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S U M M A R Y
We present a mathematical framework and a new methodology for the parametrization of sur-
face wave phase-speed models, based on traveltime data. Our method is neither purely local,
like block-based approaches, nor is it purely global, like those based on spherical harmonic
basis functions. Rather, it combines the well-known theory and practical utility of the spheri-
cal harmonics with the spatial localization properties of spline basis functions. We derive the
theoretical foundations for the application of harmonic spherical splines to surface wave to-
mography and summarize the results of numerous numerical tests illustrating the performance
of a practical inversion scheme based upon them. Our presentation is based on the notion
of reproducing-kernel Hilbert spaces, which lends itself to the parametrization of fully 3-D
tomographic earth models that include body waves as well.

Key words: Numerical approximation and analysis; Fourier analysis; Inverse theory; Tomog-
raphy; Seismic tomography; Surface waves and free oscillations.

1 I N T RO D U C T I O N

Surface wave tomography, which we define here to be the inverse

problem that solves for lateral inhomogeneities in the phase speed

of seismic surface waves, given measurements, made in a specific

period range, of their traveltimes from a collection of earthquake

sources to a set of seismometers (see, e.g. Nolet 1987), may be

represented mathematically by the integral equation∫
γq

c−1(r̂) dγ = tq for q = 1, . . . , N , (1)

where c−1 is the desired phase ‘slowness’ at the geographical lo-

cation r̂ on the Earth’s surface, the curve γq is the surface ray path

from the epicentre to the recording station and dγ its differential

angular arc length, and tq the corresponding traveltime datum. It

is to be noted that the paths γq themselves depend on the unknown

phase-speed distribution, thereby rendering the tomographic inverse

problem intrinsically non-linear. Keeping with common seismolog-

ical practice, however, here we focus on the linearized version of this

problem, in which the seismic ray path is a geodesic minimal arc, or

great-circle path, that connects epicentre and station. This approx-

imation is generally valid when the wave speeds vary only slightly,

and smoothly, from spherically symmetric background models such
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as the Preliminary Reference Earth Model (Dziewoński & Anderson

1981). In this sense, seismologists usually deal with traveltime

‘anomalies’, the difference between the traveltimes that are observed

and those predicted from the reference model and solve for local

wave speed ‘perturbations’ in the sense δc(r̂)/cR , where c R is the

reference phase speed. Neither this fact nor the fact that eq. (1) is

an infinite-frequency, ray-theoretical approximation, which, though

it has been the dominant approach historically, is currently under-

going a paradigm shift (e.g. Dahlen et al. 2000; Hung et al. 2000;

Zhou et al. 2004; Nissen-Meyer et al. 2007), fundamentally change

the results presented in this paper.

Knowledge of how seismic wave speeds vary throughout the Earth

is an important research goal (e.g. Romanowicz 2003, 2008). Al-

though this ultimately motivates our study, here we limit ourselves to

reporting on a mathematical advance in the methodology of seismic

surface wave tomography, rather than on obtaining and interpreting

results relevant to the geological sciences per se. Our present con-

tribution concerns the representation and retrieval of the solution

space of the wave speed pattern c(r̂) in eq. (1), which we refer to as

the ‘earth model’.

Tomographic studies—and this not only in seismology—usually

parametrize the target model by local or global basis functions

(Nolet 2008). The former may take the form of a set of non-

overlapping (and not necessarily regularly spaced) blocks, cells,

nodes or voxels (e.g. Aki et al. 1977; Zhang & Tanimoto 1993; Spak-

man & Bijwaard 2001; Simons et al. 2002; Debayle & Sambridge

2004; Nolet & Montelli 2005) that serve as strictly local characteris-

tic functions; they may be smooth, spatially localized, functions such

as cubic B-splines (e.g. Wang & Dahlen 1995; Wang et al. 1998;

Boschi et al. 2004); or wavelets (e.g. Chiao & Kuo 2001; Chevrot &
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Zhao 2007; Loris et al. 2007). The latter most commonly are spher-

ical harmonics (e.g. Dziewoński 1984; Woodhouse & Dziewoński

1984; Ekström et al. 1997; Trampert & Woodhouse 1996, 2001),

whose support is, by definition, global (Freeden & Michel 1999); in

this case, and for this reason, additional damping and smoothness

criteria are often imposed on the solution (Boschi & Dziewoński

1999).

Inversion strategies that don’t, properly speaking, parametrize the

model exist (e.g. Backus & Gilbert 1970; Tarantola & Valette 1982),

but then, these usually rely on the prescription of a very specific res-

olution criterion in the ‘Backus–Gilbert’ approach (e.g. Backus &

Gilbert 1968), or of a priori, that is, parametrized, forms of the

model covariance matrix in the ‘Bayesian’ approach (e.g. Tarantola

& Nercessian 1984; Montagner 1986). And, of course, even in those

cases, discretization of the model remains necessary for its repre-

sentation.

Model decompositions based on spherical harmonics have many

advantages. The mathematical properties of spherical harmonics

have long been studied intensively (e.g. Byerly 1893), and a mul-

titude of numerical tools are available for application in seismic

tomography (e.g. Doornbos 1988; Dahlen & Tromp 1998). Fur-

thermore, the results of seismic tomographic inversions are often

interpreted in a geodynamic context by comparing them to the (pre-

dicted) behaviour of the gravitational or magnetic anomaly fields of

the Earth, themselves handily expressed in the spherical harmonic

basis (e.g. Hager et al. 1985; Forte et al. 1995; Pari & Peltier 1996).

