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Abstract
In the last few decades, a series of increasingly sophisticated satellite missions
has brought us gravity and magnetometry data of ever improving quality. To
make optimal use of this rich source of information on the structure of the
Earth and other celestial bodies, our computational algorithms should be well
matched to the specific properties of the data. In particular, inversion methods
require specialized adaptation if the data are only locally available, if their
quality varies spatially, or if we are interested in model recovery only for a
specific spatial region. Here, we present two approaches to estimate potential
fields on a spherical Earth, from gradient data collected at satellite altitude. Our
context is that of the estimation of the gravitational or magnetic potential from
vector-valued measurements. Both of our approaches utilize spherical Slepian
functions to produce an approximation of local data at satellite altitude, which
is subsequently transformed to the Earth’s spherical reference surface. The first
approach is designed for radial-component data only and uses scalar Slepian
functions. The second approach uses all three components of the gradient data
and incorporates a new type of vectorial spherical Slepian functions that we
introduce in this chapter.

1 Introduction

The estimation of the gravity potential (e.g., Moritz 2010; Nutz 2002) or that of
the magnetic potential on a spherical Earth (e.g., Sabaka et al. 2010) from gradient
data at satellite altitude can be stated as a “reevaluation,” of a three-dimensional
function that is harmonic in a spherical shell, given values of its gradient within
the harmonic shell (Freeden and Schreiner 2009). The reevaluation on the surface
of a spherical Earth or planet is to be interpreted as a transformation, between the
gradient at satellite altitude on the one hand and the potential function on the surface
on the other hand. Such an operation is entwined with the notion of a (global) basis
of functions in which to carry it out. When expressed in spherical harmonics, its
numerical conditioning depends exponentially on the spherical-harmonic bandwidth
of the data (Freeden and Schreiner 2009). The better the data quality, the higher
the spherical-harmonic degrees that can be resolved (e.g., Maus et al. 2006a) but
also the poorer the conditioning of the transformation. Scalar and vector spherical
harmonics (e.g., Arkani-Hamed 2001, 2004; Gubbins et al. 2011; Maus et al.
2006b; Olsen et al. 2009) are only a few among the many basis functions that can be
used for magnetic-field estimation. Alternatives include ellipsoidal harmonics (e.g.,
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Bölling and Grafarend 2005; Lowes and Winch 2012; Maus 2010), monopoles (e.g.,
O’Brien and Parker 1994), spherical wavelets (e.g., Chambodut et al. 2005; Mayer
and Maier 2006), spherical-cap harmonics (e.g., Haines 1985; Hwang and Chen
1997; Korte and Holme 2003), and their relatives (e.g., de Santis 1991; Thébault
et al. 2006). For gravity-field estimation, besides the spherical harmonics (e.g.,
Eshagh 2009; Freeden and Schreiner 2009), we can also list spherical wavelets
(e.g., Chambodut et al. 2005; Fengler et al. 2007), ellipsoidal harmonics (e.g.,
Lowes and Winch 2012), and mascons (e.g., Rowlands et al. 2005).

Data quality might not be evenly distributed over the entire sphere or may
even only be locally available (Arkani-Hamed 2002; Arkani-Hamed and Strangway
1986; Maus et al. 2006c). For this reason, methods that take the locality of the data
into account are of great value. Unfortunately, a function, and hence a method of
analysis, can not be bandlimited and spacelimited at the same time. Every localized
method that transforms data at satellite altitude into a potential field on Earth’s
surface needs to circumvent or embrace this fact. Schachtschneider et al. (2010,
2012) analyze the errors introduced by local approximation in a general framework.

The method that we present here builds on the localized function bases first
described by Slepian and Pollak (1961) for problems in time-series analysis.
They constructed one-dimensional functions that are bandlimited but optimally
concentrated within a target interval, and later extended the concept of what became
known as the Slepian functions to multidimensional Cartesian cases (Slepian 1964).
Albertella et al. (1999) and then Simons et al. (2006) ushered in the realm of
scalar spherical Slepian functions, and Jahn and Bokor (2012, 2014) and Plattner
and Simons (2012, 2014) described vectorial spherical Slepian functions – all of
these ideally suited for applications in geomathematics and fitting neatly with the
general notions of signal concentration and the uncertainty principle espoused by
Freeden and Michel (2004) and Kennedy and Sadeghi (2013), among others. A
more detailed introduction to scalar and vectorial Slepian functions can be found in
the chapter � Scalar and Vector Slepian Functions, Spherical Signal Estimation and
Spectral Analysis by Simons and Plattner in this book. Theoretical considerations on
the application of scalar Slepian functions to potential-field estimation from scalar
potential data at satellite altitude were presented by Simons and Dahlen (2006),
and some very practical cases in oceanography, terrestrial geodesy, and planetary
science can be found elsewhere (Harig and Simons 2012; Lewis and Simons 2012;
Slobbe et al. 2012).

In this chapter, after emphasizing some preliminaries in Sect. 2, stating the
problems to be solved in Sect. 3, and introducing the scalar and a special type of
vector Slepian functions in Sect. 4, we extend the approach presented by Simons
and Dahlen (2006) to the potential estimation from radial-derivative data, in Sect. 5.
Subsequently, we present a method to estimate the potential field from local three-
component gradient data using vector Slepian functions in Sect. 6. Finally, in Sect. 7,
we present numerical examples for both the radial-component method and the fully
vectorial gradient data method.

http://dx.doi.org/10.1007/978-3-642-54551-1_30
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2 Scalar and Vector Spherical Harmonics and Harmonic
Continuation

In this chapter, we employ a notation that is similar to the one used in the chapter
� Scalar and Vector Slepian Functions, Spherical Signal Estimation and Spectral
Analysis by Simons and Plattner in this book. We adapted the notation to trans-
parently account for scalar and vector-valued functions. Scalar-valued functions
are italicized, with capital letters such as Ylm for the classical spherical-harmonic
functions. Vector-valued functions are italic but boldfaced, with capital letters, such
as E lm for the gradient-vector harmonics that we define. Column vectors containing
scalar functions are in a calligraphic font, for example, Y , whereas column vectors
that contain vector functions are calligraphic but bold, as in E . Column vectors of
expansion coefficients are roman and lowercase, such as u, and their scalar entries
are in lowercase italics, such as ulm. If functions or coefficients are estimated from
the data, they receive a tilde, such as QV or Qu. Matrices containing coefficients or
multiplicative factors are roman and bold, such as A. Matrices containing functions
evaluated at specific points are sans-serif bold, such as Y.

2.1 Scalar Spherical Harmonics

As customary we define, for a point Or on the surface of the unit sphere � D
frWkxk D 1g with colatitudinal value 0 � � � � and longitudinal value 0 �
� < 2� , the real-valued spherical-harmonic functions

Ylm . Or/ D Ylm.�; �/ D

8
ˆ̂
<

ˆ̂
:

p
2Xljmj.�/ cosm� if � l � m < 0;

Xl0.�/ if m D 0;p
2Xlm.�/ sinm� if 0 < m � l;

(1)

Xlm.�/ D .�1/m
�
2l C 1

4�

�1=2 �
.l �m/Š

.l Cm/Š

�1=2

Plm.cos �/; (2)

Plm.�/ D 1

2l lŠ
.1 � �2/m=2

�
d

d�

�lCm
.�2 � 1/l : (3)

With this definition of the surface spherical harmonics Ylm, we may learn from
Backus et al. (1996), Dahlen and Tromp (1998), or Freeden and Schreiner (2009)
that they are the orthonormal eigenfunctions of the scalar Laplace-Beltrami operator

r2
1 D @2� C cot � @� C .sin �/�2@2� ; (4)

http://dx.doi.org/10.1007/978-3-642-54551-1_30
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with eigenvalues �l.l C 1/; thus r2
1Ylm D �l.l C 1/Ylm. In spherical coordinates,

we can define the three-dimensional Laplace operator

r2 D @2r C 2r�1@r C r�2r2
1 ; (5)

and the Laplace equation by which we define a three-dimensional function V .r Or/
to be harmonic,

r2V .r Or/ D 0: (6)

The general solution of Eq. (6) comprises one component that vanishes at the origin
r D 0 and another that is regular by going to zero at infinity. The inner, rlYlm,
and outer, r�l�1Ylm, solid spherical harmonics form a basis for all solutions of
Laplace’s equation and serve to approximate external-source and internal-source
scalar potentials (Olsen et al. 2010), respectively (Blakely 1995; Langel and Hinze
1998).

