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Abstract
It is a well-known fact that mathematical functions that are timelimited (or
spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the
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finite precision of measurement and computation unavoidably bandlimits our
observation and modeling scientific data, and we often only have access to, or
are only interested in, a study area that is temporally or spatially bounded. In the
geosciences we may be interested in spectrally modeling a time series defined
only on a certain interval, or we may want to characterize a specific geographical
area observed using an effectively bandlimited measurement device. It is clear
that analyzing and representing scientific data of this kind will be facilitated
if a basis of functions can be found that are “spatiospectrally” concentrated,
i.e., “localized” in both domains at the same time. Here, we give a theoretical
overview of one particular approach to this “concentration” problem, as origi-
nally proposed for time series by Slepian and coworkers, in the 1960s. We show
how this framework leads to practical algorithms and statistically performant
methods for the analysis of signals and their power spectra in one and two
dimensions and particularly for applications in the geosciences and for scalar
and vectorial signals defined on the surface of a unit sphere.

1 Introduction

It is well appreciated that functions cannot have finite support in the temporal
(or spatial) and spectral domain at the same time (Slepian 1983). Finding and
representing signals that are optimally concentrated in both is a fundamental
problem in information theory which was solved in the early 1960s by Slepian,
Landau, and Pollak (Landau and Pollak 1961, 1962; Slepian and Pollak 1961). The
extensions and generalizations of this problem (Daubechies 1988, 1990; Daubechies
and Paul 1988; Cohen 1989) have strong connections with the burgeoning field of
wavelet analysis. In this contribution, however, we shall not talk about wavelets, the
scaled translates of a “mother” with vanishing moments, the tool for multiresolution
analysis (Daubechies 1992; Flandrin 1998; Mallat 1998). Rather, we devote our
attention entirely to what we shall collectively refer to as “Slepian functions,” in
multiple Cartesian dimensions and on the sphere.

These we understand to be orthogonal families of functions that are all defined on
a common, e.g., geographical, domain, where they are either optimally concentrated
or within which they are exactly limited, and which at the same time are exactly
confined within a certain bandwidth or maximally concentrated therein. The mea-
sure of concentration is invariably a quadratic energy ratio, which, though only one
choice out of many (Donoho and Stark 1989; Freeden and Schreiner 2010; Freeden
and Windheuser 1997; Michel 2010; Riedel and Sidorenko 1995), is perfectly
suited to the nature of the problems we are attempting to address. These are, for
example: How do we make estimates of signals that are noisily and incompletely
observed? How do we analyze the properties of such signals efficiently, and how
can we represent them economically? How do we estimate the power spectrum of
noisy and incomplete data? What are the particular constraints imposed by dealing
with potential-field signals (gravity, magnetism, etc.) and how is the altitude of the
observation point, e.g., from a satellite in orbit, taken into account? What are the
statistical properties of the resulting signal and power spectral estimates?
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These and other questions have been studied extensively in one dimension, that
is, for time series, but until the twenty-first century, remarkably little work had been
done in the Cartesian plane or on the surface of the sphere. For the geosciences,
the latter two domains of application are nevertheless vital for the obvious reasons
that they deal with information (measurement and modeling) that is geographically
distributed on (a portion of) a planetary surface. In our own recent series of papers
(Dahlen and Simons 2008; Plattner and Simons 2013, 2014; Simons and Dahlen
2006, 2007; Simons et al. 2006, 2009; Wieczorek and Simons 2005, 2007) we
have dealt extensively with Slepian’s problem in spherical geometry. Asymptotic
reductions to the plane (Simons et al. 2006; Simons and Wang 2011) then generalize
Slepian’s early treatment of the multidimensional Cartesian case (Slepian 1964).

In this chapter we provide a framework for the analysis and representation of
geoscientific data by means of Slepian functions defined for time series, on two-
dimensional Cartesian, and spherical domains. We emphasize the common ground
underlying the construction of all Slepian functions, discuss practical algorithms,
and review the major findings of our own recent work on signal (Wieczorek and
Simons 2005; Simons and Dahlen 2006) and power spectral estimation theory on the
sphere (Wieczorek and Simons 2007; Dahlen and Simons 2008). Compared to the
first edition of this work (Simons 2010), we now also include a section on vector-
valued Slepian functions that brings the theory in line with the modern demands
of (satellite) gravity, geomagnetic, or oceanographic data analysis (Freeden 2010;
Grafarend et al. 2010; Martinec 2010; Olsen et al. 2010; Sabaka et al. 2010).

2 Theory of Slepian Functions

In this section we review the theory of Slepian functions in one dimension, in the
Cartesian plane, and on the surface of the unit sphere. The one-dimensional theory is
quite well known and perhaps most accessibly presented in the textbook by Percival
and Walden (1993). It is briefly reformulated here for consistency and to establish
some notation. The two-dimensional planar case formed the subject of a lesser-
known of Slepian’s papers (Slepian 1964) and is reviewed here also. We are not
discussing alternatives by which two-dimensional Slepian functions are constructed
by forming the outer product of pairs of one-dimensional functions. While this
approach has produced some useful results (Hanssen 1997; Simons et al. 2000),
it does not solve the concentration problem sensu stricto. The spherical scalar case
was treated in most detail, and for the first time, by ourselves elsewhere (Wieczorek
and Simons 2005; Simons et al. 2006; Simons and Dahlen 2006), though two very
important early studies by Slepian, Grünbaum, and others laid much of the foun-
dation for the analytical treatment of the spherical concentration problem for cases
with special symmetries (Gilbert and Slepian 1977; Grünbaum 1981). The spherical
vector case was treated in its most general form by ourselves elsewhere (Plattner
et al. 2012; Plattner and Simons 2013, 2014), but had also been studied in some,
but less general, detail by researchers interested in medical imaging (Maniar and
Mitra 2005; Mitra and Maniar 2006) and optics (Jahn and Bokor 2012, 2013).
Finally, we recast the theory in the context of reproducing-kernel Hilbert spaces,
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through which the reader may appreciate some of the connections with radial basis
functions, splines, and wavelet analysis, which are commonly formulated in such a
framework (Freeden et al. 1998; Michel 2010).

2.1 Spatiospectral Concentration for Time Series

General Theory in One Dimension
We use t to denote time or one-dimensional space and ! for angular frequency, and
adopt a normalization convention (Mallat 1998) in which a real-valued time-domain
signal f .t/ and its Fourier transform F .!/ are related by

f .t/ D .2�/�1
Z 1

�1
F .!/ei!t d!; F .!/ D

Z 1

�1
f .t/e�i!t dt: (1)

The problem of finding the strictly bandlimited signal

g.t/ D .2�/�1
Z W

�W
G.!/ei!t d!; (2)

that is maximally, though by virtue of the Paley-Wiener theorem (Daubechies 1992;
Mallat 1998) never completely, concentrated into a time interval jt j � T , was first
considered by Slepian, Landau, and Pollak (Landau and Pollak 1961; Slepian and
Pollak 1961). The optimally concentrated signal is taken to be the one with the least
energy outside of the interval:

� D
R T

�T g
2.t/ dtR1

�1 g2.t/ dt
D maximum: (3)

Bandlimited functions g.t/ satisfying the variational problem (3) have spectraG.!/
that satisfy the frequency-domain convolutional integral eigenvalue equation

Z W

�W
D.!; !0/G.!0/ d!0 D �G.!/; j!j � W; (4a)

D.!;!0/ D sin T .! � !0/
�.! � !0/

: (4b)

The corresponding time- or spatial-domain formulation is

Z T

�T
D.t; t 0/ g.t 0/ dt 0 D �g.t/; t 2 R; (5a)



Scalar and Vector Slepian Functions, Spherical Signal Estimation and Spectral. . . 2567

D.t; t 0/ D sinW .t � t 0/
�.t � t 0/

: (5b)

The “prolate spheroidal eigentapers” g1.t/; g2.t/; : : : that solve Eq. (5) form a
doubly orthogonal set. When they are chosen to be orthonormal over infinite time
jt j � 1, they are also orthogonal over the finite interval jt j � T :

Z 1

�1
g˛gˇ dt D ı˛ˇ;

Z T

�T
g˛gˇ dt D �˛ı˛ˇ: (6)

A change of variables and a scaling of the eigenfunctions transforms Eq. (4) into the
dimensionless eigenproblem

Z 1

�1
D.x; x0/  .x0/ dx0 D � .x/; (7a)

D.x; x0/ D sin T W .x � x0/
�.x � x0/

: (7b)

Equation (7) shows that the eigenvalues �1 > �2 > : : : and suitably scaled eigen-
functions  1.x/;  2.x/; : : : depend only upon the time-bandwidth product T W .
The sum of the concentration eigenvalues � relates to this product by

N 1D D
1X
˛D1

�˛ D
Z 1

�1
D.x; x/ dx D .2T /.2W /

2�
D 2T W

�
: (8)

The eigenvalue spectrum of Eq. (7) has a characteristic step shape, showing signifi-
cant (� � 1) and insignificant (� � 0) eigenvalues separated by a narrow transition
band (Landau 1965; Slepian and Sonnenblick 1965). Thus, this “Shannon number”
is a good estimate of the number of significant eigenvalues or, roughly speaking,
N 1D is the number of signals f .t/ that can be simultaneously well concentrated
into a finite time interval jt j � T and a finite frequency interval j!j � W . In other
words (Landau and Pollak 1962),N 1D is the approximate dimension of the space of
signals that is “essentially” timelimited to T and bandlimited to W , and using the
orthogonal set g1; g2; : : : ; gN 1D as its basis is parsimonious.

Sturm-Liouville Character and Tridiagonal Matrix Formulation
The integral operator acting upon in Eq. (7) commutes with a differential operator
that arises in expressing the three-dimensional scalar wave equation in prolate
spheroidal coordinates (Slepian and Pollak 1961; Slepian 1983), which makes it
possible to find the scaled eigenfunctions by solving the Sturm-Liouville equation

d

dx

�
.1 � x2/

d 

dx

�
C
�
� � .N 1D/2�2

4
x2
�
 D 0; (9)
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where � ¤ � is the associated eigenvalue. The eigenfunctions  .x/ of Eq. (9) can
be found at discrete values of x by diagonalization of a simple symmetric tridiagonal
matrix (Slepian 1978; Grünbaum 1981; Percival and Walden 1993) with elements

.ŒN � 1 � 2x�=2/2 cos.2�W / for x D 0; � � � ; N � 1;
x.N � x/=2 for x D 1; : : : ; N � 1: (10)

The matching eigenvalues � can then be obtained directly from Eq. (7). The
discovery of the Sturm-Liouville formulation of the concentration problem posed
in Eq. (3) proved to be a major impetus for the widespread adoption and practical
applications of the “Slepian” basis in signal identification, spectral analysis, and
numerical analysis. Compared to the sequence of eigenvalues �, the spectrum of the
eigenvalues � is extremely regular and thus the solution of Eq. (9) is without any
problem amenable to finite-precision numerical computation (Percival and Walden
1993).