Last, the regularization of the commonly ill-posed tomographic in-

verse problem, which has a somewhat ad hoc character with strictly

local parametrizations, retains the intuitive quality of an isotropic

low-pass filtering operation in the spherical harmonic basis (see,

e.g. Boschi & Dziewoński 1999), which is both easily implemented

and readily assessable.

One evident drawback of spherical harmonics is their global char-

acter. Since seismic events mostly originate in narrow regions of

plate boundary activity and the distribution of seismic stations varies

extremely over the planet—that is, until the oceans are covered with

recording units (Simons et al. 2006b), the available seismic coverage

is far from uniform. Due to this, the interior structure of the Earth

can only be coarsely resolved in some areas, though more detailed

models can be obtained elsewhere. An unwanted result of using

global basis functions is that spurious structure may ‘leak’ into the

underresolved portions of the model (Boschi & Dziewoński 1999).

Another drawback is the necessarily truncated representation of the

model by a finite set of spherical harmonic basis functions, which

introduces a second source of leakage into the solution. Both spatial

inhomogeneity or incompleteness of sampling and spectral model

bandlimitation effect to bias the solution to the inverse problem away

from the truth; such problems and some of their possible solutions

are discussed in more detail in different contexts by Trampert &

Snieder (1996) and Simons & Dahlen (2006).

The above discussion is not meant to deny that ultimately, the

physics of the forward problem, rather than sheer mathematical con-

venience, should have a hand in deciding on a suitable parametriza-

tion. We sidestep this issue by focusing on surface wave models

of wave speed, for which the spherical harmonics undeniably are a

natural as well as convenient choice.

Here, we outline an approach that preserves the desirable

analytical properties of spherical harmonic based tomographic

parametrization while enabling the retrieval of localized informa-

tion and avoiding the mapping of well-resolved areas into the un-

constrained parts of the solution. The basis functions we propose

to use in this context are the harmonic spherical splines of Freeden

(1981a,b). These are, as we shall recall, constructed via spatially lo-

calizing reproducing kernels (Freeden et al. 1998; Freeden & Michel

2004) and have previously been applied successfully in geoscien-

tific applications such as the analysis of gravity data (e.g. Fengler

et al. 2004), modelling of the density distribution inside the Earth

(e.g. Michel 1999; Fengler et al. 2006; Michel & Wolf 2008), mod-

elling of seismic wave front propagation (e.g. Kammann & Michel

2008) and deformation analysis (e.g. Tücks 1996). Many of the

ideas share intimate connections with or go back to work done in

geomagnetism (e.g. Whaler & Gubbins 1981; Shure et al. 1982;

Parker 1994) and ultimately, as ever often the case, to Backus &

Gilbert (1968, 1970) and Backus (1970a,b,c). Finally, we note that

Yanovskaya & Ditmar (1990) have drawn some of the most insight-

ful parallels between smoothed parametrized, Backus–Gilbert, and

Bayesian inversion strategies in the specific context of surface wave

tomography.

Here, we derive the theoretical foundations for the application

of harmonic spherical splines to the problem of surface wave to-

mography and present the results of numerical tests justifying our

enthusiasm for this new method.

2 H A R M O N I C S P L I N E S O N T H E

S P H E R E

In this section we present a concise introduction to the theory of

spherical splines based on reproducing-kernel Hilbert spaces. We

refer the reader to the literature for further mathematical details and

proofs (e.g. Aronszajn 1950; Freeden 1981a,b; Schreiner 1997a;

Freeden et al. 1998; Freeden 1999) and to Parker (1994) for a lucid,

geophysically oriented treatment of the main concepts.

2.1 Spherical harmonics

We begin with a brief exposé about spherical harmonics, referring

the reader elsewhere for further mathematical (e.g. Müller 1966;

Freeden et al. 1998) or geophysical (e.g. Kellogg 1967; Backus

et al. 1996; Dahlen & Tromp 1998) details. We denote as N0 the set

of all positive integers including 0 and use R for the set of all real

numbers. The standard Euclidian inner product on R
3 is denoted by

x·y := ∑3
i=1 xi yi and the Euclidian norm is written ‖x‖ := (x·x)1/2.

The unit sphere � := {r̂ ∈ R
3 : ‖r̂‖ = 1} is taken to be a reason-

able approximation to the Earth’s surface. The set of real surface

spherical harmonics {Ylm(r̂)}m=−l,...,l of integer degree l and order m
spans the space of harmonic homogeneous polynomials of degree

l restricted to the unit sphere �. The set {Ylm}l∈N0;m=−l,...,l forms

a complete orthonormal system in the space of square-integrable

functions confined to the unit sphere. This space, L2(�) or L2 for

short, is equipped with the inner product

〈Ylm, Yl ′m′ 〉L2 :=
∫

�

Ylm(r̂)Yl ′m′ (r̂) d� = δll ′δmm′ , (2)

where δ is the Kronecker delta. The spherical harmonics satisfy the

addition theorem

l∑
m=−l

Ylm(r̂)Ylm(r̂′) =
(

2l + 1

4π

)
Pl (r̂ · r̂′), (3)

where Pl is the Legendre polynomial of degree l and r̂ · r̂′ = cos �,

with � being the geodesic angular distance between the points r̂
and r̂′. Expressions of type (3) only depend on the angular distance

between two points on a sphere and are therefore termed ‘radial

basis functions’.
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The real surface harmonics Ylm that we use in this paper relate to

the perhaps more widely used complex harmonics Ylm as

Ylm =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2 ReYl|m| if −l ≤ m < 0

Ylm if m = 0

√
2 ImYlm if 0 < m ≤ l,

(4)

whereby for colatitude θ and longitude φ (Edmonds 1996)

Ylm(θ, φ) = Xlm(θ ) exp(imφ), (5)

Xlm(θ ) = (−1)m

(
2l + 1

4π

)1/2 [
(l − m)!