The spherical harmonics Ylm defined in (1) form an orthonormal basis for
square-integrable real-valued functions on the unit sphere �. We can describe any
such function V . Or/ as a unique linear combination of spherical harmonics via the
expansion

V . Or/ D
1X

lD0

lX

mD�l
ulmYlm. Or/; where ulm D

Z

�

V . Or/Ylm. Or/ d�: (7)

Now let V .r Or/ be a three-dimensional function that satisfies the Laplace equation
(6) outside of the unit sphere, and which is regular at infinity. If we know the
spherical-harmonic coefficients of V .r Or/ on the unit sphere (r D 1), from Eq. (7),
then we can describe the function at any point r � 1 outside of the unit sphere using
the outer harmonics by writing

V .r Or/ D
1X

lD0

lX

mD�l
r�l�1ulmYlm. Or/: (8)

More generally, for a function V .r Or/ that satisfies Eq. (6) outside a ball of radius re ,
and which is regular at infinity, its evaluation on a sphere �ra of radius ra � re is
an expansion of spherical harmonics in the following way:

V .ra Or/ D
1X

lD0

lX

mD�l
uralmYlm. Or/; where uralm D

Z

�

V .ra Or/Ylm. Or/ d�: (9)

In order to evaluate V .r Or/ at any other radius r � re given the spherical-harmonic
coefficient values uralm at radius ra � re, we can use Eq. (8) twice, to first evaluate
V .r Or/ on the unit sphere and then, at radius r , to obtain
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V .r Or/ D
1X

lD0

lX

mD�l

�
r

ra

��l�1
uralmYlm. Or/: (10)

2.2 Gradient-Vector Spherical Harmonics

From the scalar spherical harmonics Ylm. Or/, we may define vector spherical-
harmonic functions on the unit sphere using the Helmholtz decomposition in the
usual way (Backus et al. 1996; Dahlen and Tromp 1998; Freeden and Schreiner
2009) as the fully normalized P00. Or/ D Or Y00. Or/ and, for l � 1 and �l � m � l ,

P lm. Or/ D Or Ylm. Or/; (11)

B lm. Or/ D r1Ylm. Or/
p
l.l C 1/

D
h O� @� C O� .sin �/�1@�

i
Ylm. Or/

p
l.l C 1/

; (12)

C lm. Or/ D � Or � r1Ylm. Or/
p
l.l C 1/

D
h O� .sin �/�1@� � O�@�

i
Ylm. Or/

p
l.l C 1/

; (13)

where the relevant surface and the three-dimensional gradient operators are

r 1 D O� @� C O� .sin �/�1@�; (14)

r D Or @r C r�1r 1: (15)

For our purposes, we use an alternative basis of normalized vector spherical
harmonics (Freeden and Schreiner 2009; Mayer and Maier 2006; Nutz 2002). We
define E 00 D P00, and, for l � 1 and �l � m � l ,

E lm D
s

l C 1

2l C 1
P lm �

s

l

2l C 1
B lm; (16)

Flm D
s

l

2l C 1
P lm C

s

l C 1

2l C 1
B lm: (17)

This alternative orthonormal basis of vector spherical harmonics E lm;F lm, and
C lm is identical to the Qy.1/n;m, Qy.2/n;m, � Qy.3/n;m in the notation of Freeden and Schreiner
(2009) and to the u.1/n;k , u.2/n;k , �u.3/n;k of Mayer and Maier (2006). The functions

…
m;.c;s/
ni by Sabaka et al. (2010) are scaled variants of the functions E lm. Figure 1

shows three-component spatial renditions of two of the basis elements, E 3 2

and F 3 2.
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Fig. 1 The gradient-vector spherical harmonics of Eqs. (16) and (17), more specifically E 32 and
F 3 2. Shown are the radial components E 32� Or and F 3 2� Or, the tangential (colatitudinal) components
E 3 2 � O� and F 3 2 � O� , and the tangential (longitudinal) components E 3 2 � O� and F 3 2 � O�

2.3 Harmonic Continuation of Scalar and Vector Fields

From now on, we will always assume that the Earth’s surface is a sphere �re of
fixed radius re and that the satellite altitude is a sphere �rs of radius rs � re. Using
Eqs. (9) and (10), we can express the potential field V .rs Or/ at the satellite altitude
rs via the spherical-harmonic coefficients urelm on Earth’s surface re by

V .rs Or/ D
1X

lD0

lX

mD�l

�
rs

re

��l�1
urelmYlm. Or/; (18)

where the coefficients urelm, the entries of a vector ure , are given by

urelm D
Z

�

V .re Or/Ylm. Or/ d�: (19)

The gradient of the potential at satellite altitude will then, by Eq. (15), be given by
the expression
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rV .rs Or/ D
1X

lD0

lX

mD�l
� .l C 1/ re

�1
�
rs

re

��l�2
urelm Or Ylm. Or/ (20)

C re
�1

�
rs

re

��l�2
urelm r 1Ylm. Or/:

Equation (20) reveals that the potential coefficients urelm are uniquely determined
from the radial component of its gradient, as is well known (Lowes et al. 1995),

rV .rs Or/ � Or D @rV .rs Or/ D
1X

lD0

lX

mD�l
�.l C 1/ re

�1
�
rs

re

��l�2
urelmYlm. Or/: (21)

If we had perfect knowledge of the radial component of the field rV , the potential V
would be uniquely determined. When the data are contaminated by noise, we might
gain by taking the radial and both tangential components into account.

As shown, for example, by Freeden and Schreiner (2009), we can reformulate
Eq. (20) by inserting the definitions (11) and (12) of the vector spherical harmonics
P lm and B lm and then using the definition (16) of the vector spherical harmon-
ics E lm to write

rV .rs Or/ D
1X

lD0

lX

mD�l
re

�1
�
rs

re

��l�2
urelm

�
.�l � 1/P lm. Or/C r 1Ylm. Or/

�

D
1X

lD0

lX

mD�l
�p

.l C 1/.2l C 1/ re
�1

�
rs

re

��l�2
urelmE lm. Or/: (22)

Equation (22) thus shows that the gradient rV .r Or/ of a potential V .r Or/ that
satisfies the Laplace equation r2V .r Or/ D 0 outside the sphere r > re and which
vanishes at infinity can be expressed as a linear combination of the vector spherical
harmonics E lm. Or/ of Eq. (16). For this reason, we will dub those gradient-vector
spherical harmonics in this paper. We can expand rV .rs Or/ as

rV .rs Or/ D
1X

lD0

lX

mD�l
v
rs
lmE lm. Or/; (23)

where the entries of the vector vrs are given by

v
rs
lm D

Z

�

rV .rs Or/ � E lm. Or/ d�: (24)

The relationships between the spherical-harmonic expansion coefficients of
the scalar potential V .r Or/, the radial component of the gradient @rV .r Or/, and
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the gradient-vector expansion coefficients of the gradient rV .r Or/, on Earth’s
surface r D re, and at satellite altitude r D rs , can be described in the following
(extended) “Meissl” scheme (Freeden and Schreiner 2009; Nutz 2002; Rummel and
van Gelderen 1995) which identifies the basis transformations and the multiplicative
factors for the expansion coefficients needed to interrelate them:

∂rV (rsr̂)
×(−l−1)/rs←−−−−−−−− V (rsr̂)

×
(

−
√

(l+1)(2l+1)/rs
)

−−−−−−−−−−−−−−−→
Ylm→Elm

∇V (rsr̂)
�
⏐
⏐×

(
rs
re

)−l−2
�
⏐
⏐×

(
rs
re

)−l−1
�
⏐
⏐×

(
rs
re

)−l−2

∂rV (rer̂) ←−−−−−−−−
×(−l−1)/re

V (rer̂)
Ylm→Elm−−−−−−−−−−−−−−−→

×
(

−
√

(l+1)(2l+1)/re
) ∇V (rer̂)

(25)
From the spherical-harmonic coefficients of V .re Or/, we can obtain the spherical-
harmonic coefficients of V .rs Or/ as urslm D .rs=re/

�l�1urelm. In order to obtain
the spherical-harmonic coefficients of @rV .rs Or/ from those of V .re Or/, we can
either first follow V .re Or/ ! @rV .re Or/ and then @rV .re Or/ ! @rV .rs Or/ or first
V .re Or/ ! V .rs Or/ and then V .rs Or/ ! @rV .rs Or/. Either way we obtain the
spherical-harmonic coefficients of @rV .rs Or/ as �.l C 1/ re

�1.rs=re/�l�2urelm. To
obtain rV .rs Or/ from V .re Or/, we replace the spherical-harmonic functions Ylm by
the gradient-vector spherical harmonics E lm and multiply their coefficients with
�p

.l C 1/.2l C 1/ re
�1.rs=re/�l�2. Similarly, we can obtain the coefficients for

any function in this scheme from the coefficients of any other function by following
the arrows: replacing, if necessary, basis functions and multiplying the coefficients
with the corresponding factors, as shown.

3 Potential-Field Estimation Using Spherical Harmonics

With the preliminaries out of the way, we now turn our attention to problems of
geomathematical and geophysical interest. We distinguish and treat the following
four problems in potential-field estimation:

P1 Estimating the spherical-harmonic potential-field coefficients from scalar data
collected at the same altitude.

P2 Estimating spherical-harmonic potential-field coefficients at source level from
radial data collected at satellite altitude.

P3 Estimating the gradient-vector spherical-harmonic coefficients from vector
data collected at the same altitude.