2.2 Spatiospectral Concentration in the Cartesian Plane

General Theory in Two Dimensions
A square-integrable function f .x/ defined in the plane has the two-dimensional
Fourier representation

f .x/ D .2�/�2
Z 1

�1
F .k/eik�x dk; F .k/ D

Z 1

�1
f .x/e�ik�x dx; (11)

We use g.x/ to denote a function that is bandlimited to K, an arbitrary subregion of
spectral space,

g.x/ D .2�/�2
Z
K
G.k/eik�x dk: (12)

Following Slepian (1964), we seek to concentrate the power of g.x/ into a finite
spatial region R 2 R

2, of area A:

� D
R
R g

2.x/ dxR1
�1 g2.x/ dx

D maximum: (13)

Bandlimited functions g.x/ that maximize the Rayleigh quotient (13) solve the
Fredholm integral equation (Tricomi 1970)

Z
K
D.k;k0/G.k0/ dk0 D �G.k/; k 2 K; (14a)

D.k;k0/ D .2�/�2
Z
R
ei.k

0�k/�x dx: (14b)
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The corresponding problem in the spatial domain is

Z
R
D.x; x0/ g.x0/ dx0 D �g.x/; x 2 R

2; (15a)

D.x; x0/ D .2�/�2
Z
K
eik�.x�x0/ dk: (15b)

The bandlimited spatial-domain eigenfunctions g1.x/; g2.x/; : : : and eigenvalues
�1 � �2 � : : : that solve Eq. (15) may be chosen to be orthonormal over the whole
plane kxk � 1 in which case they are also orthogonal over R:

Z 1

�1
g˛gˇ dx D ı˛ˇ;

Z
R
g˛gˇ dx D �˛ı˛ˇ: (16)

Concentration to the disk-shaped spectral band K D fk W kkk � Kg allows us to
rewrite Eq. (15) after a change of variables and a scaling of the eigenfunctions as

Z
R�

D.�; �0/  .� 0/ d�0 D � .�/; (17a)

D.�; �0/ D K
p
A=4�

2�

J1.K
p
A=4� k� � �0k/
k� � �0k ; (17b)

where the region R� is scaled to area 4� and J1 is the first-order Bessel function of
the first kind. Equation (17) shows that, also in the two-dimensional case, the eigen-
values �1; �2; : : : and the scaled eigenfunctions 1.�/;  2.�/; : : : depend only on the
combination of the circular bandwidthK and the spatial concentration areaA, where
the quantity K2A=.4�/ now plays the role of the time-bandwidth product T W in
the one-dimensional case. The sum of the concentration eigenvalues � defines the
two-dimensional Shannon number N 2D as

N 2D D
1X
˛D1

�˛ D
Z
R�

D.�; �/ d� D .�K2/.A/

.2�/2
D K2 A

4�
: (18)

Just as N 1D in Eq. (8), N 2D is the product of the spectral and spatial areas of
concentration multiplied by the “Nyquist density” (Daubechies 1988, 1992). And,
similarly, it is the effective dimension of the space of “essentially” space- and ban-
dlimited functions in which the set of two-dimensional functions g1; g2; : : : ; gN 2D

may act as a sparse orthogonal basis.
After a long hiatus since the work of Slepian (1964), the two-dimensional

problem has recently been the focus of renewed attention in the applied mathematics
community (de Villiers et al. 2003; Shkolnisky 2007), and applications to the
geosciences are following suit (Simons and Wang 2011). Numerous numerical
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Fig. 1 Bandlimited eigenfunctions g1; g2; : : : ; g4 that are optimally concentrated within the
Columbia Plateau, a physiographic region in the United States centered on 116.02 ıW 43.56 ıN
(near Boise City, Idaho) of area A � 145 � 103 km2. The concentration factors �1; �2; : : : ; �4 are
indicated; the Shannon number N 2D D 10. The top row shows a rendition of the eigenfunctions in
space on a grid with 5 km resolution in both directions, with the convention that positive values are
blue and negative values red, though the sign of the functions is arbitrary. The spatial concentration
region is outlined in black. The bottom row shows the squared Fourier coefficients jG˛.k/j2 as
calculated from the functions g˛.x/ shown, on a wavenumber scale that is expressed as a fraction of
the Nyquist wavenumber. The spectral limitation region is shown by the black circle at wavenumber
K D 0:0295 rad/km. All areas for which the absolute value of the functions plotted is less than
one hundredth of the maximum value attained over the domain are left white. The calculations
were performed by the Nyström method using Gauss-Legendre integration of Eq. (17) in the two-
dimensional spatial domain (Simons and Wang 2011)

methods exist to use Eqs. (14) and (15) in solving the concentration problem (13)
on two-dimensional Cartesian domains. An example of Slepian functions on a
geographical domain in the Cartesian plane can be found in Fig. 1.

Sturm-Liouville Character and Tridiagonal Matrix Formulation
If in addition to the circular spectral limitation, space is also circularly limited, in
other words, if the spatial region of concentration or limitation R is a circle of
radiusR, then a polar coordinate, x D .r; �/, representation

g.r; �/ D

8̂
<̂
ˆ̂:

p
2 g.r/ cosm� if m < 0;

g.r/ if m D 0;p
2 g.r/ sinm� if m > 0;

(19)

may be used to decompose Eq. (17) into a series of nondegenerate fixed-order
eigenvalue problems, after scaling,
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Z 1

0

D.�; � 0/ .� 0/ � 0d� 0 D � .�/; (20a)

D.�; � 0/ D 4N 2D
Z 1

0

Jm
�
2
p
N 2D p�

�
Jm
�
2
p
N 2D p� 0�pdp: (20b)

The solutions to Eq. (20) also solve a Sturm-Liouville equation on 0 � � � 1. In
terms of '.�/ D p

�  .�/,

d

d�

�
.1� �2/

d'

d�

�
C
 
�C 1=4�m2

�2
� 4N 2D�2

!
' D 0; (21)

for some � ¤ �. When m D ˙1=2 Eq. (21) reduces to Eq. (9). By extension to
� > 1 the fixed-order “generalized prolate spheroidal functions” '1.�/; '2.�/; : : :
can be determined from the rapidly converging infinite series

'.�/ D
p
2

�

1X
lD0
.2l CmC 1/1=2dl

JmC2lC1.c �/p
c �

; � 2 R
C; (22)

where '.0/ D 0 and the fixed-m expansion coefficients dl are determined
by recursion (Slepian 1964) or by diagonalization of a symmetric tridiagonal
matrix (de Villiers et al. 2003; Shkolnisky 2007) with elements given by

Tl l D
�
2l CmC 1

2

��
2l CmC 3

2

�
C c2

2

"
1C m2

.2l Cm/.2l CmC 2/

#
;

TlC1 l D � c2 .l C 1/.mC l C 1/p
2l CmC 1 .2l CmC 2/

p
2l CmC 3

; (23)

where the parameter l ranges from 0 to some large value that ensures convergence.
The desired concentration eigenvalues � can subsequently be obtained by direct
integration of Eq. (17), or, alternatively, from

� D 2�2
p
N 2D; with � D cmC1=2d0

2mC1.mC 1/Š

 1X
lD0

dl

!�1
: (24)

An example of Slepian functions on a disk-shaped region in the Cartesian
plane can be found in Fig. 2. The solutions were obtained using the Nyström
method using Gauss-Legendre integration of Eq. (17) in the two-dimensional spatial
domain. These differ only very slightly from the results of computations carried
out using the diagonalization of Eqs. (23) directly, as shown and discussed by us
elsewhere (Simons and Wang 2011).
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λ1 =  1.000000 λ2 =  1.000000 λ3 =  1.000000 λ4 =  0.999998 λ5 =  0.999998

λ6 =  0.999997 λ7 =  0.999974 λ8 =  0.999974 λ9 =  0.999930 λ10 =  0.999930

λ11 =  0.999738 λ12 =  0.999738 λ13 =  0.999121 λ14 =  0.999121 λ15 =  0.998757

λ16 =  0.998029 λ17 =  0.998028 λ18 =  0.992470 λ19 =  0.992470 λ20 =  0.988706

λ21 =  0.988701 λ22 =  0.986945 λ23 =  0.986930 λ24 =  0.955298 λ25 =  0.955287

λ26 =  0.951126 λ27 =  0.951109 λ28 =  0.915710 λ29 =  0.915709 λ30 =  0.898353

Fig. 2 Bandlimited eigenfunctions g˛.r; �/ that are optimally concentrated within a Cartesian disk
of radius R D 1. The dashed circle denotes the region boundary. The Shannon number N 2D D 42.
The eigenvalues �˛ have been sorted to a global ranking with the best-concentrated eigenfunction
plotted at the top left and the 30th best in the lower right. Blue is positive and red is negative and the
color axis is symmetric, but the sign is arbitrary; regions in which the absolute value is less than one
hundredth of the maximum value on the domain are left white. The calculations were performed
by Gauss-Legendre integration in the two-dimensional spatial domain, which sometimes leads to
slight differences in the last two digits of what should be identical eigenvalues for each pair of
non-circularly-symmetric eigenfunctions
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2.3 Spatiospectral Concentration on the Surface of a Sphere

General Theory in “Three” Dimensions
We denote the colatitude of a geographical point Or on the unit sphere surface 	 D
fOr W kOrk D 1g by 0 � � � � and the longitude by 0 � 
 < 2� . We use R to
denote a region of	, of area A, within which we seek to concentrate a bandlimited
function of position Or. We express a square-integrable function f .Or/ on the surface
of the unit sphere as

f .Or/ D
1X
lD0

lX
mD�l

flmYlm.Or/; flm D
Z
	

f .Or/Ylm.Or/ d	; (25)

using orthonormalized real surface spherical harmonics (Edmonds 1996; Dahlen
and Tromp 1998)

Ylm.Or/ D Ylm.�; 
/ D

8̂
<̂
ˆ̂:

p
2Xljmj.�/ cosm
 if �l � m < 0;

Xl0.�/ if m D 0;p
2Xlm.�/ sinm
 if 0 < m � l;

(26)

Xlm.�/ D .�1/m
�
2l C 1

4�

�1=2 �
.l �m/Š

.l Cm/Š

�1=2
Plm.cos �/; (27)

Plm.�/ D 1

2l lŠ
.1 � �2/m=2

�
d

d�

�lCm
.�2 � 1/l : (28)