(l + m)!

]1/2

Plm(cos θ ), (6)

Plm(μ) = 1

2l l!
(1 − μ2)m/2

(
d

dμ

)l+m

(μ2 − 1)l . (7)

2.2 Reproducing-kernel Hilbert spaces

With a sequence of non-zero real numbers {Al}l∈N0
such that

∞∑
l=0

(
2l + 1

4π

)
A−2

l < ∞, (8)

we associate a space, H(�) or H for short, that contains all f, g ∈
L2(�) functions, with finite inner product

〈 f, g〉H :=
∞∑

l=0

l∑
m=−l

A2
l 〈 f, Ylm〉L2 〈g, Ylm〉L2 < ∞, (9)

and norm ‖ f ‖H := 〈 f, f 〉1/2
H . The summability (8) implies that

every function inH is continuous on � (Freeden 1999). Such a space

H possesses a unique ‘reproducing kernel’ KH : � × � → R,

KH(r̂, r̂′) =
∞∑

l=0

l∑
m=−l

A−2
l Ylm(r̂)Ylm(r̂′) (10)

=
∞∑

l=0

A−2
l

(
2l + 1

4π

)
Pl (r̂ · r̂′), (11)

which, writing ‘·’ for the function’s argument to which the inner

product is applied, implies the properties

KH(r̂, ·), KH(·, r̂) ∈ H, (12a)

〈 f, KH(r̂, ·)〉H = 〈 f, KH(·, r̂)〉H = f (r̂), (12b)

for all f ∈ H and r̂ ∈ �. Thus, the inner product of a function in

the particular space H and the kernel KH ‘reproduces’ the function.

Reproducing-kernel Hilbert spaces are usually thought of as con-

taining ‘smooth’ functions, and the quelling sequence {Al}l∈N0
,

while arbitrary in principle, can be chosen judiciously to yield ‘inter-

esting’ or ‘convenient’ reproducing kernels (e.g. Schreiner 1997a;

Freeden et al. 1998; Freeden & Michel 1999), or they may be dictated

by the physics of the problem at hand (e.g. Shure et al. 1982; Parker

1994). Choices abound; the basic idea relevant to our discussion

is that the decay of A−2
l determines the spatiospectral localization

properties of the reproducing kernel. To take a non-bandlimited ex-

ample, if Al = 1, eqs (10) and (11) merely define the spherical Dirac

delta function, which has infinite localization in space but contains

all frequencies. If Al = 1 only up to a certain bandwidth l � L, the

resulting ‘Shannon’ kernel has both space and spectral localization

(see also Simons et al. 2006a). Finally, at the other extreme, if Al =
δ ll ′ , we obtain the spherical harmonics of degree l—ideally localized

spectrally but completely unlocalized in space.

Fig. 1 shows an intermediate case, the so-called ‘Abel–Poisson’

kernel, defined by eq. (10), with the sequence or ‘symbol’,

Al = h−l/2 for 0 < h < 1. (13)

The Abel–Poisson kernel has the remarkable closed-form expres-

sion (Freeden & Schreiner 1995)

KH(r̂, r̂′) = 1 − h2

4π (1 + h2 − 2h [r̂ · r̂′])3/2
, (14)

which renders it extremely useful for our purposes, as we shall see.

Eq. (13) are the coefficients in the Legendre series expansion of

eq. (14), as shown by, for example, Sansone (1959). Eq. (14) is re-

markable in that it allows us to calculate a truly non-bandlimited (and

thus spatially less oscillatory) kernel of the form (11) with extreme

computational efficiency. For other examples of finite closed-form

expressions from infinite expansions with geophysically motivated

symbols, see, for example, Whaler & Gubbins (1981), Shure et al.
(1982) and Parker (1994).

2.3 Harmonic splines

Throughout this paper, let F ≡ {Fq}q=1,...,N be a set of bounded,

real-valued, linear, continuous functionals on H. As an example,

identifying c−1(r̂) of eq. (1) as a scalar function f : � → R, which

associates a phase slowness with every point on the sphere, we may

rewrite the linear integral equation (eq. 1) as, simply

Fq ( f ) :=
∫

γq

f (r̂) dγ = tq for q = 1, . . . , N . (15)

This again formulates the surface wave tomography problem

as: given a set of known traveltimes and the corresponding set

{Fq}q=1,...,N of linear functionals, find the unknown slowness distri-

bution f ∈ H such that (15) holds true. Before proceeding, we note

that eq. (15) represents a ‘ray-theoretical’ measurement at infinite

frequency; the integral is over the geometric ray path. Accounting

for finite-frequency effects and measurement strategies would trans-

form the data functional into a volume integral with the appropriate

sensitivity kernel (e.g. Dahlen et al. 2000; Zhou et al. 2004). The

functionalsFq map a scalar field f onto a set of reals tq ; in the same

vein, we define

Fq (KH)[r̂] :=
∫

γq

KH(r̂, r̂′) dγ ′ for r̂ ∈ �, (16)

which projects a kernel in two variables onto a field in one, by

integrating over the second one. After an additional integration, the

result Fk(Fq (KH)) is once again a set of reals, as in eq. (15).