P4 Estimating spherical-harmonic potential-field coefficients at source level from
gradient data at satellite altitude.
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Problems P1 and P3 will serve as problems introductory to the more involved
but practically more relevant P2 and P4. We will provide numerical solutions as
estimations based on data point values for all four problems. For problems P2 and
P4, we will also provide analytic solutions which will then enable us to calculate
the effects of localization and bandlimitation on the estimation process. When
discussing, in Sects. 5 and 6, the use of localized basis functions as a means of
regularizing problems P2 and P4, we will provide an analysis of the effect of making
bandlimited reconstructions of non-bandlimited functions explicitly, in Sects. 5.2
and 6.2.

3.1 Discrete Formulation and Unregularized Solutions

In this section, we describe classical least-squares approaches to estimating the
spherical-harmonic (problems P1, P2, and P4) or gradient-vector spherical-
harmonic (problem P3) coefficients of potential fields and their gradients from
discretely available, noiseless data.

Problem P1: Scalar Potential Data, Scalar-Harmonic Potential
Coefficients, and Same Altitude
Let there be k scalar function values

V D
�
V .rs Or1/ � � � V .rs Ork/

	T

; (26)

evaluated at positions rs Or1; : : : ; rs Ork on a sphere �rs . These are the samples

V .rs Or i / D
1X

lD0

lX

mD�l
urslmYlm. Or i /: (27)

Our objective is to estimate the spherical-harmonic coefficients urslm within a certain
bandwidth L, i.e., for 0 � l � L and �l � m � l . This can be performed using
least-squares analysis, assuming that the number of data exceeds the number of
degrees of freedom in the system, .L C 1/2 � k. Defining the matrix of point
evaluations on the unit sphere

Y D

0

B
@

Y00. Or1/ � � � Y00. Ork/
:::

:::

YLL. Or1/ � � � YLL. Ork/

1

C
A ; (28)

and the bandlimited vector of estimated coefficients

Qurs D 
Qurs00 � � � QursLL
�T
; (29)
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the statement of our first problem is to solve

arg min
Qurs

�
�
�YT Qurs � V

�
�
�
2

; (30)

and the solution is given by

Qurs D
�
YYT

	�1
Y V (solution to problem P1). (31)

Problem P2: Scalar Radial-Derivative Data, Scalar-Harmonic Potential
Coefficients, and Different Altitudes
Next, we wish to turn the equal-altitude problem P1 described in Eq. (30) and solved
in Eq. (31) into a rs-to-re downward-continuation, radial-derivative component-to-
potential problem P2. We define a diagonal upward transformation matrix A, which
includes the effects of harmonic continuation and radial differentiation (see Eqs. 21
and 25), by its elements

Alm;l 0m0 D �.l C 1/ re
�1

�
rs

re

��l�2
ıl l 0ımm0 : (32)

The discrete set of point values from which we desire to recover the spherical-
harmonic potential coefficients on the surface of the Earth, urelm, are the sampled
radial components of the gradient of the potential (27) evaluated at satellite
altitude rs,

V0
r D

�
rV .rs Or1/ � Or � � � rV .rs Ork/ � Or

	T

: (33)

Problem P2, estimating the spherical-harmonic coefficients urelm of the potential on
Earth’s surface�re , collected in the vector

Qure D 
Qure00 � � � QureLL
�T
; (34)

from potential-field data collected at satellite altitude on�rs , is then formulated as

arg min
Qure

�
�
�YTAQure � V0

r

�
�
�
2

; (35)

and is found to be

Qure D A�1.YYT/�1Y V0
r (solution 1 to problem P2). (36)
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Problem P3: Vector Gradient Data, Vector-Harmonic Coefficients, and
Same Altitude
In a third problem, we seek to estimate the coefficients of the gradient function
rV .rs Or/ at satellite altitude, all together

Qvrs D 
 Qvrs00 � � � QvrsLL
�T
; (37)

in the basis of the gradient-vector spherical harmonics E lm, from discrete function
values of rV .rs Or/ given at the points rs Or1; : : : ; rs Ork . We introduce

V0 D
�
V0
r

T V0
�

T V0
�

T
	T
; (38)

with V0
r as defined previously in Eq. (33), and, analogously,

V0
� D

�
rV .rs Or1/ � O� � � � rV .rs Ork/ � O�

	T

; (39)

V0
� D

�
rV .rs Or1/ � O� � � � rV .rs Ork/ � O�

	T

: (40)

To formulate problem P3 for the pointwise evaluated functions given in Eqs. (33),
(39), and (40), namely, the samples

rV .rs Or i / D
1X

lD0

lX

mD�l
v
rs
lmE lm. Or i /; (41)

we also define the matrix of point evaluations of the gradient-vector spherical
harmonics

E D 

Er E� E�

�
; (42)

where the constituent matrices are given by

Er D

0

B
@

E 00. Or1/ � Or � � � E 00. Ork/ � Or
:::

:::

ELL. Or1/ � Or � � � ELL. Ork/ � Or

1

C
A ; (43)

E� D

0

B
@

E 00. Or1/ � O� � � � E 00. Ork/ � O�
:::

:::

ELL. Or1/ � O� � � � ELL. Ork/ � O�

1

C
A ; (44)

E� D

0

B
@

E 00. Or1/ � O� � � � E 00. Ork/ � O�
:::

:::

ELL. Or1/ � O� � � � ELL. Ork/ � O�

1

C
A : (45)
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Using the definitions in Eqs. (37), (38), and (42), problem P3 is stated as

arg min
Qvrs

�
�
�ET Qvrs � V0

�
�
�
2

; (46)

and easily seen to be solved by

Qvrs D
�
EET

	�1
EV0 (solution to problem P3): (47)

Problem P4: Vector Gradient Data, Scalar-Harmonic Potential
Coefficients, and Different Altitudes
Finally, in order to transform the equal-altitude gradient-vector problem P3 into a
downward-continuation, gradient data to scalar potential problem P4, we introduce
the upward-transformation matrix B. This diagonal matrix contains the effect of
harmonic continuation and differentiation (see Eqs. 22 and 25) and has the elements

Blm;l 0m0 D �
p
.l C 1/.2l C 1/ re

�1
�
rs

re

��l�2
ıl l 0ımm0: (48)

Problem P4, estimating the spherical-harmonic coefficients urelm of the potential on
Earth’s surface �re , from gradient data collected at satellite altitude on �rs , can
hence be formulated as

arg min
Qure

�
�
�ETBQure � V0

�
�
�
2

; (49)

with the solution

Qure D B�1 �
EET

	�1
EV0 (solution 1 to problem P4). (50)

For all of the solutions listed thus far in Eqs. (31), (36), (47), and (50), we require
at least as many data points as there are coefficients to estimate, k � .L C 1/2, or
3k � .L C 1/2 for the vectorial case; otherwise, the matrices .YYT/ and .EET/

will not be invertible. If we have data distributed only over a certain concentration
regionR, the matrices .YYT/ or .EET/will usually be badly conditioned and require
regularization (Simons and Dahlen 2006). Furthermore, we have sidestepped issues
of bias due to making bandlimited estimates (Eqs. 29, 34, and 37) from intrinsically
wideband field observations (27) and (41). Lastly, we have so far blithely ignored
any observational noise. For the more realistic practical cases of the problems P2
and P4, we will develop regularization methods, in Sects. 5 and 6, that take the target
region R explicitly into account and whose performance we assess using detailed
statistical considerations. Before doing so, however, we first establish some more
notation.
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3.2 Continuous Formulation and Bandwidth Considerations

Let us define the .L C 1/-dimensional vector Y to contain the spherical-harmonic
functions Ylm up to a bandlimit L,

Y D 

Y00 � � � YLL

�T
: (51)

In the same manner, we shall define the vector of all spherical-harmonic functions
up to infinite bandwidth as, simply, OY . The symbol OY>L will denote the vector of
spherical harmonics with degrees higher than L. Using this notation, we write the
column vector with the complete basis

OY D
� Y

OY>L
�

: (52)

Up to a certain bandlimit L, we can describe the spherical-harmonic coefficients
of a potential field V .rs Or/ on the sphere �rs , whose estimates we encountered
previously in Eq. (29), as

urs D
Z

�

Y V .rs Or/ d�; (53)

and their infinite-dimensional counterparts will be

Ours D
Z

�

OY V .rs Or/ d�; (54)

Ours>L D
Z

�

OY>LV .rs Or/ d�: (55)

With these definitions, we rewrite a representation similar to Eq. (27), for a potential
field that is not bandlimited, as

V .rs Or/ D OYT Ours D 
YT OYT
>L

�
�

urs

Ours>L

�

D YT urs C OYT
>L Ours>L; (56)

and for future reference, we also write the equivalent of Eq. (21), using Eq. (32), in
broadband and bandlimited form as

@rV .rs Or/ D OYT OAOure D YTAure C OYT
>L

OA>L Oure>L: (57)

The matrix A and its infinite-dimensional complement OA>L together make up the
infinite-dimensional matrix OA. Equation (56) contains an estimation problem that,
assuming continuity of global data coverage, is solved by Eq. (54), owing to the
orthonormality of the Ylm over the entire sphere,

R

�
YlmYl 0m0 d� D ıl l 0ımm0 .
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For complete data coverage, Eq. (53) solves the bandlimited portion of the estima-
tion problem, and we can see that in that case Eq. (53) is indeed the continuous
equivalent of Eq. (31), as pointed out also in the chapter � Scalar and Vector
Slepian Functions, Spherical Signal Estimation and Spectral Analysis by Simons
and Plattner elsewhere in this book.