The quantity 0 � l � 1 is the angular degree of the spherical harmonic, and �l �
m � l is its angular order. The function Plm.�/ defined in (28) is the associated
Legendre function of integer degree l and order m. Our choice of the constants in
Eqs. (26) and (27) orthonormalizes the harmonics on the unit sphere:

Z
	

YlmYl 0m0 d	 D ıl l 0ımm0; (29)

and leads to the addition theorem in terms of the Legendre functions Pl.�/ D
Pl0.�/ as

lX
mD�l

Ylm.Or/Ylm.Or0/ D
�
2l C 1

4�

�
Pl.Or � Or0/: (30)
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To maximize the spatial concentration of a bandlimited function

g.Or/ D
LX
lD0

lX
mD�l

glmYlm.Or/ (31)

within a region R, we maximize the energy ratio

� D

Z
R

g2.Or/ d	
Z
	

g2.Or/ d	
D maximum: (32)

Maximizing Eq. (32) leads to the positive-definite spectral-domain eigenvalue
equation

LX
l 0D0

l 0X
m0D�l 0

Dlm;l 0m0gl 0m0 D �glm; 0 � l � L; (33a)

Dlm;l 0m0 D
Z
R

YlmYl 0m0 d	; (33b)

and we may equally well rewrite Eq. (33) as a spatial-domain eigenvalue equation:

Z
R

D.Or; Or0/ g.Or0/ d	0 D �g.Or/; Or 2 	; (34a)

D.Or; Or0/ D
LX
lD0

�
2l C 1

4�

�
Pl.Or � Or0/; (34b)

where Pl is the Legendre function of degree l . Equation (34) is a homogeneous
Fredholm integral equation of the second kind, with a finite-rank, symmetric, Her-
mitian kernel. We choose the spectral eigenfunctions of the operator in Eq. (33b),
whose elements are glm˛ , ˛ D 1; : : : ; .L C 1/2, to satisfy the orthonormality
relations

LX
lm

glm˛glmˇ D ı˛ˇ;

LX
lm

glm˛

LX
l 0m0

Dlm;l 0m0gl 0m0 ˇ D �˛ı˛ˇ: (35)

The finite set of bandlimited spatial eigensolutions g1.Or/; g2.Or/; : : : ; g.LC1/2.Or/ can
be made orthonormal over the whole sphere 	 and orthogonal over the regionR:

Z
	

g˛gˇ d	 D ı˛ˇ;

Z
R

g˛gˇ d	 D �˛ı˛ˇ: (36)
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In the limit of a small areaA ! 0 and a large bandwidthL ! 1 and after a change
of variables, a scaled version of Eq. (34) will be given by

Z
R�

D.�; �0/  .� 0/ d	0� D � .�/; (37a)

D.�; �0/ D .LC 1/
p
A=4�

2�

J1Œ.LC 1/
p
A=4� k� � �0k�

k� � �0k ; (37b)

where the scaled region R� now has area 4� and J1 again is the first-order
Bessel function of the first kind. As in the one- and two-dimensional case, the
asymptotic, or “flat-Earth” eigenvalues �1 � �2 � : : : and scaled eigenfunctions
 1.�/;  2.�/; : : : depend upon the maximal degree L and the area A only through
what is once again a space-bandwidth product, the “spherical Shannon number,” this
time given by

N 3D D
.LC1/2X
˛D1

�˛ D
LX
lD0

lX
mD�l

Dlm;lm D
Z
R

D.Or; Or/ d	

D
Z
R�

D.�; �/ d	� D .LC 1/2
A

4�
: (38)

Irrespectively of the particular region of concentration that they were designed for,
the complete set of bandlimited spatial Slepian eigenfunctions g1; g2; : : : ; g.LC1/2
is a basis for bandlimited scalar processes anywhere on the surface of the unit
sphere (Simons and Dahlen 2006; Simons et al. 2006). This follows directly from
the fact that the spectral localization kernel (33b) is real, symmetric, and positive
definite: its eigenvectors g1lm; g2 lm; : : : ; g.LC1/2 lm form an orthogonal set as we
have seen. Thus the Slepian basis functions g˛.Or/, ˛ D 1; : : : ; .L C 1/2 given by
Eq. (31) simply transform the same-sized limited set of spherical harmonics Ylm.Or/,
0 � l � L, �l � m � l that are a basis for the same space of bandlimited
spherical functions with no power above the bandwidth L. The effect of this
transformation is to order the resulting basis set such that the energy of the firstN 3D

functions, g1.Or/; : : : ; gN 3D.Or/, with eigenvalues � � 1, is concentrated in the
region R, whereas the remaining eigenfunctions, gN 3DC1.Or/; : : : ; g.LC1/2.Or/, are
concentrated in the complimentary region	nR. As in the one- and two-dimensional
case, therefore, the reduced set of basis functions g1; g2; : : : ; gN 3D can be regarded
as a sparse, global basis suitable to approximate bandlimited processes that are
primarily localized to the region R. The dimensionality reduction is dependent
on the fractional area of the region of interest. In other words, the full dimension
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of the space .L C 1/2 can be “sparsified” to an effective dimension of N 3D D
.LC1/2A=.4�/when the signal of interest resides in a particular geographic region.

Numerical methods for the solution of Eqs. (33) and (34) on completely general
domains on the surface of the sphere were discussed by us elsewhere (Simons and
Dahlen 2006, 2007; Simons et al. 2006). An example of Slepian functions on a
geographical domain on the surface of the sphere is found in Fig. 3.
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Fig. 3 BandlimitedL D 60 eigenfunctions g1; g2; : : : ; g12 that are optimally concentrated within
Antarctica. The concentration factors �1; �2; : : : ; �12 are indicated; the rounded Shannon number
is N 3D D 102. The order of concentration is left to right, top to bottom. Positive values are blue
and negative values are red; the sign of an eigenfunction is arbitrary. Regions in which the absolute
value is less than one hundredth of the maximum value on the sphere are left white. We integrated
Eq. (33b) over a splined high-resolution representation of the boundary, using Gauss-Legendre
quadrature over the colatitudes, and analytically in the longitudinal dimension (Simons and Dahlen
2007)
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Sturm-Liouville Character and Tridiagonal Matrix Formulation
In the special but important case in which the region of concentration is a
circularly symmetric cap of colatitudinal radius ‚, centered on the North Pole, the
colatitudinal parts g.�/ of the separable functions

g.�; 
/ D

8̂
<̂
ˆ̂:

p
2 g.�/ cosm
 if �L � m < 0;

g.�/ if m D 0;p
2 g.�/ sinm
 if 0 < m � L;

(39)

which solve Eq. (34), or, indeed, the fixed-order versions

Z ‚

0

D.�; � 0/ g.� 0/ sin � 0 d� 0 D �g.�/; 0 � � � �; (40a)

D.�; � 0/ D 2�

LX
lDm

Xlm.�/Xlm.�
0/; (40b)

are identical to those of a Sturm-Liouville equation for the g.�/. In terms of � D
cos � ,

d

d�

�
.�� cos‚/.1 � �2/

dg

d�

�
C
 
�C L.LC 2/�� m2.� � cos‚/

1 � �2
!
g D 0;

(41)

with � ¤ �. This equation can be solved in the spectral domain by diago-
nalization of a simple symmetric tridiagonal matrix with a very well-behaved
spectrum (Simons et al. 2006; Simons and Dahlen 2007). This matrix, whose
eigenfunctions correspond to the glm of Eq. (31) at constant m, is given by

Tl l D �l.l C 1/ cos‚;

Tl lC1 D �
l.l C 2/� L.LC 2/

	s .l C 1/2 �m2

.2l C 1/.2l C 3/
: (42)

Moreover, when the region of concentration is a pair of axisymmetric polar caps of
common colatitudinal radius‚ centered on the North and South Pole, the g.�/ can
be obtained by solving the Sturm-Liouville equation

d

d�

�
.�2 � cos2 ‚/.1� �2/

dg

d�

�

C
 
�C Lp.Lp C 3/�2 � m2.�2 � cos2 ‚/

1 � �2
!
g D 0; (43)
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where Lp D L or Lp D L � 1 depending whether the order m of the
functions g.�; 
/ in Eq. (39) is odd or even and whether the bandwidth L itself
is odd or even. In their spectral form the coefficients of the optimally concentrated
antipodal polar-cap eigenfunctions only require the numerical diagonalization of a
symmetric tridiagonal matrix with analytically prescribed elements and a spectrum
of eigenvalues that is guaranteed to be simple (Simons and Dahlen 2006, 2007),
namely,

T
p

l l D �l.l C 1/ cos2 ‚C 2

2l C 3

�
.l C 1/2 �m2

	

C Œ.l � 2/.l C 1/� Lp.Lp C 3/�

"
1

3
� 2

3

3m2 � l.l C 1/

.2l C 3/.2l � 1/

#
;

T
p

l lC2 D
�
l.l C 3/� Lp.Lp C 3/

	
2l C 3

s�
.l C 2/2 �m2

	 �
.l C 1/2 �m2

	
.2l C 5/.2l C 1/

: (44)

The concentration values �, in turn, can be determined from the defining Eqs. (33)
or (34). The spectra of the eigenvalues � of Eqs. (42) and (44) display roughly
equant spacing, without the numerically troublesome plateaus of nearly equal values
that characterize the eigenvalues �. Thus, for the special cases of symmetric single
and double polar caps, the concentration problem posed in Eq. (32) is not only
numerically feasible also in circumstances where direct solution methods are bound
to fail (Albertella et al. 1999), but essentially trivial in every situation. In practical
applications, the eigenfunctions that are optimally concentrated within a polar cap
can be rotated to an arbitrarily positioned circular cap on the unit sphere using
standard spherical harmonic rotation formulae (Edmonds 1996; Blanco et al. 1997;
Dahlen and Tromp 1998).