Any function f ∈ H of the form

f (r̂) =
N∑

k=1

ak Fk(KH)[r̂] for r̂ ∈ �, (17)

is called a ‘spherical spline’ in H, relative to F . If the system F is

linearly independent, then there exists a unique f , out of the set of

all possible splines, that satisfies

Fq ( f ) = tq for all q = 1, . . . , N . (18)

Let, now, the system of functionals F be linearly independent. Then

the spline interpolation problem (eq. 18)—in our case the tomog-

raphy problem (eq. 15) for a unique set of paths γq —amounts to
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Figure 1. The Abel–Poisson reproducing kernel. (a) and (b) Spatial variation as a function of the angular distance � = arccos(r̂ · r̂′) between two points r̂ and

r̂′ along the surface of the unit sphere, for the parameters h = 0.50 (black), h = 0.75 (grey) in panel (a), and for h = 0.90 (black) and h = 0.95 (grey) in panel

(b). (c) and (d) Spectrum A−2
l as a function of spherical harmonic degree l, for the same parameter combinations as in panels (a) and (b).

finding the coefficients {ak}k=1,...,N from the linear system of equa-

tions:

N∑
k=1

ak Fq (Fk(KH)) = tq , (19)

as we can see by combining eqs (15) and (17). It also follows that

the Gram matrix, whose elements are given by

Fqk = Fq (Fk(KH)), (20)

is square and positive definite, and that the spline (eq. 17) satisfying

eq. (18) is unique in minimizing the norm ‖ f ‖H. For mathemati-

cal details and proofs of the above statements, we refer to Freeden

(1999); geophysical insight is imparted by Parker (1994).

To account for imperfect data, the interpolation conditions

(eq. 18) can be combined with a smoothing condition, for exam-

ple, by adding positive constants to the diagonal of the matrix (20)

and solving the modified linear equation system

N∑
k=1

ak Fq (Fk(KH)) + ρσ 2
q aq = tq (21)

for a smoothing level or regularization parameter ρ > 0 and a data

variance σ 2
q . In that case, the spline (eq. 17) is ‘approximating’ rather

than ‘interpolating’, and may be shown to uniquely minimize the

functional

N∑
k=1

[Fk( f ) − tk

σk

]2

+ ρ 〈 f, f 〉H, (22)

as discussed in detail by Freeden (1999). See also Craven & Wahba

(1979) for a related approach on the interval.

An optimal value for ρ can be selected by a variety of meth-

ods (Engl et al. 1996; Aster et al. 2005), such as by ‘generalized

cross-validation’ (Craven & Wahba 1979) or from the knick-point

of the so-called ‘L-curve’ (Lawson & Hanson 1974; Hansen 1992)

of the solution norm ‖ f ‖H for a particular value of ρ plotted against

‖ ∑
k Fqkak − tq‖, the norm of the misfit—see Amirbekyan (2007)

for practical examples.

2.4 Mathematical context

It is worth noting that Nashed & Wahba (1974, 1975) used

reproducing-kernel based approaches to approximate the general-

ized inverse of an operator from an arbitrary Hilbert space into a

set of real-valued functions on an interval or in-between two such

sets. Subsequently, Engl (1982, 1983a) established the idea of us-

ing reproducing kernels to regularize ill-posed problems for Fred-

holm integral equations of the first kind on an interval, at the same

time suggesting the probable applicability of this method to other

reproducing-kernel Hilbert spaces. Generalizations to arbitrary real

Hilbert spaces can be found in Engl (1983b), which in turn inspired

the further developments of Amirbekyan (2007) and Amirbekyan

& Michel (2008).

Other approaches to construct approximating tools out of

reproducing-kernel Hilbert spaces exist (see, e.g. Saitoh et al. 2003;

Bolotnikov & Rodman 2004; Saitoh 2005). While all of them are

related to the harmonic splines used here inasmuch as they use

reproducing kernels to regularize ill-posed problems, they are, nev-

ertheless, very different in the details.

Finally, it should be remarked that the harmonic splines of this

paper are related to the spherical wavelets of Windheuser (1995) and

Freeden & Windheuser (1997), noting that the wavelets are differ-

ences of reproducing kernels, which are called ‘scaling functions’

in this context (Freeden et al. 1998).
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3 A P P L I C AT I O N T O T O M O G R A P H Y

We return to the specific problem of determining an earth model, that

is, the geographical variations of the inverse phase speed c−1(r̂)—

or slowness—of seismic surface waves from a set of great-circle

integrals—otherwise known as traveltime measurements. These

path integrals are the linear continuous functionalsF of Section 2.3.

They owe their linearity to the linearity of integration, and us-

ing the boundedness of the phase slowness and the ray paths, it

can easily be shown that these functionals are continuous as well

(Amirbekyan 2007). Furthermore, we assume that every path is mea-

sured exactly once; as a consequence, the Fq (c−1), q = 1, . . . , N
are linearly independent (Amirbekyan 2007), and an earth model

can be constructed by solving the interpolation problem (eq. 19) or

the approximation problem (eq. 21), depending on the accuracy of

the measurements.

Interpolating, or approximating, the unknown phase slowness by

a harmonic spline requires evaluating eqs (17) and (19) and inverting

the square matrix (20). Such calculations are greatly aided by, and

explain the motivation behind, a parametrization approach rooted in

spherical harmonics. In this section, we give constructive proofs for

two different methodologies to implement a harmonic-spline based

parametrization of a surface wave earth model.