For the gradient-vector spherical harmonics, we define the .LC1/2-dimensional
vector of functions containing the E lm up to a certain bandlimit L as

E D 

E 00 � � � ELL

�T
: (58)

Using a similar notation as for the scalar harmonics, the infinite-dimensional vector
containing all gradient-vector spherical harmonics to infinite bandlimit will be OE ,
and the infinite-dimensional vector with all gradient-vector spherical harmonics for
degrees l > L will be OE>L. The column vector with the complete vector basis is
thus

OE D
� E

OE>L
�

: (59)

Up to a given bandwidthL, we can calculate the gradient-vector spherical-harmonic
coefficients of a gradient field rV .rs Or/ at satellite altitude, previously known in the
form of Eq. (24), via the expression

vrs D
Z

�

E � rV .rs Or/ d�: (60)

The corresponding infinite-dimensional vectors of gradient-vector spherical-
harmonic coefficients are

Ovrs D
Z

�

OE � rV .rs Or/ d�; (61)

Ovrs>L D
Z

�

OE>L � rV .rs Or/ d�: (62)

Our definition of the inner product between a vector of vector-valued functions and
a vector-valued function is

E � rV D

0

B
@

E 00 � rV
:::

ELL � rV

1

C
A : (63)

In the same way, we define the outer product between two vectors of vector-valued
functions as

http://dx.doi.org/10.1007/978-3-642-54551-1_30
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E � ET D

0

B
@

E 00 � E 00 � � � E 00 � ELL

:::
:::

ELL � E 00 � � � ELL � ELL

1

C
A : (64)

We can represent the non-bandlimited gradient function rV .rs Or/ via its gradient-
vector spherical-harmonic coefficients

rV .rs Or/ D OET Ovrs D
�

ET OET
>L

	 �
vrs

Ovrs>L

�

D ET vrs C OET
>L Ovrs>L; (65)

and, via Eq. (48) as in Eq. (57), the equivalent of Eq. (22),

rV .rs Or/ D OET OBOure D ETBure C OET
>L

OB>L Oure>L: (66)

The matrix B and its infinite-dimensional complement OB>L together make up the
infinite-dimensional matrix OB. Equation (65) again contains an estimation problem
solved by Eq. (61) in the scenario of noiseless, continuous, and complete data
coverage, as can be seen from the orthonormality relation

R

�
E lm � E l 0m0 d� D

ıl l 0ımm0. As with the scalar problem described above, the bandlimited coefficient
set (60) is approximated by the discrete solution (47) in the case of complete data
coverage.

4 Scalar and Vector Spherical Slepian Functions

In this section, we summarize the derivation and properties of scalar spherical
Slepian functions developed by Simons et al. (2006) and further discussed in the
chapter � Scalar and Vector Slepian Functions, Spherical Signal Estimation and
Spectral Analysis by Simons and Plattner in this book. The scalar Slepian functions
will play a key role in the solution to problem P2, the estimation of scalar spherical-
harmonic coefficients of the potential on Earth’s surface from radial-component data
at satellite altitude, in a spatially localized setting. To be able to consider spatial
localization in the context of problem P4, the estimation of the scalar potential on
Earth’s surface from vectorial gradient data at altitude, we introduce a special case
of the vectorial Slepian functions constructed by Plattner and Simons (2014) and
further discussed in the chapter � Scalar and Vector Slepian Functions, Spherical
Signal Estimation and Spectral Analysis by Simons and Plattner in this book.

4.1 Scalar Slepian Functions

We design functions that are bandlimited to a maximum spherical-harmonic
degree L but at the same time spatially concentrated inside a target region R.

http://dx.doi.org/10.1007/978-3-642-54551-1_30
http://dx.doi.org/10.1007/978-3-642-54551-1_30
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Via optimization of a local energy criterion, we obtain a new basis of functions in the
sense of Slepian (1983), as a particular linear combination of spherical harmonics.
Unlike the latter, which are global functions indexed by their degree and order, the
“Slepian” functions can be sorted according to their energy concentration inside of
the target region. Local approximations to scalar functions can be made from the
first few well-concentrated Slepian functions, as we will be needing for the solution
to problem P2, where the spherical-harmonic coefficients of a potential field are
determined from radial data only.

Scalar spherical Slepian functionsG are bandlimited spherical-harmonic expan-
sions

G. Or/ D
LX

lD0

mX

lD�m
glmYlm. Or/ D YT g (67)

that are constructed by solving the quadratic optimization problem

� D max
G

Z

R

G2. Or/ d�
Z

�

G2. Or/ d�
D max

g

gTD g

gTg
; (68)

for the expansion coefficients glm in the .LC 1/2-dimensional column vectors

g D 

g00 � � � gLL

�T
; (69)

with Y as in Eq. (51). The symmetric positive-definite kernel matrix D is defined by
its elements

Dlm;l 0m0 D
Z

R

Ylm. Or/Yl 0m0. Or/ d�; D D
Z

R

YYT d�: (70)

The stationary solutions of Eq. (68) are the eigenvectors g1; : : : ; g˛; : : : ; g.LC1/2 that
constitute an orthogonal coefficient matrix

G D
�

g1 � � � g˛ � � � g.LC1/2
	
; GGT D GTG D I D

Z

�

YYT d�;

(71)
defined by the eigenvalue problem

DG D Gƒ; D D GƒGT; (72)

with the eigenvalues ƒ D diag.�1; : : : ; �.LC1/2/ the concentration values of
Eq. (68), many of which are near one, and many near zero. We index the individual
elements glm;˛ 2 G by ˛ D 1; : : : ; .L C 1/2 and order them according to their
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eigenvalues in decreasing order 1 > �1 � � � � � �.LC1/2 > 0, to obtain a global
basis for the space of spherical functions with bandlimit L, given by

G˛. Or/ D
LX

lD0

lX

mD�l
glm;˛Ylm. Or/ D YT g˛: (73)

We normalize the different eigenvectors g˛ so that the newly constructed basis
G1; : : : ; G.LC1/2 remains orthonormal over the entire sphere �, but it is now also
orthogonal over the region R,

Z

�

G˛Gˇ d� D ı˛ˇ;

Z

R

G˛Gˇ d� D �˛ı˛ˇ: (74)

To further the notation introduced in and after (51), we now define the .L C 1/2-
dimensional function vector containing all Slepian functions, for a bandlimit L and
a region R, to be

G D
�
G1 � � � G.LC1/2

	T D GTY: (75)

Identifying the Slepian transformation matrix G in this way, we can then write the
representation of a bandlimited function V . Or/ by involving the spherical-harmonic
expansion coefficients u, or the Slepian-function expansion coefficients s D GTu, in
the equivalent forms

V . Or/ D
LX

lD0

lX

mD�l
ulmYlm. Or/ D YT u D YT GGTu D GT s D

.LC1/2X

˛D1
s˛G˛. Or/:

(76)
Writing the Œ.LC1/2�J �-dimensional matrix containing the .LC1/2 spherical-

harmonic coefficients of the J best-concentrated Slepian functions GJ and its .LC
1/2 � Œ.LC 1/2 � J �-dimensional complement G>J as

GJ D 

g1 � � � gJ

�
; G>J D 


gJC1 � � � g.LC1/2
�
; (77)

the J -dimensional vector of functions containing the J best-concentrated bandlim-
ited Slepian functions GJ and its complement G>J as

GJ D GT
JY D 


G1 � � � GJ
�T
; G>J D GT

>JY; (78)

and denoting the J � J -dimensional diagonal matrix containing the J largest
concentration ratios by ƒJ , Eqs. (70), (72), and (78) together imply that

ƒJ D diag.�1; : : : ; �J / D
Z

R

GJ GT
J d�: (79)
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The orthonormality of the eigenvectors g1; : : : ; g.LC1/2 in Eqs. (71) and (72) guar-
antees that GT

JGJ D IJ�J . In contrast, the matrix GJGT
J is a .L C 1/2 � .L C

1/2-dimensional noninvertible projection, .GJGT
J /
2 D GJGT

JGJGT
J D GJGT

J . The
Slepian functions allow for a constructive approximation of bandlimited functions of
the kind V . Or/, locally within the target regionR, by restricting the expansion (76) to
the J best-concentrated Slepian functions (Beggan et al. 2013; Simons et al. 2009),

V . Or/ �
JX

˛D1
s˛G˛. Or/ D GT

J sJ D YT GJGT
J u; Or 2 R: (80)

The greater the number of terms J , the less well localized the approximation, but
the smaller the approximation error.

