the entire pattern to equatorward. The weakening of the
negative part of the dipole results from the negative density
anomalies being pushed into deeper layers that have less effect
on the surface gravity anomalies.

With the Slepian functions we can reconstruct the gravity
field for the four wind depth cases (Figure 3, upper panels)
using Equation (11). First, we reconstruct it with all 10 Slepian
functions (Figure 3, second row panels). It is evident that most
of the gravity signal is being reconstructed with these
functions. The ia values calculated for the first eight Slepian
functions are shown in Figure 4(a), for depth ranging from 300
to 1800 km. Several characteristics appear. First, there are four

functions that determine most of the signal: , , , and2 3 5 8a a a a .
Second, for shallow flows the largest contribution comes from
α2 (blue), but for cases with winds deeper than 700km other
functions make a sizable contribution as well, mostly α3 (red),
α5 (green), and α8 (light blue). Given this behavior, we can
reconstruct the gravity signal with a subset of the functions. In
Figure 3 (third and forth rows), we show two cases—using α2

only, and using , , , and2 3 5 8a a a a . As expected, using only α2

results in a fairly good reconstruction for the shallower cases,
while using the four leading Slepian functions results in a
reconstruction that is very similar to the original signals.

Figure 3. Gravity signal at the planet’s surface (in mGal) resulting from the GRS winds extended to depths of 300, 600, 1200, and 1800 km. Note that each case
(column-wise) has a different color range. Shown are the TW solutions (top row), and a reconstruction using all the Slepian functions , , ,1 2 10a a a¼ (second row),
α2 only (third row), and , , , and2 3 5 8a a a a (bottom row). The black oval contour denotes the region used to define the Slepian functions.
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4. The GRS Detectability

We perform a theoretical examination of the method, using
the planned trajectories of PJ18 and PJ21, similar to the
analysis of Galanti et al. (2017a), where the wind-induced
gravity field is used to simulate the Juno trajectories with the
TE model. Here, we use the wind-induced gravity signal in the
GRS region (Figure 3) for a depth range of 300–1800 km to
simulate the expected effect on the Juno trajectories PJ18 and
PJ21. Then, given the modified Juno trajectory, we include the
Slepian functions in the gravity analysis, to examine if the
wind-induced values for the Slepian functions ia (Figure 4(a))
can be recovered.

Reconstructing with all 10 Slepian functions turns out to be
infeasible because the uncertainties associated with the solution
are much larger than the values themselves, due to large
correlations, forcing a reduction in the number of functions to
be used. Identifying the most important functions for the GRS
gravity signal (largest values in Figure 4(a)) we can use only a
subset of the functions in the estimation process. The largest
contribution comes from α2, especially for the shallow cases,
because using the TE model to fit the gravity field with α2 only
(Figure 4(b), dashed) shows a fairly good fit for all cases with

some overestimation for deep flows. Adding α3 as a second
parameter to the fit (Figure 4(c), dashed) shifts α2 to give very
good values even for deep winds, but the value of α3 cannot be
recovered for winds deeper than 500km. Finally, fitting with
α2, α3, α5, and α8 (Figure 4(d), dashed) gives again a good
estimate for α2, but the other three Slepian functions remain
unresolved, suggesting that aside from α2 the other Slepian
functions are highly correlated in their manifestation in the
Juno trajectory. Whether we fit the trajectory with α2 only or
together with α3, α5, and α8, it is possible to obtain a good
estimation only for α2, the only parameter that can be used to
determine the depth. The other Slepian functions can be used
only to absorb other signals, preventing biases into α2. Note
that the uncertainty on α2 does not dramatically increase when
also including the other Slepian functions.
We can now use these results to estimate the detectability of

the GRS with the upcoming Juno overflights and the Slepian
approach. Given that we are able to resolve α2 we examine
how the uncertainty associated with it is translated to an
uncertainty in the estimated depth. For each depth H, we take
the TW value of α2 plus the uncertainty given with the TE
solution 2da and search for depth H+ at which the TW value
matches the combined value, so that

H H H2 2 2a a da= ++( ) ( ) ( ). The difference between the
depths H H Hd = -+ + is taken as the upper uncertainty for
the resolved depth. Similarly, we find Hd - using 2da and H-.
Note that H Hd d¹ -+ - as α2 is not a linear function of H. The
resolved depths and the uncertainties associated with them are
shown in Figure 5. For GRS depths of 300–1300 km the
uncertainty is of the order of ±100 km. For GRS depths larger
than 1300 km, the lower uncertainty is similar but the upper
uncertainty grows considerably, because the α2 value grows
slower at these depths. For example, if the winds are 1700 km
deep, the lower uncertainty will be around 200 km but the
upper uncertainty will be around 1500 km.

5. Conclusion

How deep is Jupiter’s Great Red Spot? Although it has been
observed for a few centuries, little is known about its structure
and dynamics below its observed cloud level. The Juno mission
will soon provide an opportunity to resolve this long-standing
question. The single Juno flyby over the GRS (PJ7) to date was

Figure 4. (a) The α values (solution of Equation (11) ×103) as function of the
GRS depth, for the first eight Slepian functions used to reconstruct the gravity
signals shown in Figure 3. (b) The same value of α2 (solid) together with the
TE solutions for it when only α2 is optimized for (dashed). Also shown are the
1σ uncertainties of the TE solutions. (c) Similar to (b), but for the TE analysis
when both α2 and α3 are optimized for. (d) Similar to (b), but for the TE
analysis when , , , and2 3 5 8a a a a are optimized for.

Figure 5. Detectability of the GRS depth. The uncertainty in the detection of
the GRS depth for a range of depths. The solid line denotes the resolved depth
as a function of the real depth (a one-to-one connection). The shaded region
shows the uncertainty in the resolved depth calculated from the uncertainty in
the resolved α2.
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dedicated to the microwave radiometer, which showed that it is
at least a couple hundred kilometers deep (Li et al. 2017). The
next flybys over the GRS, PJ18 and PJ21, to be carried during
2019, will allow high-precision gravity measurements that
might be used to estimate how deep the GRS winds penetrate
below the cloud level. This, however, is a challenging task
because the GRS is a small feature whose gravity signal is
close to the detectability levels.

Here we propose a new method to determine the depth of the
GRS using the upcoming gravity measurements, a dynamical
flow model, and a Slepian function approach that enables an
effective representation of the wind-induced gravity signal, and
an efficient determination of the GRS depth given the limited
expected measurements.

We show that the gravity signal induced by the GRS winds
can be well represented with a basis of Slepian functions,
defined specifically for the GRS region. It is found that one
function (α2) dominates the signal for shallow cases, and for
deeper winds an additional two to three functions are needed
(α3, α5, and α8); therefore, only a few parameters are needed in
order to resolve the gravity signal induced by the GRS and
hence the depth of its winds.

Using the Juno TE model we examine our ability to detect a
range of wind depths. We find that for GRS wind depths of
300–1300 km the methodology allows us to resolve the depth
of the GRS winds with an accuracy of about±100 km. For
GRS depths larger than 1300 km, the lower uncertainty is
similar but the upper uncertainty grows considerably.
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