3.1 First method

The stationary ray path taken by the surface wave across the surface

of the Earth, γ , is a great circle, the geodesic minimal arc between

the source and the receiver. The entries of the Gram matrix (20)

which we require, are thus integrals of the form

∫
γq

[∫
γk

KH(r̂, r̂′) dγ ′
]

dγ

=
∞∑

l=0

l∑
m=−l

A−2
l

∫
γq

Ylm(r̂) dγ

∫
γk

Ylm(r̂′) dγ ′, (23)

as seen by substituting the expressions (10) and (15) into eq. (20).

Equations such as eq. (23), which are in terms of the real spherical

harmonics Ylm of eq. (4), are of a form that lends itself easily to

numerical implementation without integration, since the complex

spherical harmonics Ylm , defined in eqs (5)–(7), satisfy the explicit

expression (Dahlen & Tromp 1998, p. 930)

∫
γ

Ylm(r̂) dγ =
l∑

m′=−l

(i/m ′)Xlm′ (π/2)(1 − eim′�)

×D(l)
m′m(α, β, δ), (24)

where X lm is the normalized Legendre polynomial defined in eq. (6),

� is the source–receiver epicentral angular distance, D(l)
m′m is a

Wigner rotation matrix whose elements can be computed effi-

ciently by recursion (Edmonds 1996; Blanco et al. 1997; Dahlen

& Tromp 1998; Masters & Richards-Dinger 1998) and, finally, α,

β and δ are Euler angles that depend on � and the geographical

coordinates of the source (θ S, φS) and the receiver (θ R, φR) as

follows:

tan α = sin θR cos θS cos φR − cos θR sin θS cos φS

cos θR sin θS sin φS − sin θR cos θS sin φR

, (25)

cos β = sin θR sin θS sin (φR − φS)

sin �
, (26)

tan δ = cos θS cos � − cos θR

cos θS sin �
. (27)

After obtaining the model coefficients ak , k = 1, . . . , N by solving

eqs (19) or (21), an earth model in the function space H is obtained

via eq. (17):

f (r̂) =
N∑

k=1

ak

∞∑
l=0

l∑
m=−l

A−2
l

[∫
γk

Ylm(r̂′) dγ ′
]

Ylm(r̂), (28)

which presents no additional numerical burden.

3.2 Second method

The computation scheme outlined above has an alternative. Rather

than using the analytical great-circle integrals (eq. 24), we may use

a parametrized version of the great-circle equations and perform the

resulting integrals numerically. This works for any arbitary function;

in the context of spherical splines, we write the entries of the Gram

matrix (20) using eqs (11) and (15) as∫
γq

[∫
γk

KH(r̂, r̂′) dγ ′
]

dγ

=
∞∑

l=0

A−2
l

(
2l + 1

4π

) ∫
γq

∫
γk

Pl (r̂ · r̂′) dγ ′ dγ. (29)

Taking r̂S and r̂R to be the source and receiver points on the unit

sphere, we let w = r̂R−(r̂S·r̂R) r̂S and ŵ = w/‖w‖, for which r̂·ŵ =
0. Then, the parametric equation of the great circle between r̂S and

r̂R can be written as

r̂γ (τ ) = r̂S cos τ + ŵ sin τ with 0 ≤ τ ≤ �, (30)

where the epicentral distance � = arccos(r̂S · r̂R) and, as ex-

pected, r̂γ (0) = r̂S and r̂γ (�) = r̂R. With the great circle γ

thus parametrized by the coordinate function r̂γ (τ ) and noting that

‖r̂′
γ (τ )‖ = 1 everywhere on the interval, the line integrals

∫
γq

∫
γk

Pl (r̂ · r̂′) dγ ′ dγ

=
∫ �q

0

∫ �k

0

Pl

(
r̂γq (τ ) · r̂γk (τ ′)

)
dτ ′ dτ (31)

can be evaluated using standard numerical quadrature methods.

Once the model coefficients ak , k = 1, . . . , N have been deter-

mined from eqs (19) or (21), the earth model is calculated from

eq. (17) as

f (r̂) =
N∑

k=1

ak

∞∑
l=0

A−2
l

(
2l + 1

4π

) ∫ �k

0

Pl

(
r̂γk (τ ) · r̂

)
dτ. (32)

3.3 Second method: a special case

A ‘third’ method applies the second method to the special but im-

portant case where the reproducing kernel is of the Abel–Poisson

type of eq. (14), which was previously shown in Fig. 1. The Gram

matrix becomes the numerically doable

∫
γq

[∫
γk

KH(r̂, r̂′) dγ ′
]

dγ =
(

1 − h2

4π

)

×
∫ �q

0

∫ �k

0

{
1 + h2 − 2h [r̂γq (τ ) · r̂′

γk
(τ ′)]

}−3/2
dτ ′ dτ, (33)
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and the earth model, once the coefficients ak have been recovered

through eqs (19) or (21), is obtained from

f (r̂) =
N∑

k=1

ak

(
1 − h2

4π

)

×
∫ �k

0

{
1 + h2 − 2h [r̂γk (τ ) · r̂]

}−3/2
dτ. (34)

4 N U M E R I C A L T E S T S

Here, we present the results of numerical tests conducted to verify

and illustrate the performance of the parametrization of surface wave

models by harmonic splines. Inversion tests come in many flavours

(see, e.g. Spakman & Nolet 1988). Nevertheless, the collective of

results that we will show, in our opinion, convincingly argues for

the utility, versatility, and reliability of our new method.