Instead of spatially concentrating spectrally limited functions, we can also spec-
trally concentrate spatially limited functions. The spacelimited Slepian functions
can be obtained by restricting the bandlimited Slepian functions to the space domain
of interest:

OG˛. Or/ D
(
G˛. Or/ if Or 2 R;
0 if Or 2 � n R: (81)

The spherical-harmonic coefficients of the Slepian functions OG˛ D OYT Og˛, using the
notation of Eq. (52), form the infinite-dimensional vector

Og˛ D 
 Og00;˛ � � � OgLL;˛ � � ��T ; (82)

and thus, using the orthonormality of the spherical harmonics and Eqs. (81) and (73),
they are given by

Og˛ D
Z

�

OY OG˛ d� D
Z

R

OY OG˛ d� D
Z

R

OYG˛ d� D
�Z

R

OYYT d�

�

g˛ D ODLg˛;

(83)
where we have defined the 1 � .L C 1/2-dimensional rectangular counterpart of
the localization kernel (70), namely,

ODL D
Z

R

OYYT d�: (84)

To prepare for what is yet to come, in Sect. 5.2, we now also introduce another
rectangular kernel,

OD>L;L D
Z

R

OY>LYT d�; (85)
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an infinite-dimensional vector containing the spherical-harmonic coefficients of Og˛
for degrees higher than L,

Og>L;˛ D 
 OgLC1�L�1;˛ OgLC1�L;˛ � � ��T ; (86)

and the 1 � J -dimensional matrix containing the expansion coefficients Og>L;˛, for
˛ D 1; : : : ; J , as

OG>L;J D 
Og>L;1 � � � Og>L;J
� D OD>L;LGJ : (87)

The vector of coefficients Og>L;˛ defined in Eq. (86) spectrally truncates the space-
limited Slepian function OG˛ to a function

OG>L;˛ D
1X

lDLC1

lX

mD�l
Oglm;˛Ylm D OYT

>L Og>L;˛; (88)

the ˛th element of the vector of functions OG>L, and finally, we also define the J -
dimensional vector of functions with contributions confined to the degrees higher
than L, using Eqs. (87), (85), and (78) again, in the equivalent formulations

OG>L;J D 
 OG>L;1 � � � OG>L;J
�T D OGT

>L;J
OY>L D GT

J
ODT
>L;L

OY>L

D
�Z

R

GJ OYT
>L d�

�

OY>L: (89)

4.2 Gradient-Vector Slepian Functions

Similarly to the scalar Slepian functions in Sect. 4.1, we can construct Slepian
functions from vector spherical harmonics, as described by Plattner and Simons
(2014) and in the chapter � Scalar and Vector Slepian Functions, Spherical Signal
Estimation and Spectral Analysis by Simons and Plattner in this book. However, in
Sect. 2.3, we showed that the estimation of a scalar potential field from vectorial data
only depends on the gradient-vector spherical harmonics E lm defined in Sect. 2.2.
In the following, we will therefore construct vector Slepian functions from gradient-
vector spherical harmonics E lm only. These new so-called gradient-vector Slepian
functions will be useful for problem P4, the estimation of a scalar potential from
vectorial data.

We construct the gradient-vector Slepian functions

H . Or/ D
LX

lD0

lX

mD�l
hlmE lm. Or/ D ET h; (90)

http://dx.doi.org/10.1007/978-3-642-54551-1_30
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as the stationary solutions of the maximization problem

	 D max
H

Z

R

H . Or/ � H . Or/ d�
Z

�

H . Or/ � H . Or/ d�
D max

h

hTK h

hTh
; (91)

for the expansion coefficients hlm in the .LC 1/2-dimensional vector

h D 

h00 � � � hLL

�T
; (92)

where E was defined in Eq. (58). The symmetric positive-definite matrix K is given
by its elements

Klm;l 0m0 D
Z

R

E lm. Or/ � E l 0m0. Or/ d�; K D
Z

R

E � ET d�; (93)

using Eq. (64). The stationary solutions of Eq. (91) are the eigenvectors
h1; : : : ; h˛; : : : ; h.LC1/2 in the matrix

H D
�

h1 � � � h˛ � � � h.LC1/2
	
; HHT D HTH D I D

Z

�

E � ET d�;

(94)
defined by the eigenvalue problem

KH D H†; K D H†HT; (95)

with the eigenvalues † D diag.	1; : : : ; 	.LC1/2/ the concentration values of
Eq. (91), of which most are near unity or near zero. We index and order the
hlm;˛ 2 H according to their eigenvalues in decreasing order such that 1 > 	1 �
� � � � 	.LC1/2 > 0 to obtain a concentration-ordered basis of gradient-vector
functions bandlimited to L given by

H ˛. Or/ D
LX

lD0

lX

mD�l
hlm;˛E lm. Or/ D ET h˛: (96)

See Fig. 2 for a three-component space-domain example. We normalize the eigen-
vectors h˛ of Eq. (95) so that the new basis H 1; : : : ;H .LC1/2 is orthonormal over
the entire sphere� and orthogonal over the region R,

Z

�

H ˛ � H ˇ d� D ı˛ˇ;

Z

R

H ˛ � H ˇ d� D 	˛ı˛ˇ: (97)

In the notation of Eq. (58) and beyond, the vector containing all gradient-vector
Slepian functions for bandlimit L and regionR is given by
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Fig. 2 The three vectorial
components of the
gradient-vector Slepian
function H 1 best
concentrated to Africa at a
maximum spherical-harmonic
degree L D 30. Top panel
shows the radial component
H 1 � Or , center panel the
tangential (colatitudinal)
component H 1 � O� , and
bottom panel the tangential
(longitudinal)
component H 1 � O�. The
concentration coefficient is
	 D 0:999892

H D
�
H 1 � � � H .LC1/2

	T D HTE: (98)

The transformation of a bandlimited gradient-vector function into its equivalent
gradient-vector Slepian-function expansion happens via the gradient-vector Slepian
transformation matrix H as t D HTv and

rV . Or/ D
LX

lD0

lX

mD�l
vlmE lm. Or/ D ET v D ET HHTvD HT tD

.LC1/2X

˛D1
t˛H ˛. Or/:

(99)

We introduce the
�
.LC 1/2 � J �

-dimensional matrix containing the .L C 1/2

gradient-vector spherical-harmonic coefficients for each of the J best-concentrated
gradient-vector Slepian functions

HJ D 

h1 � � � hJ

�
; (100)
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the J -dimensional vector of vector-valued functions containing the J best-
concentrated gradient-vector Slepian functions

HJ D HT
JE D 


H 1 � � � H J

�T
; (101)

and the J � J -dimensional diagonal matrix containing the J largest concentration
ratios

†J D diag.	1; : : : ; 	J / D
Z

R

HJ � HT
J d�; (102)

where the last equality is a consequence of Eqs. (93), (95), and (101).
The orthonormality of the h1; : : : ; h.LC1/2 in Eqs. (94) and (95) ensures that

HT
JHJ D IJ�J , but the

�
.LC 1/2 � .LC 1/2

�
-dimensional projection matrix

HJHT
J is not invertible. A local approximation of the gradient function can be

obtained from

rV . Or/ �
JX

˛D1
t˛H ˛. Or/ D HT

J tJ D ET HJHT
J v; Or 2 R: (103)

For use in Sect. 6.2, we finally define the 1 � .LC 1/2-dimensional matrix

OK>L;L D
Z

R

OE>L � ET d�; (104)

and the 1 � J -dimensional matrix OH OE;>L;J D OK>L;LHJ using the notation in
Eqs. (58) and (59). From this, we derive an expression for the E lm-component of
the J first spacelimited gradient-vector Slepian functions for degrees greater than
L,

OH OE;>L;J D OHT
OE;>L;J

OE>L D HT
J

OKT
>L;L

OE>L D
�Z

R

HJ � OET
>L d�

�

OE>L: (105)

The analogy with the scalar Eq. (89) is only partial since the spacelimited versions
of H also have nonvanishing components in the span of the F lm of Eq. (17) and the
C lm of Eq. (13) – not just the E lm hence the more explicit notation.

5 Potential-Field Estimation from Radial Data Using Slepian
Functions

With the scalar Slepian functions defined in Sect. 4.1, we can now formulate
the solution to problem P2 as a localized bandlimited potential-field estimation
problem, from noisy radial-derivative data at satellite altitude. More precisely we
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will use the Slepian functions to localize the radial-field analysis at satellite altitude
and then, in a second step, downward-transform the resulting spherical-harmonic
coefficients using the notions developed in Sect. 2.3.

As in the exposition of the classical spherical-harmonic-based solutions
described in Sects. 3.1 and 3.2, we start with a description of the numerical
estimation procedure based on pointwise data in Sect. 5.1 before proceeding to a
functional formulation that will facilitate the statistical analysis of the performance
of the methods, in Sect. 5.2. Throughout this section, we do not assume that the
target signal V . Or/ is bandlimited, but a bandwidthL does need to be chosen to form
the approximation QV . Or/. The bias that arises from this choice of bandlimitation will
be discussed in Sect. 5.2.