2.4 Vectorial Slepian Functions on the Surface of a Sphere

General Theory in “Three” Vectorial Dimensions
The expansion of a real-valued square-integrable vector field f.Or/ on the unit
sphere	 can be written as

f.Or/ D
1X
lD0

lX
mD�l

f P
lmPlm.Or/C f B

lmBlm.Or/C f C
lmClm.Or/; (45a)

f P
lm D

Z
	

Plm.Or/ � f.Or/ d	; f B
lm D

Z
	

Blm.Or/ � f.Or/ d	; and

f C
lm D

Z
	

Clm.Or/ � f.Or/ d	; (45b)
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using real vector surface spherical harmonics (Dahlen and Tromp 1998; Sabaka
et al. 2010; Gerhards 2011) that are constructed from the scalar harmonics in
Eq. (26), as follows. In the vector spherical coordinates .Or; O�; O�/ and using the
surface gradient r 1 D O� @� C O� .sin �/�1@
 , we write for l > 0 and �m � l � m,

Plm.Or/ D OrYlm.Or/; (46)

Blm.Or/ D r 1Ylm.Or/p
l.l C 1/

D Œ O� @� C O� .sin �/�1@
�Ylm.Or/p
l.l C 1/

; (47)

Clm.Or/ D �Or � r 1Ylm.Or/p
l.l C 1/

D Œ O� .sin �/�1@
 � O�@� �Ylm.Or/p
l.l C 1/

; (48)

together with the purely radial P00 D .4�/�1=2 Or, and setting f B
00 D f C

00 D 0

for every vector field f. The remaining expansion coefficients (45b) are naturally
obtained from Eq. (45a) through the orthonormality relationships

Z
	

Plm � Pl 0m0 d	 D
Z
	

Blm � Bl 0m0 d	 D
Z
	

Clm � Cl 0m0 d	 D ıl l 0ımm0; (49a)

Z
	

Plm � Bl 0m0 d	 D
Z
	

Plm � Cl 0m0 d	 D
Z
	

Blm � Cl 0m0 d	 D 0: (49b)

The vector spherical-harmonic addition theorem (Freeden and Schreiner 2009)
implies the limited result

lX
mD�l

Plm.Or/ � Plm.Or/D
�
2l C 1

4�

�
D

lX
mD�l

Blm.Or/ � Blm.Or/D
lX

mD�l
Clm.Or/ � Clm.Or/:

(50)

As before we seek to maximize the spatial concentration of a bandlimited spherical
vector function

g.Or/ D
LX
lD0

lX
mD�l

gPlmPlm.Or/C gBlmBlm.Or/C gClmClm.Or/ (51)

within a certain region R, in the vectorial case by maximizing the energy ratio

� D

Z
R

g � g d	
Z
	

g � g d	
D maximum: (52)
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The maximization of Eq. (52) leads to a coupled system of positive-definite spectral-
domain eigenvalue equations, for 0 � l � L and � l � m � l ,

LX
l 0D0

l 0X
m0D�l 0

Dlm;l 0m0gPl 0m0 D �gPlm; (53a)

LX
l 0D0

l 0X
m0D�l 0

Blm;l 0m0gBl 0m0 C Clm;l 0m0gCl 0m0 D �gBlm; (53b)

LX
l 0D0

l 0X
m0D�l 0

C T
lm;l 0m0g

B
l 0m0 C Blm;l 0m0gCl 0m0 D �gClm: (53c)

Of the below matrix elements that complement the equations above, Eq. (54a) is
identical to Eq. (33b),

Dlm;l 0m0 D
Z
R

Plm � Pl 0m0 d	 D
Z
R

YlmYl 0m0 d	; (54a)

Blm;l 0m0 D
Z
R

Blm � Bl 0m0 d	 D
Z
R

Clm � Cl 0m0 d	; (54b)

Clm;l 0m0 D
Z
R

Blm � Cl 0m0 d	; (54c)

and the transpose of Eq. (54c) switches its sign. The radial vectorial concentration
problem (53a)–(54a) is identical to the corresponding scalar case (33) and can be
solved separately from the tangential equations. Altogether, in the space domain,
the equivalent eigenvalue equation is

Z
R

D.Or; Or0/ � g.Or0/ d	 D �g.Or/; Or 2 	; (55a)

D.Or; Or0/ D
LX
lD0

lX
mD�l

Plm.Or/Plm.Or0/C Blm.Or/Blm.Or0/C Clm.Or/Clm.Or0/; (55b)

a homogeneous Fredholm integral equation with a finite-rank, symmetric, separable,
bandlimited kernel. Further reducing Eq. (55) using the full version of the vectorial
addition theorem does not yield much additional insight.

After collecting the spheroidal (radial, consoidal) and toroidal expansion coeffi-
cients in a vector,

g D .: : : ; gPlm; : : : ; g
B
lm; : : : ; g

C
lm; : : :/

T (56)



Scalar and Vector Slepian Functions, Spherical Signal Estimation and Spectral. . . 2581

and the kernel elements Dlm;l 0m0 , Blm;l 0m0 and Clm;l 0m0 of Eq. (54) into the subma-
trices D, B, and C, we assemble

K D
0
@D 0 0

0 B C
0 CT B

1
A : (57)

In this new notation Eq. (53) reads as an Œ3.LC1/2�2��Œ3.LC1/2�2�-dimensional
algebraic eigenvalue problem

Kg D �g; (58)

whose eigenvectors g1;g2; : : : ;g3.LC1/2�2 are mutually orthogonal in the sense

gT
˛gˇ D ı˛ˇ; gT

˛Kgˇ D �˛ı˛ˇ: (59)

The associated eigenfields g1.Or/; g2.Or/; : : : ; g3.LC1/2�2.Or/ are orthogonal over the
regionR and orthonormal over the whole sphere 	:

Z
	

g˛ � gˇ d	 D ı˛ˇ;

Z
R

g˛ � gˇ d	 D �˛ı˛ˇ: (60)

The relations (60) for the spatial domain are equivalent to their matrix counterparts
(59). The eigenfield g1.Or/ with the largest eigenvalue �1 is the element in the
space of bandlimited vector fields with most of its spatial energy within region R;
the eigenfield g2.Or/ is the next best-concentrated bandlimited function orthogonal
to g1.Or/ over both	 and R; and so on. Finally, as in the scalar case, we can sum up
the eigenvalues of the matrix K to define a vectorial spherical Shannon number

N vec D
3.LC1/2�2X

˛D1
�˛ D trK D

LX
lD0

lX
mD�l

.Dlm;lm C Blm;lm C Clm;lm/ (61)

D
Z
R

"
LX
lD0

lX
mD�l

Plm.Or/�Plm.Or/C Blm.Or/ � Blm.Or/CClm.Or/ � Clm.Or/
#
d	 (62)

D �
3.LC 1/2 � 2	 A

4�
: (63)

To establish the last equality we used the relation (50). Given the decoupling of the
radial from the tangential solutions that is apparent from Eq. (57), we may subdivide
the vectorial spherical Shannon number into a radial and a tangential one. These are
Nr D .LC 1/2A=.4�/ and N t D Œ2.LC 1/2 � 2�A=.4�/, respectively.
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Fig. 4 Twelve tangential Slepian functions g1; g2; : : : ; g12, bandlimited to L D 60, optimally
concentrated within Australia. The concentration factors �1; �2; : : : ; �12 are indicated. The rounded
tangential Shannon number N t D 112. Order of concentration is left to right, top to bottom. Color
is absolute value (red the maximum) and circles with strokes indicate the direction of the eigenfield
on the tangential plane. Regions in which the absolute value is less than one hundredth of the
maximum absolute value on the sphere are left white

Numerical solution methods were discussed by Plattner and Simons (2014). An
example of tangential vectorial Slepian functions on a geographical domain on the
surface of the sphere is found in Fig. 4.

Sturm-Liouville Character and Tridiagonal Matrix Formulation
When the region of concentration R is a symmetric polar cap with colatitudinal
radius ‚ centered on the north pole, special rules apply that greatly facilitate
the construction of the localization kernel (57). There are reductions of Eq. (54)
to some very manageable integrals that can be carried out exactly by recursion.
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Solutions for the polar cap can be rotated anywhere on the unit sphere using the
same transformations that apply in the rotation of scalar functions (Edmonds 1996;
Blanco et al. 1997; Dahlen and Tromp 1998; Freeden and Schreiner 2009).

In the axisymmetric case the matrix elements (54a)–(54c) reduce to

Dlm;l 0m0 D 2� ımm0

Z ‚

0

XlmXl 0m sin � d�; (64)

Blm;l 0m0 D
2� ımm0

Z ‚

0

�
X 0
lmX

0
l 0m Cm2.sin �/�2XlmXl 0m

	
sin � d�

p
l.l C 1/l 0.l 0 C 1/

; (65)

Clm;l 0m0 D�
2� ı�mm0m

Z ‚

0

�
X 0
lmXl 0m CXlmX

0
l 0m

	
d�

p
l.l C 1/l 0.l 0 C 1/

D �2� ı�mm0mXlm.‚/Xl 0m.‚/p
l.l C 1/l 0.l 0 C 1/

; (66)

using the derivative notation X 0
lm D dXlm=d� for the normalized associated

Legendre functions of Eq. (27). Equation (66) can be easily evaluated. The integrals
over the product terms XlmXl 0m in Eq. (64) can be rewritten using Wigner 3j sym-
bols (Wieczorek and Simons 2005; Simons et al. 2006; Plattner and Simons 2014)
to simple integrals overXl 2m or Xl 0 which can be handled recursively (Paul 1978).
Finally, in Eq. (65) integrals of the type X 0

lmX
0
l 0m, and m2.sin �/�2XlmXl 0m can

be rewritten as integrals over undifferentiated products of Legendre functions (Ilk
1983; Eshagh 2009; Plattner and Simons 2014). All in all, these computations are
straightforward to carry out and lead to block-diagonal matrices at constant orderm,
which are relatively easily diagonalized.

As this chapter went to press, Jahn and Bokor (2014) reported the exciting
discovery of a differential operator that commutes with the tangential part of the
concentration operator (55), and a tridiagonal matrix formulation for the tangential
vectorial concentration problem to axisymmetric domains. They achieve this feat
by a change of basis by which to reduce the vectorial problem to a scalar one
that is separable in � and 
, using the special functions X 0

lm ˙ m.sin �/�1Xlm
(Sheppard and Török 1997). Hence they derive a commuting differential operator
and a corresponding spectral matrix for the concentration problem. By their
approach, the solutions to the fixed-order tangential concentration problem are again
solutions to a Sturm-Liouville problem with a very simple eigenvalue spectrum,
and the calculations are always fast and stable, much as they are for the radial
problem which completes the construction of vectorial Slepian functions on the
sphere.
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2.5 Midterm Summary

It is interesting to reflect, however heuristically, on the commonality of all of the
above aspects of spatiospectral localization, in the slightly expanded context of
reproducing-kernel Hilbert spaces (Yao 1967; Nashed and Walter 1991; Daubechies
1992; Amirbekyan et al. 2008; Kennedy and Sadeghi 2013). In one dimension, the
Fourier orthonormality relation and the “reproducing” properties of the spatial delta
function are given by

ı.t; t 0/ D .2�/�1
Z 1

�1
ei!.t�t 0/ d!;

Z 1

�1
f .t 0/ı.t; t 0/ dt 0 D f .t/: (67)

In two Cartesian dimensions the equivalent relations are

ı.x; x0/ D .2�/�2
Z 1

�1
eik�.x�x0/ dk;

Z 1

�1
f .x0/ı.x; x0/ dx0 D f .x/; (68)

and on the surface of the unit sphere we have, for the scalar case,

ı.Or; Or0/ D
1X
lD0

�
2l C 1

4�

�
Pl.Or � Or0/;