Before we discuss the details, we note that all tests depend on

being able to produce a ‘synthetic’ data set, that is, we have to be

able to specify an arbitrary earth model f (r̂l ) at a set of points r̂l on

the sphere and produce a set of theoretical traveltime measurements

for it. We can do this as follows for a model that is in the form

f (r̂) =
N∑

k=1

ak KH(r̂k, r̂), (35)

where the {r̂k}k=1,...,N are pairwise distinct points on the unit sphere.

We obtain the required coefficients {ak}k=1,...,N by solving the linear

equation system

N∑
k=1

ak KH(r̂k, r̂l ) = f (r̂l ) for all l = 1, . . . , N . (36)

The matrix with elements KH(r̂k, r̂l ) is regular since every system of

pairwise distinct points (r̂k, r̂l ) is a ‘fundamental system’ (Schreiner

1997b). The traveltime synthetics for great-circle paths γq are then

calculated according to eq. (15), and thus, given by

tq =
N∑

k=1

ak

∫
γq

KH (r̂k, r̂) dγ, (37)

computed via the numerical methods discussed in Section 3.

All forthcoming tests use the Abel–Poisson kernel (eqs 13–14)

with h = e−0.2 or h = e−0.05, as indicated in the captions. As shown by

Fig. 1, the parameter, or symbol, h ∈ (0, 1) determines the hat-width

of the kernel KH: the closer h is to 1, the narrower is the kernel width.

Currently, there is no general method to determine an optimal sym-

bol for each particular problem; the optimal choice of h depends

on the physics of the problem (e.g. Zhou et al. 2004), the spatial

density of the given data and the a priori information about the

smoothness of the underlying model (e.g. Montagner 1986). The in-

tegral terms representing the matrix components and the spline basis

were calculated approximately with the composite trapezoidal rule,

as in Section 3.3. All inversions were performed using Cholesky

factorization.

We consider three sets of great-circle paths for simulating data and

evaluating model recovery (Fig. 2). The first is a global collection of

2469 earthquakes and 199 stations (Fig. 2a) yielding 8490 surface

wave paths (Fig. 2b); a situation based on, if not identical to, the ray

path coverage in the models of Rayleigh-wave phase speeds at 80s

period, obtained by Trampert & Woodhouse (1995, 1996, 2001).

The second is an admittedly unrealistic, but challenging, regional

case with 500 unique ray paths covering the Australian continent

(Figs 2c and d). Both sets are the basis for the tests discussed in

Section 4.1 and 4.2. The third is a combination experiment; its path

coverage and inversion results appear in a separate figure and are

discussed in Section 4.3.

4.1 Checkerboard tests

As a first experiment we performed a series of classical checkerboard

tests. We generated a synthetic model by the equation

f (θ, φ) = 4 + 0.2 sin(aθ ) sin(bφ), (38)

in colatitude θ and longitude φ, with a = 8, b = 10 for Fig. 3 and

a = 16, b = 20 for Figs 4 and 6. This amounts to a phase-speed

model whose mean is 4 km s−1 and whose deviations therefrom do

not exceed ±5 per cent. We calculated theoretical traveltimes by

direct numerical integration and added 1 per cent data noise to them

in the cases indicated in the figure legends.

Figure 2. Data coverage for the numerical tests. Sources (white filled circles), receivers (grey filled triangles) and great-circle paths (black curves) for synthetic

global (a and b) and regional (c and d) modelling. The global experiment has 8490 ray paths and is inspired by the data sets compiled by Trampert & Woodhouse

(1995, 1996, 2001). The regional experiment is a synthetic in the truest sense of the word and counts 500 unique ray paths.
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Figure 3. Results from synthetic ‘checkerboard’ inversion tests using the global path coverage shown in Fig. 2(b) and the Abel–Poisson kernel with h = e−0.2.

Top row: recovery (in km s−1), by eqs (21) and (22), of the input pattern, for varying noise levels and regularization parameters ρ as shown in the legend.

Bottom row: reconstruction error, in per cent relative to 4 km s−1, the mean of the model input.

Figure 4. Results from synthetic ‘checkerboard’ inversion tests using the

regional path coverage shown in Fig. 2(d) and the Abel–Poisson kernel with

h = e−0.2. Top: recovered pattern, in km s−1. Bottom: recovery error relative

to 4 km s−1, in per cent.

Fig. 3 reports on the results for the global ray coverage of Fig. 2(b).

The inversion was regularized as in eqs (21) and (22) with regular-

ization parameters ρ = 10−4, 0.25 and 0.06, respectively, as shown

in the legend. In all cases shown, the histograms of the residuals

relative to 4 km s−1 are reasonably normally distributed with means

of 0.06, 0.11 and 0.06 per cent, standard deviations of 1.47, 1.80

and 2.01 per cent and root-mean-squared recovery errors (rmse) of

0.059, 0.072 and 0.080 km s−1, respectively, corresponding to the

three noise and regularization levels shown in Fig. 3. A result using

the contrived regional path coverage of Fig. 2(d), without noise and

using ρ = 10−5, is shown in Fig. 4. Here, too, the recovery is ex-

cellent, with a mean error of −0.001 per cent, a standard deviation

of 0.09 per cent and an rmse of 0.002 km s−1 over the Australian

model domain shown.