5.1 Discrete Formulation and Truncated Solutions

From pointwise data values of the radial derivative of the potential at satellite
altitude, given at the points rs Or1; : : : ; rs Ork , all inside the region R, and polluted
by noise,

dr D V0
r C nr ; (106)

we seek to estimate the bandlimited partial set of corresponding spherical-harmonic
coefficients ure D .ure00 � � � ureLL/

T of the scalar potential V on Earth’s surface �re ,
as in the original statement (35) of Problem P2. In Eq. (106), V0

r is defined as in
Eq. (33), and nr is a vector of noise values at the evaluation points.

As seen in Eq. (36), the solution to problem P2 involves the inversion of a
“normal” matrix, .YYT/�1, that is reminiscent of the localization kernel in Eq. (70)
and therefore has many near-zero eigenvalues, and the additional accounting for
the effects of altitude via the term A�1, which will potentially unstably inflate the
smallest-scale noise terms (Maus et al. 2006c). Instead of regularization by damping
(in the spherical-harmonic basis), the approach we propose is based on truncation
(in the Slepian basis). We focus on the estimation of the radial field at satellite
altitude in a chosen target region R, by estimating only its J best-concentrated
Slepian coefficients. The hard truncation level J is a regularization parameter whose
value needs to be chosen based on signal-to-noise considerations and an optimality
criterion, much as a proper damping parameter would (Kaula 1967; Mallat 2008;
Simons and Dahlen 2006; Wieczorek and Simons 2007).

Define the .L C 1/2 � k-dimensional matrix containing the Slepian functions
G1; : : : ; G.LC1/2 evaluated at the latitudinal and longitudinal locations of the data
(on the unit sphere),

G D GTY; (107)

where the scalar Slepian transformation matrix G is defined in Eq. (71). Note the
change in (serif vs sans) type. The matrix Y contains the spherical harmonics
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evaluated at the data locations on the unit sphere, as in Eq. (28). Problem P2
is restated from its original formulation in Eq. (35) via a bandlimited Slepian
transformation at altitude to

arg min
Qure

�
�
�YTAQure � dr

�
�
�
2 D arg min

Qure

�
�
�YTGGTAQure � dr

�
�
�
2

D A�1G arg min
Qsrs

�
�
�GTQsrs � dr

�
�
�
2

; (108)

where we used the orthogonality GGT D I and the definition Eq. (107) and identi-
fied the Slepian expansion coefficients at satellite altitude through transformation of
the bandlimited vector (34) into the .LC 1/2-dimensional vector

Qsrs D GTAQure : (109)

We invoke our regularization of only solving for the coefficients of the J best-
concentrated Slepian functions at satellite altitude by defining the J �k-dimensional
matrix containing the point evaluations of the J best-concentrated Slepian functions
on the unit sphere

GJ D GT
JY; (110)

and by solving, instead of Eq. (108),

arg min
QsrsJ

�
�
�GT

J QsrsJ � dr
�
�
�
2

; (111)

for the J -dimensional vector QsrsJ containing the coefficients of the approximation at
satellite altitude in the bandlimited Slepian basis. When J � k, we have the solution

QsrsJ D
�
GJGT

J

	�1
GJdr ; (112)

which we then downward-transform to the .LC1/2 spherical-harmonic coefficients
Qure of the field on Earth’s surface�re as

Qure D A�1GJ QsrsJ D A�1GJ

�
GJGT

J

	�1
GJdr (solution 2 to noisy problem P2):

(113)

The numerical conditioning of the matrix .GJGT
J / is determined by the truncation

parameter J , and we require the inverse of the matrix A defined in Eq. (32).
The resulting approximation QV .re Or/ of the potential field V .re Or/ at any point of

interest on �re can be calculated as

QV .re Or/ D YT Qure D GT
#J

�
GJGT

J

	�1
GJdr D GT

#J QsrsJ ; (114)
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Fig. 3 Downward transformation of the tenth best-concentrated scalar Slepian function for Africa
and a maximum spherical-harmonic degree L D 30. The right panel shows the concentrated
scalar Slepian function G10 D YT g10 for the radial component at an altitude of 500 km. The left
panel shows the equivalent downward-transformed function G# 10 D YT A�1g10 to describe a
scalar potential on Earth’s surface (re D 6371 km). The concentration coefficient for the Slepian
function G10 at altitude is � D 0:99985

where we have defined the vector of the J best-concentrated (and its complement)
downward-transformed scalar Slepian functions as

G#J D GT
JA�1Y; G#>J D GT

>JA�1Y; (115)

an example of which is plotted in Fig. 3. We reserve for later use the vectors of
upward-transformed Slepian functions,

G"J D GT
JAY; G">J D GT

>JAY: (116)

From Eqs. (115), (116) and (71) or (75), we also obtain the equivalencies

GT
# . Or/G". Or 0

/ D YT . Or/A�1GGT AY. Or 0
/ D YT . Or/Y. Or 0

/ D GT . Or/G. Or 0
/;

(117)

in the “silent” J D .L C 1/2 notation of Eq. (75), noting that Eq. (117) does not
have an equivalent in truncated form when J ¤ .LC 1/2. We also have

GT
# G" D GT

#JG"J C GT
#>JG">J : (118)

5.2 Continuous Formulation and Statistical Considerations

In this section, we provide a formulation of the approach described in Sect. 5.1 that
considers the data in their functional form instead of being given as point values. In
this formalism, we will then express the estimation variance, bias, and mean squared
error for the methods presented under some special cases. Our results will generalize
the scalar treatment of Simons and Dahlen (2006) in whose work we will point out
a misprint that we correct here.
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Continuous Formulation
The analytic counterpart to the pointwise data from Eq. (106) known (or desired)
only within the target regionR is

d. Or/ D
(
@rV .rs Or/C n. Or/ if Or 2 R
unknown if Or 2 � n R; (119)

where n. Or/ is the spatial noise function. The estimation problem equivalent to
Eq. (108) can now be formulated as

arg min
Qure

Z

R


YT AQure � d
�2
d� D arg min

Qure

Z

R


YT GGTAQure � d �2
d�

D A�1G arg min
Qsrs

Z

R


GT Qsrs � d �2
d�; (120)

where the vector of Slepian functions G is defined in Eq. (75) and the estimated
coefficients at satellite altitude Qsrs are in Eq. (109). The problem is regularized by
solving exclusively for the J best-concentrated Slepian coefficients that describe the
data in Eq. (119), which transforms Eq. (120) into the estimation problem

arg min
QsrsJ

Z

R


GT
J QsrsJ � d

�2
d�: (121)

Differentiating with respect to QsrsJ to find the stationary points, and making use of
Eq. (79), the solution is given by

QsrsJ D
�Z

R

GJGT
J d�

��1 Z

R

GJ d d� D ƒ�1
J

Z

R

GJ d d�: (122)

As with the estimation of the spherical-harmonic coefficients of the potential
field from the Slepian coefficients at altitude obtained from pointwise data in
Eq. (113), we can estimate the vector containing the .L C 1/2 spherical-harmonic
coefficients Qure from the J -dimensional vector of Slepian coefficients QsrsJ by
first transforming it to the .L C 1/2-dimensional vector of spherical-harmonic
coefficients GJ QsrsJ and then downward-transforming it using the inverse of the
matrix A defined in Eq. (32). We thereby obtain the spherical-harmonic coefficients
Qure for the estimation QV .re Or/ of the potential field on Earth’s surface �re as

Qure D A�1GJƒ�1
J

Z

R

GJ d d� .analytic solution 2 to problem P2/: (123)

We can expand the coefficients Qure obtained from the data d by Eq. (123) to evaluate
the potential field anywhere on Earth’s surface as
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QV .re Or/ D YT Qure D YT A�1GJƒ�1
J

Z

R

GJ d d� D GT
#Jƒ�1

J

Z

R

GJ d d�;
(124)

where the truncated vector of downward-transformed Slepian functions G#J is
defined in Eq. (115).