Z
	

f .Or0/ı.Or; Or0/ d	0 D f .Or/; (69)

and for the vector case, we have the sum of dyads

ı.Or; Or0/ D
1X
lD0

lX
mD�l

Plm.Or/Plm.Or0/C Blm.Or/Blm.Or0/C Clm.Or/Clm.Or0/; (70a)

Z
	

f.Or0/ � ı.Or; Or0/ d	0 D f.Or/: (70b)

The integral-equation kernels (5b), (15b), (34b), and (55b) are all bandlimited
spatial delta functions which are reproducing kernels for bandlimited functions of
the types in Eqs. (2), (12), (31), and (51):

D.t; t 0/ D .2�/�1
Z W

�W
ei!.t�t 0/ d!;

Z 1

�1
g.t 0/D.t; t 0/ dt 0 D g.t/; (71)

D.x; x0/ D .2�/�2
Z
K
eik�.x�x0/ dk;

Z 1

�1
g.x0/D.x; x0/ dx0 D g.x/; (72)
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D.Or; Or0/ D
LX
lD0

�
2l C 1

4�

�
Pl.Or � Or0/;

Z
	

g.Or0/D.Or; Or0/ d	Dg.Or/; (73)

D.Or; Or0/ D
LX
lD0

lX
mD�l

Plm.Or/Plm.Or0/Œ12pt�C Blm.Or/Blm.Or0/C Clm.Or/Clm.Or0/;

(74a)

Z
	

g.Or0/ � D.Or; Or0/ d	0 D g.Or/: (74b)

The equivalence of Eq. (71) with Eq. (5b) is through the Euler identity, and
the reproducing properties follow from the spectral forms of the orthogonality
relations (67) and (68), which are self-evident by change of variables, and from
the spectral form of Eq. (69), which is Eq. (29). Much as the delta functions of
Eqs. (67)–(70) set up the Hilbert spaces of all square-integrable functions on the
real line, in two-dimensional Cartesian space and on the surface of the sphere
(both scalar and vector functions), the kernels (71) and (74) induce the equivalent
subspaces of bandlimited functions in their respective dimensions. Inasmuch as the
Slepian functions are the integral eigenfunctions of these reproducing kernels in the
sense of Eqs. (5a), (15a), (34a), and (55a), they are complete bases for their band-
limited subspaces (Slepian and Pollak 1961; Landau and Pollak 1961; Daubechies
1992; Flandrin 1998; Freeden et al. 1998; Plattner and Simons 2014). Therein,
the N 1D, N 2D, N 3D, or N vec best time- or space-concentrated members allow for
sparse, approximate expansions of signals that are spatially concentrated to the one-
dimensional interval t 2 Œ�T; T � � R, the Cartesian region x 2 R � R

2, or the
spherical surface patch Or 2 R � 	.

As a corollary to this behavior, the infinite sets of exactly time- or spacelimited
(and thus band-concentrated) versions of the functions g and g, which are the
eigenfunctions of Eqs. (5), (15), (34), and (55) with the domains appropriately
restricted, are complete bases for square-integrable scalar or vector functions on
the intervals to which they are confined (Slepian and Pollak 1961; Landau and
Pollak 1961; Simons et al. 2006; Plattner and Simons 2013). Expansions of such
wideband signals in the small subset of their N 1D, N 2D, N 3D, or N vec most band-
concentrated members provide reconstructions which are constructive in the sense
that they progressively capture all of the signal in the mean-squared sense, in the
limit of letting their numbers grow to infinity. This second class of functions can
be trivially obtained, up to a multiplicative constant, from the bandlimited Slepian
functions g and g by simple time- or space limitation. While Slepian (Slepian and
Pollak 1961; Slepian 1983), for this reason perhaps, never gave them a name, we
have been referring to those as h (and h) in our own investigations of similar
functions on the sphere (Simons et al. 2006; Simons and Dahlen 2006; Dahlen and
Simons 2008; Plattner and Simons 2013).
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3 Problems in the Geosciences and Beyond

Taking all of the above at face value but referring again to the literature cited thus far
for proof and additional context, we return to considerations closer to home, namely,
the estimation of geophysical (or cosmological) signals and/or their power spectra,
from noisy and incomplete observations collected at or above the surface of the
spheres “Earth” or “planet” (or from inside the sphere “sky”). We restrict ourselves
to real-valued scalar measurements, contaminated by additive noise for which we
shall adopt idealized models. We focus exclusively on data acquired and solutions
expressed on the unit sphere. We have considered generalizations to problems
involving satellite potential-field data collected at an altitude elsewhere (Simons
and Dahlen 2006; Simons et al. 2009). We furthermore note that descriptions
of the scalar gravitational and magnetic potential may be sufficient to capture
the behavior of the corresponding gravity and magnetic vector fields, but that
with vectorial Slepian functions, versatile and demanding satellite data analysis
problems will be able to get robustly handled even in the presence of noise
that may be strongly heterogeneous spatially and/or over the individual vector
components.

Speaking quite generally, the two different statistical problems that arise when
geomathematical scalar spherical data are being studied are, (i) how to find the
“best” estimate of the signal given the data and (ii) how to construct from the data
the “best” estimate of the power spectral density of the signal in question. There
are problems intermediate between either case, for instance, those that utilize the
solutions to problems of the kind (i) to make inference about the power spectral
density without properly solving any problems of kind (ii). Mostly such scenarios,
e.g., in localized geomagnetic field analysis (Beggan et al. 2013), are born out
of necessity or convenience. We restrict our analysis to the “pure” end-member
problems.

Thus, let there be some real-valued scalar data distributed on the unit sphere,
consisting of “signal,” s and “noise,” n, and let there be some region of interest
R � 	; in other words, let

d.Or/ D
8<
:
s.Or/C n.Or/ if Or 2 R;
unknown/undesired if Or 2 	 n R:

(75)

We assume that the signal of interest can be expressed by way of spherical harmonic
expansion as in Eq. (25), and that it is, itself, a realization of a zero-mean, Gaussian,
isotropic, random process, namely,

s.Or/ D
1X
lD0

lX
mD�l

slmYlm.Or/; hslmi D 0 and hslmsl 0m0i D Sl ıl l 0ımm0:

(76)
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For illustration we furthermore assume that the noise is a zero-mean stochastic
process with an isotropic power spectrum, i.e., hn.Or/i D 0 and hnlmnl 0m0i D
Nl ıl l 0ımm0 , and that it is statistically uncorrelated with the signal. We refer to power
as white when Sl D S or Nl D N , or, equivalently, when hn.Or/n.Or0/i D Nı.Or; Or0/.
Our objectives are thus (i) to determine the best estimate Oslm of the spherical
harmonic expansion coefficients slm of the signal and (ii) to find the best estimate OSl
for the isotropic power spectral density Sl . While in the physical world there can be
no limit on bandwidth, practical restrictions force any and all of our estimates to
be bandlimited to some maximum spherical harmonic degree L, thus by necessity
Oslm D 0 and OSl D 0 for l > L:

Os.Or/ D
LX
lD0

lX
mD�l

OslmYlm.Or/: (77)

This limitation, combined with the statements of Eq. (75) on the data coverage or
the study region of interest, naturally leads us back to the concept of “spatiospectral
concentration,” and, as we shall see, solving either problem (i) or (ii) will gain from
involving the “localized” scalar Slepian functions rather than, or in addition to, the
“global” spherical harmonics basis.

This leaves us to clarify what we understand by “best” in this context. While we
adopt the traditional statistical metrics of bias, variance, and mean-squared error to
appraise the quality of our solutions (Cox and Hinkley 1974; Bendat and Piersol
2000), the resulting connections to sparsity will be real and immediate, owing to the
Slepian functions being naturally instrumental in constructing efficient, consistent,
and/or unbiased estimates of either Oslm or OSl . Thus, we define

v D hOs2i � hOsi2; b D hOsi � s; � D Os � s; and h�2i D v C b2 (78)

for problem (i), where the lack of subscript indicates that we can study variance,
bias, and mean-squared error of the estimate of the coefficients Oslm but also of
their spatial expansion Os.Or/. For problem (ii) on the other hand, we focus on the
estimate of the isotropic power spectrum at a given spherical harmonic degree l by
identifying

vl D h OS2l i � h OSli2; bl D h OSli � Sl ; �l D OSl �Sl ; and h�2l i D vl C b2l :

(79)

Depending on the application, the “best” estimate could mean the unbiased one
with the lowest variance (Tegmark 1997; Tegmark et al. 1997; Bond et al. 1998; Oh
et al. 1999; Hinshaw et al. 2003), it could be simply the minimum-variance estimate
having some acceptable and quantifiable bias (Wieczorek and Simons 2007), or,
as we would usually prefer, it would be the one with the minimum mean-squared
error (Simons and Dahlen 2006; Dahlen and Simons 2008).
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3.1 Problem (i): Signal Estimation from Spherical Data

Spherical Harmonic Solution
Paraphrasing results elaborated elsewhere (Simons and Dahlen 2006), we write the
bandlimited solution to the damped inverse problem

Z
R

.s � d/2 d	C 


Z
NR
s2 d	 D minimum; (80)

where 
 � 0 is a damping parameter, by straightforward algebraic manipulation, as

Oslm D
LX

l 0D0

l 0X
m0D�l 0

�
Dlm;l 0m0 C 
 NDlm;l 0m0

��1 Z
R

d Yl 0m0 d	; (81)

where NDlm;l 0m0 , the kernel that localizes to the region NR D 	 n R, compli-
ments Dlm;l 0m0 given by Eq. (33b) which localizes to R. Given the eigenvalue
spectrum of the latter, its inversion is inherently unstable, thus Eq. (80) is an ill-
conditioned inverse problem unless 
 > 0, as has been well known, e.g., in
geodesy (Xu 1992; Sneeuw and van Gelderen 1997). Elsewhere (Simons and Dahlen
2006) we have derived exact expressions for the optimal value of the damping
parameter 
 as a function of the signal-to-noise ratio under certain simplifying
assumptions. As can be easily shown, without damping the estimate is unbiased
but effectively incomputable; the introduction of the damping term stabilizes the
solution at the cost of added bias. And of course when R D 	, Eq. (81) is simply
the spherical harmonic transform, as in that case, Eq. (33b) reduces to Eq. (29), in
other words, thenDlm;l 0m0 D ıl l 0ımm0 .