We repeated all experiments using the ‘standard’ spherical har-

monic (up to a bandwidth of degree 39) inversion method, described

in detail by Trampert & Woodhouse (1995). For regularization and to

reduce ringing (Trampert & Woodhouse 1995; Trampert & Snieder

1996; Trampert & Woodhouse 2003), they advocate using an a pri-
ori diagonal covariance matrix on the spherical harmonic expansion

coefficients whose elements are given by

λ−1[l(l + 1)]−2, (39)

where l is the degree of the corresponding spherical harmonic and

λ is a smoothing parameter. Much like the regularization param-

eter ρ in the harmonic-spline method, determining the smoothing

parameter λ for the spherical harmonic method is somewhat of an

art that can, however, be made more quantitative by considering the

L-curve showing the trade-off of solution norm versus the model

misfit, or by ‘generalized cross-validation’ (see Section 2.3). In this

suite of synthetic experiments with known input, however, we sim-

ply selected the value of λ that yielded the lowest rmse. The cho-

sen λ = 10−7, 10−5 and 10−6 and the corresponding rmse were

0.058, 0.070 and 0.093 km s−1; in other words, statistically indistin-

guishable from the harmonic-spline results for the global case re-

ported above. For the Australian experiment, the best value was λ =
10−9 and the resulting statistics 7 × 10−5 per cent, 0.31 per cent

and 0.006 km s−1 for the mean, standard deviation and rms error,

respectively.

We realize that not every possible situation of data and model

configuration can be tested with these few simple experiments, nev-

ertheless, conclude that these checkerboard experiments do illus-

trate that the harmonic-spline method reveals itself to be a practical

and reliable method to tackle large-scale surface wave tomographic

experiments on global as well as regional scales.

4.2 Hidden-object tests

Checkerboard tests are not uncontroversial (see, e.g. Lévêque et al.
1993)—not in the least, because the ‘correct’ answer is a known,

and most certainly un-Earth-like, phase-speed distribution. For this

reason, we conducted another suite of experiments with an input

model that itself is the result of a test inversion of Rayleigh-wave

phase-speed measurements from the Trampert & Woodhouse (1995,

1996, 2001) data set—to which we added a patch of an anomalously

low velocity (3 km s−1) as a ‘hidden object’, clearly visible in Fig. 5.

The inversion results, using the Abel–Poisson harmonic-spline

method and the global path coverage of Fig. 2(b), are shown in

Fig. 5. The recovery is very good—the statistics for this example are

0.14 per cent mean, 1.10 per cent standard deviation of the relative

and 0.045 km s−1 rms error. For comparison, the inversion using

standard spherical harmonic inversions with a regularization param-

eter of λ = 10−5 yields values of 0.02 per cent, 1.18 per cent and

0.048 km s−1 in these categories, respectively, though it is notice-

able that the error in the harmonic-spline reconstruction is more

concentrated around the area of the anomalous object than in the re-

covery, parametrized by global spherical harmonic basis functions

(Amirbekyan 2007), as expected.
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Figure 5. Inversion test with a realistic, Earth-like phase-speed distribution plus a low-velocity ‘hidden object’, recovered by the harmonic-spline method with

the global path coverage shown in Fig. 2(b), the Abel–Poisson kernel with h = e−0.2 and a regularization parameter ρ = 0.05. Relative error is with respect to

the average of the input model of 4.06 km s−1.

We repeated the above tests after adding random noise to the data

sets and comparing the absolute and relative performance of the

harmonic-spline and spherical harmonic methods. The sensitivity

of the spline method to measurement errors is not larger than that

of the spherical harmonic method (Amirbekyan 2007).

4.3 Mixed-resolution tomography

In the two previous sections, we assessed the performance of the

new harmonic-spline method in recovering global or regional wave

speed anomalies. We argued that the harmonic splines are com-

petitive with smoothed spherical-harmonic parametrization based

on simple metrics such as the rmse. Upon casual inspection, the

improvements, however, were slight, and the skeptical seismolo-

gist might well wonder whether the payoff of investing in a new

methodology, however mathematically elegant, is sufficient. In this

paragraph, we hope to allay any fears that it might not be.

Seismologists are increasingly faced with constructing wave

speed models that combine global and regional data sets into a sin-

gle inversion. A recent example is the ongoing deployment of the

USARRAY (http://www.iris.edu/USArray), which is in the process

of densifying the North American station coverage multiple times

with respect to the existing global networks (Romanowicz & Giar-

dini 2001; Romanowicz 2008). For such problems, parametrizations

ideally are adaptive and locally adjusted to the model resolution.

In the literature, such approaches come in a variety of flavours,

using block subdivisions, (e.g. Abers & Roecker 1991; Bijwaard

et al. 1998; Kárason & van der Hilst 2000; Simons et al. 2002),

irregularly distributed nodes (e.g. Debayle & Sambridge 2004;

Nolet & Montelli 2005) or cubic B-splines on dyadically subdivided

spherical tessellations (e.g. Wang et al. 1998; Boschi et al. 2004;

Nettles & Dziewoński 2008). All these require an initial step of ‘grid

design’, based on some measure of expected resolution. None of

them are proper mathematically speaking ‘multi-resolution’ (sensu
Mallat 1989)—global seismological parametrizations by spherical

wavelets being still in their infancy (e.g. Chiao & Kuo 2001; Chevrot

& Zhao 2007; Loris et al. 2007).