Effects of Bandlimiting the Scalar Estimates
The estimate given in Eq. (124) has a bandlimited representation of the unknown
potential at its heart, though the actual potential that we are attempting to estimate
will generally not be bandlimited (see Eqs. 18 and 27), nor will the noise be.
To isolate the effects of the bandlimitation, we write the data as the sum of a
bandlimited part (which is expanded globally in Slepian functions of the same
bandwidth), its wideband complement, which contains spherical harmonics with
degree greater than L introduced in Eq. (52), and the noise contribution. Equation
(119) then becomes

d D @rV .rs Or/C n D GT
Z

�

G @rV .rs Or/ d�C OYT
>L

Z

�

OY>L@rV .rs Or/ d�C n

(125)
within the region R. To this we apply the integral transform of Eq. (124) using the
J best-concentrated Slepian functions GJ , and we make use of the orthogonality
Eq. (74), Eqs. (78), (79), and (89), to obtain the expression

Z

R

GJ d d�D
Z

R

GJGT d�

Z

�

G @rV .rs Or/ d�C
Z

R

GJ OYT
>L d�

Z

�

OY>L@rV .rs Or/ d�

C
Z

R

GJ n d� (126)

D ƒJ

Z

�

GJ @rV .rs Or/ d�C GT
J

ODT
>L;L

Z

�

OY>L@rV .rs Or/ d�C
Z

R

GJn d�
(127)

D ƒJ

Z

�

GJ @rV .rs Or/ d�C OGT
>L;J

Z

�

OY>L@rV .rs Or/ d�C
Z

R

GJ n d�
(128)

D ƒJ

Z

�

GJ @rV .rs Or/ d�C
Z

�

OG>L;J @rV .rs Or/ d�C
Z

R

GJ n d�:
(129)

Finally, we can insert the result (129) into Eq. (124) to discover the contributions to
the bandlimited estimate QV .re Or/ from signal with energy in the spherical-harmonic
degree range l > L and the presence of noise:
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QV .re Or/ D GT
#J

Z

�

GJ @rV .rs Or/ d�C GT
#Jƒ�1

J

�Z

�

OG>L;J @rV .rs Or/ d�C
Z

R

GJ n d�
�

; (130)

an expression equivalent to Eq. (136) of Simons and Dahlen (2006). Ultimately,
Eq. (130) is derived from an estimate of the spherical-harmonic potential coeffi-
cients, Eq. (123), that uses a truncated (to J ) set of bandlimited (to L) spatially
concentrated (to R) Slepian functions. Keeping with the terminology introduced
by Simons and Dahlen (2006), the truncation bias in the bandlimited part of the
estimate (the first right-hand-side term in Eq. 130) diminishes as J increases, but
the second, parenthetical, term grows, very unfavorably fast, with the inverse-
eigenvalue matrix ƒ�1

J . This term contains the broadband leakage, which is
captured from the non-bandlimited part of the signal by the nonvanishing regional
product integral in the second term of Eq. (126), and the contribution due to the
noise in the region over which data are available. Comparison of the bandlimited
estimate (130) with the wideband original form (27) will furthermore identify a
broadband bias that arises from the outright neglect of the necessary basis functions
and is thus, essentially, unavoidable. The broadband leakage can be controlled
under some theoretical or numerical schemes (e.g., Albertella et al. 2008; Hwang
1993; Trampert and Snieder 1996). Oftentimes, however, those fail to be practically
successful at the desired level of accuracy of the solution (e.g., Slobbe et al. 2012).

Statistical Analysis for Scalar BandlimitedWhite Processes
The complete assessment of the statistical performance of the estimators (123) and
(124) is an ambitious objective. It is difficult to go beyond Eq. (130) without making
detailed assumptions about the underlying statistics of both signal and noise, not
to mention the specifics of the region of data coverage and the satellite altitude
(e.g., Kaula 1967; Schachtschneider et al. 2010, 2012; Slobbe et al. 2012; Whaler
and Gubbins 1981; Xu 1992a,b, 1998). However, as shown by Simons and Dahlen
(2006), special cases are easy to come by and learn from. We recall the standard
definitions for the estimation error, bias, and variance,


 D QV .re Or/� V .re Or/; (131)

ˇ D ˝ QV .re Or/
˛ � V .re Or/; (132)

� D ˝ QV 2.re Or/
˛ � ˝ QV .re Or/

˛2
; (133)

and, typically the quantity to be minimized, the mean squared error:

h
2i D � C hˇ2i: (134)
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The angular brackets in Eq. (134) refer to averaging over a hypothetical ensemble
of repeated observations, treating both signal and noise as stochastic processes (see
Simons and Dahlen 2006). We make the following four oversimplified assumptions
by which to obtain simple and insightful expressions for �; ˇ, and h
2i:

1. The signal V .re Or/ is bandlimited, as are the Slepian functions G, with the same
bandwidth L.

2. The signal is – almost, given the incompatible stipulation 1 – “white” on Earth’s
surface, with power S , in the sense hV .re Or/V .re Or 0

/i D S ı. Or; Or 0
/, and with

ı. Or; Or 0
/ the scalar spherical delta function (see Simons et al. 2006).

3. The noise is white at the observation level, with power N , as hn. Or/n. Or 0
/i D

Nı. Or; Or 0
/, and – again irreconcilably – zero outside of R.

4. The noise has zero mean and is uncorrelated with the signal, hn. Or/i D 0 D
hn. Or/V . Or 0

/i.

To honor 1, we insert the bandwidth-restricted version of Eq. (57) into Eq. (130);
observe the cancellation, via the whole-sphere orthogonality of OG>L and Y , of the
first term inside of the parentheses in Eq. (130); and then apply the relation (78) and
the orthogonality (71), to arrive at

QV .re Or/ D GT
#J

�Z

�

GJYTAure d�C ƒ�1
J

Z

R

GJ n d�
�

D GT
#J

�

GT
JAure C ƒ�1

J

Z

R

GJ n d�
�

D GT
#J

�Z

�

G"J V .re Or/ d�C ƒ�1
J

Z

R

GJ n d�
�

: (135)

The last equality follows from the bandlimited identification V .re Or/ D YT ure

as from Eq. (56), global orthogonality of the Y , and by substitution of Eq. (116).
From Eqs. (117) and (118), we furthermore know that the unknown bandlimited
signal V .re Or/ can be represented using the upward- and downward-transformed
Slepian functions as

V .re Or/ D GT
#

Z

�

G"V .re Or/ d�

D GT
#J

Z

�

G"J V .re Or/ d�C GT
#>J

Z

�

G">J V .re Or/ d�: (136)

We can now calculate the bias ˇ from Eq. (132) by applying the averaging operation
to Eq. (135), using assumption 4, and then subtracting Eq. (136), to give the result,
which grows with diminishing truncation J ,

ˇ D �GT
#>J

Z

�

G">J V .re Or/ d�: (137)
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In order to calculate the variance �, we use Eq. (135) to obtain the squared

QV 2.re Or/ D GT
#J

�Z

�

G"J V .re Or/ d�C ƒ�1
J

Z

R

GJ n d�
�

�
�Z

�

V .re Or/GT
"J d�C ƒ�1

J

Z

R

nGT
J d�

�

G#J (138)

D GT
#J

�Z

�

Z

�

G"J . Or/V .re Or/V .re Or 0
/GT

"J . Or 0
/ d�0 d�

C ƒ�1
J

Z

R

Z

R

GJ . Or/n. Or/n. Or 0
/GT

J . Or 0
/ d�0 d�ƒ�1

J

C
Z

�

Z

R

G"J . Or/V .re Or/n. Or 0
/GT

J . Or 0
/ d�0 d�ƒ�1

J

C ƒ�1
J

Z

R

Z

�

GJ . Or/n. Or/V .re Or 0
/GT

"J . Or 0
/ d�0 d�

�

G#J : (139)

We apply the averaging over the different realizations of the noise in Eq. (139), and
use assumptions 3 and 4 and Eq. (79), from which we subtract the square of the
average of Eq. (135) to obtain the variance in Eq. (133), which grows with J , as

� D NGT
#Jƒ�1

J G#J : (140)

The squared bias averaged over all realizations of the signal, using assumption 2,
making the substitution (116), and using the whole-sphere orthogonality (71) of the
spherical harmonics Y , yields

hˇ2i D S GT
#>J



GT
>JA2G>J

�G#>J ; (141)

which leads, together with the variance in Eq. (140), via Eq. (134) to the mean
squared estimation error

h
2i D NGT
#Jƒ�1

J G#J C S GT
#>J



GT
>JA2G>J

�G#>J : (142)

With Eqs. (137), (141), and (142), we correct Eqs. (143)–(145) of Simons and
Dahlen (2006). We can understand their typo by writing Eq. (141) using Eq. (115)
as hˇ2i D SYT A�1G>JGT

>JA2G>JGT
>JA�1Y and recognizing that the terms

G>JGT
>J are never identities and that the interior term GT

>JA2G>J is an identity
only when A itself is an identity, which is never the case in this chapter, but would
apply in the zero-altitude scalar case considered by Simons and Dahlen (2006).
Another way of stating it is that Simons and Dahlen (2006) mistakenly applied their
identity (93), which is our (117), in the case of truncated sums, for which it does
not hold. The typos do not affect any of their further analysis or conclusions, which
were conducted at zero altitude.
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6 Potential-Field Estimation from Vectorial Data Using
Slepian Functions

In this section, we present a method to solve problem P4, the estimation of the
potential field on Earth’s surface from noisy (three-component) vectorial data at
satellite altitude (e.g., Arkani-Hamed 2002). The method is constructed in a similar
fashion as the scalar solutions to problem P2 described in Sect. 5. We will use
the gradient-vector Slepian functions introduced in Sect. 4.2 to fit the local data
at satellite altitude and then downward-transform the gradient-vector spherical-
harmonic coefficients thus obtained. As for the scalar case, we will first present
the numerical method applicable to pointwise data and then develop a functional
formulation that will allow us to analyze the effect of non-bandlimited signal and
noise on the estimation.