Slepian Basis Solution
The trial solution in the Slepian basis designed for this region of interest R, i.e.,

Os.Or/ D
.LC1/2X
˛D1

Os˛g˛.Or/; (82)

would be completely equivalent to the expression in Eq. (77) by virtue of the com-
pleteness of the Slepian basis for bandlimited functions everywhere on the sphere
and the unitarity of the transform (31) from the spherical harmonic to the Slepian
basis. The solution to the undamped (
 D 0) version of Eq. (80) would then be

Os˛ D ��1
˛

Z
R

d g˛ d	; (83)

which, being completely equivalent to Eq. (81) for 
 D 0, would be computable
and biased, only when the expansion in Eq. (82) were to be truncated to some finite
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J < .LC 1/2 to prevent the blowup of the eigenvalues �. Assuming for simplicity
of the argument that J D N 3D, the essence of the approach is now that the solution

Os.Or/ D
N 3DX
˛D1

Os˛g˛.Or/ (84)

will be sparse (in achieving a bandwidth L using N 3D Slepian instead of .LC 1/2

spherical-harmonic expansion coefficients) yet good (in approximating the signal
as well as possible in the mean-squared sense in the region of interest R) and of
geophysical utility (assuming we are dealing with spatially localized processes that
are to be extracted, e.g., from global satellite measurements) as shown by Han and
Simons (2008), Simons et al. (2009), and Harig and Simons (2012).

3.2 Bias and Variance

In concluding this section let us illustrate another welcome by-product of our
methodology, by writing the mean-squared error for the spherical harmonic solu-
tion (81) compared to the equivalent expression for the solution in the Slepian basis,
Eq. (83). We do this as a function of the spatial coordinate, in the Slepian basis for
both, and, for maximum clarity of the exposition, using the contrived case when
both signal and noise should be white (with power S and N , respectively) as well
as bandlimited (which technically is impossible). In the former case, we get

h�2.Or/i D N

.LC1/2X
˛D1

�˛Œ�˛ C 
.1 � �˛/�
�2g2˛.Or/ (85)

C 
2S

.LC1/2X
˛D1

.1 � �˛/
2Œ�˛ C 
.1 � �˛/��2g2˛.Or/;

while in the latter, we obtain

h�2.Or/i D N

N 3DX
˛D1

��1
˛ g

2
˛.Or/C S

.LC1/2X
˛>N 3D

g2˛.Or/: (86)

All .L C 1/2 basis functions are required to express the mean-squared estimation
error, whether in Eq. (85) or in Eq. (86). The first term in both expressions is the
variance, which depends on the measurement noise. Without damping or truncation
the variance grows without bounds. Damping and truncation alleviate this at the
expense of added bias, which depends on the characteristics of the signal, as given
by the second term. In contrast to Eq. (85), however, the Slepian expression (86) has
disentangled the contributions due to noise/variance and signal/bias by projecting
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them onto the sparse set of well-localized and the remaining set of poorly localized
Slepian functions, respectively. The estimation variance is felt via the basis functions
˛ D 1 ! N 3D that are well concentrated inside the measurement area, and the
effect of the bias is relegated to those ˛ D N 3D C 1 ! .LC 1/2 functions that are
confined to the region of missing data.

When forming a solution to problem (i) in the Slepian basis by truncation accord-
ing to Eq. (84), changing the truncation level J to values lower or higher than the
Shannon number N 3D amounts to navigating the trade-off space between variance,
bias (or “resolution”), and sparsity in a manner that is captured with great clarity
by Eq. (86). We refer the reader elsewhere (Simons and Dahlen 2006, 2007) for
more details, and, in particular, for the case of potential fields estimated from data
collected at satellite altitude, treated in detail in chapter � Potential-Field Estimation
Using Scalar and Vector Slepian Functions at Satellite Altitude of this book.

3.3 Problem (ii): Power Spectrum Estimation from Spherical Data

Following Dahlen and Simons (2008) we will find it convenient to regard the
data d.Or/ given in Eq. (75) as having been multiplied by a unit-valued boxcar
window function confined to the regionR,

b.Or/ D
1X
pD0

pX
qD�p

bpqYpq.Or/ D


1 if Or 2 R;
0 otherwise.

(87)

The power spectrum of the boxcar window (87) is

Bp D 1

2p C 1

pX
qD�p

b2pq: (88)

The Spherical Periodogram
Should we decide that an acceptable estimate of the power spectral density of the
available data is nothing else but the weighted average of its spherical harmonic
expansion coefficients, we would be forming the spherical analogue of what
Schuster (1898) named the “periodogram” in the context of time series analysis,
namely,

OSSP
l D

�
4�

A

�
1

2l C 1

lX
mD�l

�Z
R

d.Or/ Ylm.Or/ d	
�2
: (89)

Bias of the Periodogram
Upon doing so we would discover that the expected value of such an estimator
would be the biased quantity

http://dx.doi.org/10.1007/978-3-642-54551-1_64
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h OSSP
l i D

1X
l 0D0

Kl l 0.Sl 0 CNl 0/; (90)

where, as it is known in astrophysics and cosmology (Peebles 1973; Hauser and
Peebles 1973; Hivon et al. 2002), the periodogram “coupling” matrix

Kll 0 D
�
4�

A

�
1

2l C 1

lX
mD�l

l 0X
m0D�l 0

ŒDlm;l 0m0 �2 (91)

governs the extent to which an estimate OSSP
l of Sl is influenced by spectral leakage

from power in neighboring spherical harmonic degrees l 0 D l ˙ 1; l ˙ 2; : : :, all
the way down to 0 and up to 1. In the case of full data coverage, R D 	, or of
a perfectly white spectrum, Sl D S , however, the estimate would be unbiased –
provided the noise spectrum, if known, can be subtracted beforehand.

Variance of the Periodogram
The covariance of the periodogram estimator (89) would moreover be suffering from
strong wideband coupling of the power spectral densities in being given by

†SP
l l 0 D 2.4�=A/2

.2l C 1/.2l 0 C 1/

lX
mD�l

l 0X
m0D�l 0

2
4 1X
pD0

1X
qD0
.Sp CNp/Dlm;pqDpq;l 0m0

3
5
2

:

(92)

Even under the commonly made assumption as should the power spectrum be
slowly varying within the main lobe of the coupling matrix, such coupling would be
nefarious. In the “locally white” case we would have

†SP
l l 0 D 2.4�=A/2

.2l C 1/.2l 0 C 1/
.Sl CNl/.Sl 0 CNl 0/

lX
mD�l

l 0X
m0D�l 0

ŒDlm;l 0m0 �2 : (93)

Only in the limit of whole-sphere data coverage will Eqs. (92) or (93) reduce to

†WS
l l 0 D 2

2l C 1
.Sl CNl/

2 ıl l 0 ; (94)

which is the “planetary” or “cosmic” variance that can be understood on the basis
of elementary statistical considerations (Jones 1963; Knox 1995; Grishchuk and
Martin 1997). The strong spectral leakage for small regions (A 	 4�) is highly
undesirable and makes the periodogram “hopelessly obsolete” (Thomson and Chave
1991), or, to put it kindly, “naive” (Percival and Walden 1993), just as it is for one-
dimensional time series.

In principle it is possible – after subtraction of the noise bias – to eliminate the
leakage bias in the periodogram estimate (89) by numerical inversion of the coupling



2592 F.J. Simons and A. Plattner

matrixKll 0 . Such a “deconvolved periodogram” estimator is unbiased. However, its
covariance depends on inverting the periodogram coupling matrix, which is only
feasible when the region R covers most of the sphere, A � 4� . For any region
whose areaA is significantly smaller than 4� , the periodogram coupling matrix (91)
will be too ill-conditioned to be invertible.

Thus, much like in problem (i) we are faced with bad bias and poor variance, both
of which are controlled by the lack of localization of the spherical harmonics and
their non-orthogonality over incomplete subdomains of the unit sphere. Both effects
are described by the spatiospectral localization kernel defined in (33b), which,
in the quadratic estimation problem (ii), appears in “squared” form in Eq. (92).
Undoing the effects of the wideband coupling between degrees at which we seek to
estimate the power spectral density by inversion of the coupling kernel is virtually
impossible, and even if we could accomplish this to remove the estimation bias, this
would much inflate the estimation variance (Dahlen and Simons 2008).

The Spherical Multitaper Estimate
We therefore take a page out of the one-dimensional power estimation playbook
of Thomson (1982) by forming the “eigenvalue-weighted multitaper estimate.” We
could weight single-taper estimates adaptively to minimize quality measures such as
estimation variance or mean-squared error (Thomson 1982; Wieczorek and Simons
2007), but in practice, these methods tend to be rather computationally demanding.
Instead we simply multiply the data d.Or/ by the Slepian functions or “tapers” g˛.Or/
designed for the region of interest prior to computing power and then averaging:

OSMT
l D

.LC1/2X
˛D1

�˛

�
4�

N 3D

�
1

2l C 1

lX
mD�l

�Z
	

g˛.Or/ d.Or/ Ylm.Or/ d	
�2
: (95)

Bias of the Multitaper Estimate
The expected value of the estimate (95) is

h OSMT
l i D

lCLX
l 0Dl�L

Mll 0.Sl 0 CNl 0/; (96)

where the eigenvalue-weighted multitaper coupling matrix, using Wigner 3-j
functions (Messiah 2000; Varshalovich et al. 1988), is given by

Mll 0 D 2l 0 C 1

.LC 1/2

LX
pD0

.2p C 1/

�
l p l 0
0 0 0

�2
: (97)

It is remarkable that this result depends only upon the chosen bandwidth L and is
completely independent of the size, shape, or connectivity of the region R, even
as R D 	. Moreover, every row of the matrix in Eq. (97) sums to unity, which



Scalar and Vector Slepian Functions, Spherical Signal Estimation and Spectral. . . 2593

ensures that the multitaper spectral estimate OSMT
l has no leakage bias in the case of

a perfectly white spectrum provided the noise bias is subtracted as well: h OSMT
l i �P

Mll 0Nl 0 D S if Sl D S .

Variance of theMultitaper Estimate
Under the moderately colored approximation, which is more easily justified in this
case because the coupling (97) is confined to a narrow band of width less than
or equal to 2L C 1, with L the bandwidth of the tapers, the eigenvalue-weighted
multitaper covariance is

†MT
l l 0 D 1

2�
.Sl CNl/.Sl 0 CNl 0/

2LX
pD0

.2p C 1/ �p

�
l p l 0
0 0 0

�2
; (98)

where, using Wigner 3-j and 6-j functions (Varshalovich et al. 1988; Messiah
2000),

�p D 1

.N 3D/2

LX
sD0

LX
s0D0

LX
uD0

LX
u0D0

.2s C 1/.2s0 C 1/.2u C 1/.2u0 C 1/

�
2LX
eD0
.�1/pCe.2e C 1/Be

�


s e s0
u p u0

� �
s e s0
0 0 0

��
u e u0
0 0 0

��
s p u0
0 0 0

��
u p s0
0 0 0

�
: (99)

In this expression Be , the boxcar power (88), which we note does depend on the
shape of the region of interest, appears again, summed over angular degrees limited
by 3-j selection rules to 0 � e � 2L. The sum in Eq. (98) is likewise limited to
degrees 0 � p � 2L. The effect of tapering with windows bandlimited to L is
to introduce covariance between the estimates at any two different degrees l and l 0
that are separated by fewer than 2L C 1 degrees. Equations (98) and (99) are very
efficiently computable, which should make them competitive with, e.g., jackknifed
estimates of the estimation variance (Chave et al. 1987; Thomson and Chave 1991;
Thomson 2007).