The approach taken with the harmonic spherical splines in this pa-

per is tested with respect to the particular complications introduced

by mixing global and regional ray coverage. Our free parameters

are the type of splines used, that is, the symbol Al , which, as shown

in eqs (10) and (11), determines the properties of the reproducing

kernel KH and thus of the function space of the solution, and the

regularization parameter ρ of eq. (21) determining the trade-off be-

tween data fit and model norm. The Gram matrix (20) is always

square with the dimensions of the number of ray paths N × N . For

the tests, we remain faithful to the Abel–Poisson kernel (13), but we

vary the values of 0 < h < 1 and ρ.

For comparison, we show the results of ‘industry-standard’

smoothed spherical harmonic inversions (e.g. Boschi et al. 2004),

where decisions are to be made on the truncation bandwidth L, which

determines the number of model parameters as (L + 1)2 and the size

of the normal matrix N × (L + 1)2, and the regularization parameter

λ in eq. (39). For the tests we varied both L and λ.

The input model is the checkerboard pattern generated by eq. (38)

with a = 16 and b = 20, which has power dominantly between spher-

ical harmonic degrees 25–35. Some results are shown in Fig. 6, with

performance metrics listed in Table 1. As expected, smoothed spher-

ical harmonic inversions perform increasingly better as the trunca-

tion degree increases, but all of them continue to suffer severely from

wild swings in the areas without any data coverage. For the optimal

(as per the rmse) parameter settings in the harmonic-spline inversion

(Abel–Poisson with h = e−0.05 and ρ = 1 × 10−3), the recovery is

also very good in the areas of dense path coverage (North America

and Australia) but only a small amount of structure is introduced in

the areas largely devoid of ray paths. The spline-based rmse in the

regions marked by the black boxes in Fig. 6(h) is very low. More

importantly, it is quite significantly lower than the equivalent rmse

in those areas under the spherical harmonic parametrization. The lo-

calizing character of the harmonic splines has clear advantages over

the traditional spectral approach: we conclude that the new method

holds its own in a variety of challenging settings.

Elsewhere, Amirbekyan (2007) shows best-fit inversion results

and tests based upon them, using actual Rayleigh and Love wave

phase-speed anomaly data, measured on individual seismograms

compiled by Trampert & Woodhouse (1995, 1996, 2001). Here, we

refrain from presenting the results in these pages until they can be

presented with the proper seismological validation and geological

interpretation that they require but that, unfortunately, falls outside

of the scope of this methodological presentation.

5 C O N C L U S I O N S

The inverse problem of interpolation or approximation using

harmonic-spline basis functions is a good alternative to current

methods in seismic surface wave tomography, which are based on

purely local (blocks) or purely global (spherical harmonics) basis

functions. Harmonic spherical splines pair the analytical advantages

of the spherical harmonics, most notably their efficient integration

over great-circle paths, with a localizing character that lends itself

equally well to the parametrization of global as well as regional

(or mixed-resolution) phase speed models made from traveltime
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Figure 6. Inversion tests for a global checkerboard input pattern with stations as in panel (a), a highly heterogeneous path coverage shown in (b) and recovered

(c–e) via the spherical harmonic method at varying bandwidths L and regularization parameters λ and (f-h) by harmonic splines with the h = e−0.05 Abel–Poisson

kernel and various regularization parameters ρ, as shown in the legend. See Table 1 for a statistical description of the global results and of those for the North

American and Australian subregions (black boxes).

Table 1. Recovery of a checkerboard pattern (see Section 4.3 and Fig. 6)

using spherical harmonics (bandwidth L and regularization parameter λ) or

splines (with Abel–Poisson kernel of symbol h and regularization parameter

ρ). Shown are the root-mean-squared recovery errors (rmse) for the tests

depicted in Fig. 6. The rmse are reported for the global modelling domain as

well as for the well-covered North American and Australian regions outlined

by black boxes in Fig. 6(h).

L λ rmse (global) rmse (N. Am.) rmse (Aust.)

20 10−8 6.79 × 10+2 2.35 × 10−1 4.52 × 10−1

40 10−8 4.63 × 10−1 1.40 × 10−1 8.15 × 10−2

60 10−8 1.84 × 10−1 7.09 × 10−2 5.63 × 10−2

h ρ rmse (global) rmse (N. Am.) rmse (Aust.)

e−0.20 0.004 1.21 × 10−1 6.07 × 10−2 7.13 × 10−2

e−0.20 0.001 1.30 × 10−1 6.01 × 10−2 6.45 × 10−2

e−0.05 0.001 8.98 × 10−2 4.87 × 10−2 5.30 × 10−2

measurements. The method is based on spatially localizing

reproducing-kernel basis functions that effectively reduce the vast

model space to contain only models of a certain well-defined

smoothness. In the case of the Abel–Poisson kernel, this smoothness

is characterized by a single parameter, the symbol of the kernel that

determines the decay of its spectral power, and thus, the spatially

localizing behaviour. Great-circle integrations based on the Abel–

Poisson kernel expansion can be performed semi-analytically with

great accuracy. The tomographic inversion problem then amounts to

the inversion of a square and positive-definite Gram matrix, to which

an additional regularization matrix can be added, with a trade-off

parameter whose ideal value can be determined to depend on the

estimated data noise and a user-acceptable compromise between

model smoothness and data misfit. This type of splines is not con-

fined to the unit sphere, the case dealt with in this paper—volumetric

reproducing-kernel based approaches suitable for fully 3-D inver-

sions, including of body-wave data, are on the horizon (Amirbekyan

& Michel 2008).
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