The crux of the analysis lies in the fact that the matrix of the spectral covariances
between single-tapered estimates is almost diagonal (Wieczorek and Simons 2007),
showing that the individual estimates that enter the weighted formula (95) are almost
uncorrelated statistically. This embodies the very essence of the multitaper method.
It dramatically reduces the estimation variance at the cost of small increases of
readily quantifiable bias.
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4 Practical Considerations

In this section we now turn to the very practical context of sampled, e.g., geodetic,
data on the sphere. We shall deal exclusively with bandlimited scalar functions,
which are equally well expressed in the spherical harmonic as the Slepian basis,
namely:

f .Or/ D
LX
lD0

lX
mD�l

flmYlm.Or/ D
.LC1/2X
˛D1

f˛ g˛.Or/; (100)

whereby the Slepian-basis expansion coefficients are obtained as

f˛ D
Z
	

f .Or/g˛.Or/ d	: (101)

If the function of interest is spatially localized in the region R, a truncated
reconstruction using Slepian functions built for the same region will constitute a
very good, and sparse, local approximation to it (Simons et al. 2009):

f .Or/ �
N 3DX
˛D1

f˛ g˛.Or/; Or 2 R: (102)

We represent any sampled, bandlimited function f by an M -dimensional column
vector

f D .f1 � � � fj � � � fM /T; (103)

where fj D f .Orj / is the value of f at pixel j , and M is the total number
of sampling locations. In the most general case the distribution of pixel centers
will be completely arbitrary (Hesse et al. 2010). The special case of equal-area
pixelization of a 2-D function f .Or/ on the unit sphere 	 is analogous to the
equispaced digitization of a 1-D time series. Integrals will then be assumed to
be approximated with sufficient accuracy by a Riemann sum over a dense set of
pixels,

Z
f .Or/ d	 � �	

MX
jD1

fj and
Z
f 2.Or/ d	 � �	 fTf: (104)

We have deliberately left the integration domain out of the above equations to cover
both the cases of sampling over the entire unit sphere surface 	, in which case the
solid angle�	 D 4�=M (case 1) as well as over an incomplete subdomainR � 	,
in which case �	 D A=M , with A the area of the region R (case 2). If we collect
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the real spherical harmonic basis functions Ylm into an .LC 1/2 �M -dimensional
matrix

Y D

0
BBBBBB@

Y00.Or1/ � � � Y00.Orj / � � � Y00.OrM/
:::

� � � Ylm.Orj / � � �
:::

YLL.Or1/ � � � YLL.Orj / � � � YLL.OrM/

1
CCCCCCA
; (105)

and the spherical harmonic coefficients of the function into an .L C 1/2 � 1-
dimensional vector

f D . f00 � � � flm � � � fLL /T ; (106)

we can write the spherical harmonic synthesis in Eq. (100) for sampled data without
loss of generality as

f D YTf: (107)

We will adhere to the notation convention of using sans-serif fonts (e.g., f, Y) for
vectors or matrices that depend on at least one spatial variable, and serifed fonts
(e.g., f;D) for those that are entirely composed of “spectral” quantities. In the case
of dense, equal-area, whole-sphere sampling, we have an approximation to Eq. (29):

YYT � �	�1I (case 1); (108)

where the elements of the .LC1/2�.LC1/2-dimensional spectral identity matrix I
are given by the Kronecker deltas ıl l 0ımm0 . In the case of dense, equal-area sampling
over some closed regionR, we find instead an approximation to the .LC1/2�.LC
1/2-dimensional “spatiospectral localization matrix”:

YYT � �	�1D (case 2); (109)

where the elements of D are those defined in Eq. (33b).
Let us now introduce the .L C 1/2 � .L C 1/2-dimensional matrix of spectral

Slepian eigenfunctions by

G D

0
BBBBBB@

g001 � � � g00˛ � � � g00.LC1/2
:::

� � � glm˛ � � �
:::

gLL1 � � � gLL˛ � � � gLL.LC1/2

1
CCCCCCA
: (110)
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This is the matrix that contains the eigenfunctions of the problem defined in Eq. (33),
which we rewrite as

DG D Gƒ; (111)

where the diagonal matrix with the concentration eigenvalues is given by

ƒ D diag
�
�1 � � � �˛ � � � �.LC1/2

�
: (112)

The spectral orthogonality relations of Eq. (35) are

GTG D I; GTDG D ƒ; (113)

where the elements of the .LC1/2�.LC1/2-dimensional Slepian identity matrix I
are given by the Kronecker deltas ı˛ˇ . We write the Slepian functions of Eq. (31) as

G D GTY and Y D GG; (114)

where the .L C 1/2 � M -dimensional matrix holding the sampled spatial Slepian
functions is given by

G D

0
BBBBBB@

g1.Or1/ � � � g1.Orj / � � � g1.OrM/
:::

� � � g˛.Orj / � � �
:::

g.LC1/2.Or1/ � � � g.LC1/2.Orj / � � � g.LC1/2.OrM/

1
CCCCCCA
: (115)

Under a dense, equal-area, whole-sphere sampling, we will recover the spatial
orthogonality of Eq. (36) approximately as

GGT � �	�1I (case 1); (116)

whereas for dense, equal-area sampling over a regionR we will get, instead,

GGT � �	�1ƒ (case 2): (117)

With this matrix notation we shall revisit both estimation problems of the previous
section.
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4.1 Problem (i), Revisited

Spherical Harmonic Solution
If we treat Eq. (107) as a noiseless inverse problem in which the sampled data f are
given but from which the coefficients f are to be determined, we find that for dense,
equal-area, whole-sphere sampling, the solution

Of � �	Yf (case 1) (118)

is simply the discrete approximation to the spherical harmonic analysis for-
mula (25). For dense, equal-area, regional sampling we need to calculate

Of � �	D�1Yf (case 2): (119)

Both of these cases are simply the relevant solutions to the familiar overdetermined
spherical harmonic inversion problem (Kaula 1967; Menke 1989; Aster et al. 2005)
for discretely sampled data, i.e., the least-squares solution to Eq. (107),

Of D .YYT/�1Yf; (120)

for the particular cases described by Eqs. (108) and (109). In Eq. (119) we further-
more recognize the discrete version of Eq. (81) with 
 D 0, the undamped solution
to the minimum mean-squared error inverse problem posed in continuous form in
Eq. (80). From the continuous limiting case Eq. (81), we thus discover the general
form that damping should take in regularizing the ill-conditioned inverse required
in Eqs. (119) and (120). Its principal property is that it differs from the customary
ad hoc practice of adding small values on the diagonal only. Finally, in the most
general and admittedly most commonly encountered case of randomly scattered
data, we require the Moore-Penrose pseudo-inverse

Of D pinv.YT/f; (121)

which is constructed by inverting the singular value decomposition (svd) of YT with
its singular values truncated beyond where they fall below a certain threshold (Xu
1998). Solving Eq. (121) by truncated svd is equivalent to inverting a truncated
eigenvalue expansion of the normal matrix YYT as it appears in Eq. (120), as can
be easily shown.

Slepian Basis Solution
If we collect the Slepian expansion coefficients of the function f into the .LC1/2�
1-dimensional vector

t D . f1 � � � f˛ � � � f.LC1/2 /T ; (122)
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the expansion (100) in the Slepian basis takes the form

f D GTt D YTGt; (123)

where we used Eqs. (113) and (114) to obtain the second equality. Comparing
Eq. (123) with Eq. (107), we see that the Slepian expansion coefficients of a function
transform to and from the spherical harmonic coefficients as

f D Gt and t D GTf: (124)

Under dense, equal-area sampling with complete coverage, the coefficients in
Eq. (123) can be estimated from

Ot � �	Gf (case 1); (125)

the discrete, approximate version of Eq. (101). For dense, equal-area sampling in a
limited regionR, we get

Ot � �	ƒ�1Gf (case 2): (126)

As expected, both of the solutions (125) and (126) are again special cases of the
overdetermined least-squares solution

Ot D .GGT/�1Gf; (127)

as applied to Eqs. (116) and (117). We encountered Eq. (126) before in the con-
tinuous form of Eq. (83); it solves the undamped minimum mean-squared error
problem (80). The regularization of this ill-conditioned inverse problem may be
achieved by truncation of the concentration eigenvalues, e.g., by restricting the size
of the .LC 1/2 � .LC 1/2-dimensional operator GGT to its first J � J subblock.
Finally, in the most general, scattered-data case, we would be using an eigenvalue-
truncated version of Eq. (127), or, which is equivalent, form the pseudo-inverse

Ot D pinv.GT/f: (128)

The solutions (118)–(120) and (125)–(127) are equivalent and differ only by
the orthonormal change of basis from the spherical harmonics to the Slepian
functions. Indeed, using Eqs. (114) and (124) to transform Eq. (127) into an equation
for the spherical harmonic coefficients and comparing with Eq. (120) exposes the
relation

G.GGT/�1GT D .YYT/�1; (129)
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which is a trivial identity for case 1 (insert Eqs. 108, 116 and 113) and, after
substituting Eqs. (109) and (117), entails

Gƒ�1GT D D�1 (130)

for case 2, which holds by virtue of Eq. (113). Equation (129) can also be verified
directly from Eq. (114), which implies

YYT D G.GGT/GT: (131)

The popular but labor-intensive procedure by which the unknown spherical har-
monic expansion coefficients of a scattered data set are obtained by forming the
Moore-Penrose pseudo-inverse as in Eq. (121) is thus equivalent to determining the
truncated Slepian solution of Eq. (126) in the limit of continuous and equal-area,
but incomplete data coverage. In that limit, the generic eigenvalue decomposition
of the normal matrix becomes a specific statement of the Slepian problem as we
encountered it before, namely,

YYT�	 D U†2UT ! D D GƒGT: (132)

Such a connection has been previously pointed out for time series (Wingham 1992)
and leads to the notion of “generalized prolate spheroidal functions” (Bronez 1988)
should the “Slepian” functions be computed from a formulation of the concentration
problem in the scattered data space directly, rather than being determined by
sampling those obtained from solving the corresponding continuous problem, as
we have described here.

Above, we showed how to stabilize the inverse problem of Eq. (120) by damping.
We dealt with the case of continuously available data only; the form in which it
appears in Eq. (81) makes it clear that damping is hardly practical for scattered
data. Indeed, it requires knowledge of the complementary localization operator ND,
in addition to being sensitive to the choice of 
, whose optimal value depends
implicitly on the unknown signal-to-noise ratio (Simons and Dahlen 2006). The
data-driven approach taken in Eq. (121) is the more sensible one (Xu 1998). We
have now seen that, in the limit of continuous partial coverage, this corresponds
to the optimal solution of the problem formulated directly in the Slepian basis.
It is consequently advantageous to also work in the Slepian basis in case the
data collected are scattered but closely collocated in some region of interest. Prior
knowledge of the geometry of this region and a prior idea of the spherical harmonic
bandwidth of the data to be inverted allows us to construct a Slepian basis for the
situation at hand, and the problem of finding the Slepian expansion coefficients of
the unknown underlying function can be solved using Eqs. (127) and (128). The
measure within which this approach agrees with the theoretical form of Eq. (126)
will depend on how regularly the data are distributed within the region of study,
i.e., on the error in the approximation (117). But if indeed the scattered-data Slepian
normal matrix GGT is nearly diagonal in its first J � J -dimensional block due to
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the collocated observations having been favorably, if irregularly, distributed, then
Eq. (126), which, strictly speaking, requires no matrix inversion, can be applied
directly. If this is not the case, but the data are still collocated or we are only
interested in a local approximation to the unknown signal, we can restrict G to
its first J rows, prior to diagonalizing GGT or performing the svd of a partial GT

as necessary to calculate Eqs. (127) and (128). Compared to solving Eqs. (120) and
(121), the computational savings will still be substantial, as only when R � 	

will the operator YYT be nearly diagonal. Truncation of the eigenvalues of YYT

is akin to truncating the matrix GGT itself, which is diagonal or will be nearly
so. With the theoretically, continuously determined, sampled Slepian functions
as a parametrization, the truncated expansion is easy to obtain and the solution
will be locally faithful within the region of interest R. In contrast, should we
truncate YYT itself, without first diagonalizing it, we would be estimating a low-
degree approximation of the signal which would have poor resolution everywhere.
See Slobbe et al. (2012) for a set of examples in a slightly expanded and numerically
more challenging context.

Bias and Variance
For completeness we briefly return to the expressions for the mean-squared esti-
mation error of the damped spherical-harmonic and the truncated Slepian function
methods, Eqs. (85) and (86), which we quoted for the example of “white” signal
and noise with power S and N , respectively. Introducing the .LC 1/2 � .LC 1/2-
dimensional spectral matrices

H D ƒ C 
.I � ƒ/; (133a)

V D NH�2ƒ; and B D p
S H�1.I � ƒ/; (133b)

we handily rewrite the “full” version of Eq. (85) in two spatial variables as the error
covariance matrix

h�.Or/�.Or0/i D GT�V C 
2B2
�
G: (134)

We subdivide the matrix with Slepian functions into the truncated set of the best-
concentrated ˛ D 1 ! J and the complementary set of remaining ˛ D J C 1 !
.LC 1/2 functions, as follows:

G D �
G
¯

T NGT�T
; (135)

and similarly separate the eigenvalues, writing

Nƒ D diag . �1 � � � �J / ; (136a)

ƒ
¯

D diag
�
�JC1 � � � �.LC1/2

�
: (136b)
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Likewise, the identity matrix is split into two parts, NI and I
¯
. If we now also redefine

NV D N Nƒ�1
; and NB D p

S NI; (137a)

V
¯

D Nƒ
¯

�1; and B
¯

D p
S I

¯
; (137b)

the equivalent version of Eq. (86) is readily transformed into the full spatial error
covariance matrix

h�.Or/�.Or0/i D G
¯

TV
¯

G
¯

C NGT NB2 NG: (138)

In selecting the Slepian basis we have thus successfully separated the effect of the
variance and the bias on the mean-squared reconstruction error of a noisily observed
signal. If the region of observation is a contiguous closed domain R � 	 and the
truncation should take place at the Shannon number J D N 3D, we have thereby
identified the variance as due to noise in the region where data are available and the
bias to signal neglected in the truncated expansion – which, in the proper Slepian
basis, corresponds to the regions over which no observations exist. In practice, the
truncation will happen at some J that depends on the signal-to-noise ratio (Simons
and Dahlen 2006) and/or on computational considerations (Slobbe et al. 2012).

Finally, we shall also apply the notions of discretely acquired data to the solutions
of problem (ii), below.

4.2 Problem (ii), Revisited

We need two more pieces of notation in order to rewrite the expressions for
the spectral estimates (89) and (95) in the “pixel-basis.” First we construct the
M �M -dimensional symmetric spatial matrix collecting the fixed-degree Legendre
polynomials evaluated at the angular distances between all pairs of observations
points,

Pl D
�
2l C 1

4�

�

0
BBBBBBBB@

Pl.Or1 � Or1/ � � � Pl.Or1 � Orj / � � � Pl.Or1 � OrM/
:::

� � � Pl.Ori � Orj / � � �
:::

Pl .OrM � Or1/ � � � Pl.OrM � Orj / � � � Pl.OrM � OrM/

1
CCCCCCCCA
: (139)
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The elements of Pl are thus
Pl

mD�l Ylm.Ori /Ylm.Orj /, by the addition theorem,
Eq. (30). And finally, we define G˛

l , the M � M symmetric matrix with elements
given by

�
G˛
l

�
ij

D
�
2l C 1

4�

�
g˛.Ori /Pl .Ori � Orj /g˛.Orj /: (140)

The Spherical Periodogram
The expression equivalent to Eq. (89) is now written as

OSSP
l D

�
4�

A

�
.�	/2

2l C 1
dTPl d; (141)

whereby the column vector d contains the sampled data as in the notation for
Eq. (103). This lends itself easily to computation, and the statistics of Eqs. (90)–(93)
hold, approximately, for sufficiently densely sampled data.

The Spherical Multitaper Estimate
Finally, the expression equivalent to Eq. (95) becomes

OSMT
l D

.LC1/2X
˛D1

�˛

�
4�

N 3D

�
.�	/2

2l C 1
dTG˛

l d: (142)

Both Eqs. (141) and (142) are quadratic forms, earning them the nickname
“quadratic spectral estimators” (Mullis and Scharf 1991). The key difference with
the maximum-likelihood estimator popular in cosmology (Bond et al. 1998; Oh et al.
1999; Hinshaw et al. 2003), which can also be written as a quadratic form (Tegmark
1997), is that neither Pl nor G˛

l depends on the unknown spectrum itself and can
be easily precomputed. In contrast, maximum-likelihood estimation is inherently
nonlinear, requiring iteration to converge to the most probable estimate of the power
spectral density (Dahlen and Simons 2008). As such, given a pixel grid, a region of
interest R and a bandwidth L, Eq. (142) produces a consistent localized multitaper
power spectral estimate in one step.

The estimate (142) has the statistical properties that we listed earlier as Eqs. (96)–
(99). These continue to hold when the data pixelization is fine enough to have
integral expressions of the kind (104) be exact. As mentioned before, for completely
irregularly and potentially non-densely distributed discrete data on the sphere,
“generalized” Slepian functions (Bronez 1988) could be constructed specifically for
the purpose of their power spectral estimation and used to build the operator (140).



Scalar and Vector Slepian Functions, Spherical Signal Estimation and Spectral. . . 2603

5 Conclusions

What is the information contained in a bandlimited set of scientific observations
made over an incomplete, e.g., temporally or spatially limited sampling domain?
How can this “information,” e.g., an estimate of the signal itself, or of its energy
density, be determined from noisy data, and how shall it be represented? These
seemingly age-old fundamental questions, which have implications beyond the
scientific (Slepian 1976), had been solved – some say, by conveniently ignoring
them – heuristically, by engineers, well before receiving their first satisfactory
answers given in the theoretical treatment by Slepian, Landau, and Pollak (Slepian
and Pollak 1961; Landau and Pollak 1961, 1962), first for “continuous” time series,
later generalized to the multidimensional and discrete cases (Slepian 1964; Slepian
1978; Bronez 1988). By the “Slepian functions” in the title of this contribution,
we have lumped together all functions that are “spatiospectrally” concentrated,
quadratically, in the original sense of Slepian. In one dimension, these are the
“prolate spheroidal functions” whose popularity is as enduring as their utility. In
two Cartesian dimensions, and on the surface of the unit sphere, both scalar and
vectorial, their time for applications in geomathematics has come.

The answers to the questions posed above are as ever relevant for the geosciences
of today. There, we often face the additional complications of irregularly shaped
study domains, scattered observations of noise-contaminated potential fields, per-
haps collected from an altitude above the source by airplanes or satellites, and an
acquisition and model-space geometry that is rarely if ever nonsymmetric. Thus the
Slepian functions are especially suited for geoscientific applications and to study
any type of geographical information, in general.

Two problems that are of particular interest in the geosciences, but also further
afield, are how to form a statistically “optimal” estimate of the signal giving rise to
the data and how to estimate the power spectral density of such signal. The first,
an inverse problem that is linear in the data, applies to forming mass flux estimates
from time-variable gravity, e.g., by the GRACE mission (Harig and Simons 2012),
or to the characterization of the terrestrial or planetary magnetic fields by satellites
such as CHAMP, SWARM, or MGS. The second, which is quadratic in the data, is
of interest in studying the statistics of the Earth’s or planetary topography and
magnetic fields (Lewis and Simons 2012; Beggan et al. 2013) and especially for
the cross-spectral analysis of gravity and topography (Wieczorek 2008), which can
yield important clues about the internal structure of the planets. The second problem
is also of great interest in cosmology, where missions such as WMAP and PLANCK

are mapping the cosmic microwave background radiation, which is best modeled
spectrally to constrain models of the evolution of our universe.

Slepian functions, as we have shown by focusing on the scalar case in spherical
geometry, provide the mathematical framework to solve such problems. They are
a convenient and easily obtained doubly orthogonal mathematical basis in which
to express, and thus by which to recover, signals that are geographically localized
or incompletely (and noisily) observed. For this they are much better suited than
the traditional Fourier or spherical harmonic bases, and they are more “geologically
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intuitive” than wavelet bases in retaining a firm geographic footprint and preserving
the traditional notions of frequency or spherical harmonic degree. They are further-
more extremely performant as data tapers to regularize the inverse problem of power
spectral density determination from noisy and patchy observations, which can then
be solved satisfactorily without costly iteration. Finally, by the interpretation of the
Slepian functions as their limiting cases, much can be learned about the statistical
nature of such inverse problems when the data provided are themselves scattered
within a specific areal region of study.
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