6.1 Discrete Formulation and Truncated Solutions

Given pointwise data values of the gradient of the potential that are polluted by noise
at the points rs Or1; : : : ; rs Ork ,

d D V0 C n; (143)

where V0 is defined in Eq. (38), and n is a vector of noise values at the evaluation
points for the individual components, we seek to estimate the spherical-harmonic
coefficients ure D .ure00 � � � ureLL/

T of the scalar potential V on Earth’s surface �re ,
as in the statement (49) of problem P4. The solution Eq. (50) contains the matrix
inverse .EET/�1 which, like its counterpart Eq. (93), is intrinsically poorly condi-
tioned. To regularize the problem, we transform the problem into the gradient-vector
Slepian basis for the relevant bandwidth and the chosen target region R and focus
on estimating only the J best-concentrated gradient-vector Slepian coefficients. We
leave the choice of the value J for later.

We define the .LC1/2�3k-dimensional matrix containing the .LC1/2 gradient-
vector Slepian functions H 1; : : : ;H .LC1/2 evaluated at the unit-sphere longitudes
and latitudes of the data,

H D HTE; (144)

where the gradient-vector Slepian transformation matrix H is defined in Eq. (94)
and the matrix E containing the values of the gradient-vector spherical harmonics
evaluated at the data locations on the unit sphere is defined in Eq. (42). Problem
P4 is rewritten from Eq. (49) via the gradient-vector Slepian transformation H at
altitude, to
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arg min
Qure

�
�
�ETBQure � d

�
�
�
2 D arg min

Qure

�
�
�ETHHTBQure � d

�
�
�
2

D B�1H arg min
Qtrs

�
�
�HTQtrs � d

�
�
�
2

; (145)

where we used the orthogonality HHT D I, the definition Eq. (144) and introduced
the gradient-vector Slepian coefficients at satellite altitude

Qtrs D HTBQure : (146)

As for the scalar case, we apply regularization by only estimating the coefficients
for the J best-concentrated gradient-vector Slepian functions. We define the J �3k-
dimensional matrix containing the point evaluations of those

HJ D HT
JE (147)

and then solve

arg min
QtrsJ

�
�
�HT

J
QtrsJ � d

�
�
�
2

(148)

for the J -dimensional vector QtrsJ of gradient-vector Slepian coefficients at satellite
altitude. For J � 3k, the minimizer

QtrsJ D
�
HJHT

J

	�1
HJd (149)

is subsequently downward-transformed to the .L C 1/2 spherical-harmonic coeffi-
cients Qure of the field on Earth’s surface �re as

Qure DB�1HJ QtrsJ DB�1HJ

�
HJHT

J

	�1
HJd (solution 2 to noisy problem P4);

(150)
using the matrix B defined in Eq. (48). The conditioning of the matrix .HJHT

J /

is determined by the truncation level J . The local approximation QV .re Or/ of the
potential field V .re Or/ can now be calculated by

QV .re Or/ D YT Qure D HT
#J

�
HJHT

J

	�1
HJd D HT

#J QtrsJ ; (151)

where we have defined the vector of the J best-concentrated gradient-vector Slepian
functions (and its complement) that are downward-transformed (hence, expanded in
scalar spherical harmonics) as
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H#J D HT
JB�1Y; H#>J D HT

>JB�1Y: (152)

Figure 4 shows an example. Similarly, we will be needing the upward-transformed
pair of vectors

H"J D HT
JBY; H">J D HT

>JBY; (153)

and the relation derived from them when J D .LC1/2 and Eq. (94) or Eq. (98), the
equivalent of Eq. (117), namely,

HT
# . Or/H". Or 0

/ D YT . Or/B�1HHT BY. Or 0
/ D YT . Or/Y. Or 0

/ D HT . Or/H. Or 0
/:

(154)
Once again we stress that we cannot derive such an equality after any truncation of
the Slepian-function set. We do have

HT
# . Or/H". Or 0

/ D HT
#J . Or/H"J . Or 0

/C HT
#>J . Or/H">J . Or 0

/: (155)

6.2 Continuous Formulation and Statistical Considerations

In this section, we reformulate the method described in Sect. 6.1 such that instead
of estimating the potential field from pointwise data, we estimate the field from
functional data that are only available in the target regionR. This will then enable us
to analyze the effect of a non-bandlimited signal and general noise on the estimation
of the potential field on Earth’s surface �re .

Continuous Formulation
The data that are the functional equivalent of the point values (143) in the target
regionR are now expressed as

d. Or/ D
(
rV .rs Or/C n. Or/ if Or 2 R
unknown if Or 2 � nR; (156)

where n. Or/ is a vector-valued function of space describing the noise at satellite
altitude rs. The problem equivalent to Eq. (145),

arg min
Qure

Z

R


ET BQure � d
�2
d� D arg min

Qure

Z

R


ET HHTBQure � d
�2
d�

D B�1H arg min
Qtrs

Z

R


HT Qtrs � d
�2
d�; (157)

where the vector of gradient-vector Slepian functions H is defined in Eq. (98) and
the estimated vector of coefficients for the gradient-vector Slepian functions at
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Fig. 4 Downward transformation of the 10th best-concentrated gradient-vector Slepian function
for Africa and a maximum spherical-harmonic degree L D 30. The right panels show the
concentrated gradient-vector Slepian function H 10 D ET h10. Top-right panel shows the radial
component H 10 � Or, middle-right panel the tangential (colatitudinal) component H 10 � O� , and
the lower-right panel the tangential (longitudinal) component H 10 � O�. The left panel shows the
downward-transformed scalar potential H# 10 D YT B�1h10 on Earth’s surface (re D 6371 km)
that corresponds to the field H 10 at satellite altitude 500 km. The concentration coefficient for the
gradient-vector Slepian function H 10 at satellite altitude is 	 D 0:93

satellite altitude Qtrs is defined in Eq. (146). In Eq. (157), the scalar-valued square
of a three-dimensional vector is defined as the inner product of this vector with
itself.

As for the numerical formulation, we apply regularization by solving only for the
coefficients of the J best-concentrated gradient-vector Slepian functions at altitude
to fit the data d given in Eq. (156). We thence turn Eq. (157) into the estimation
problem

arg min
QtrsJ

Z

R


HT
J

QtrsJ � d
�2
d� D arg min

QtrsJ

Z

R


HT
J

QtrsJ � d
� � 
HT

J
QtrsJ � d

�
d�;

(158)



2038 A. Plattner and F.J. Simons

which is solved by

QtrsJ D
�Z

R

HJ � HT
J d�

��1 Z

R

HJ � d d� D †�1
J

Z

R

HJ � d d�; (159)

where we have used Eq. (102). As for the pointwise data case shown in Eq. (150),
we obtain an estimate Qure for the spherical-harmonic coefficients of the potential
field on Earth’s surface �re as

Qure D B�1HJ†�1
J

Z

R

HJ � d d� (analytic solution 2 to problem P4):

(160)

We can transform the coefficients Qure obtained from the data d by Eq. (160) into a
local estimate of the potential field at the Earth’s surface as

QV .re Or/ D YT Qure D YT B�1HJ†�1
J

Z

R

HJ � d d� D HT
#J†�1

J

Z

R

HJ � d d�;

(161)
where the vector containing the downward-transformed gradient-vector Slepian
functions H#J was defined in Eq. (152).

Effects of Bandlimiting the Vector Estimates
The estimate (161) is bandlimited but neither the data nor the noise usually
would be. To study the leakage and bias that arise from this discrepancy in the
representation, we separate the data explicitly into a bandlimited and a broadband
signal part, and the noise, much like we did for the scalar case in Sect. 5.2, as

d D rV .rs Or/C n D HT
Z

�

H � rV .rs Or/ d�C OET
>L

Z

�

OE>L � rV .rs Or/ d�C n

(162)

within the region R. To work toward Eq. (161), we multiply the data with the
vectorHJ containing the J best-concentrated gradient-vector Slepian functions and
integrate over the region. We make use of the orthogonality Eq. (97), and Eqs. (101)
and (102), and the relations Eqs. (104) and (105), to arrive at
Z

R

HJ � d d� D
Z

R

HJ � HT d�

Z

�

H � rV .rs Or/ d�

C
Z

R

HJ � OET
>L d�

Z

�

OE>L � rV .rs Or/ d�C
Z

R

HJ � nd�

(163)

D †J

Z

�

HJ � rV .rs Or/ d�C HT
J

OKT
>L;L

Z

�

OE>L � rV .rs Or/ d�

C
Z

R

HJ � nd�; (164)
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D †J

Z

�

HJ � rV .rs Or/ d�C OHT
OE;>L;J

Z

�

OE>L � rV .rs Or/ d�

C
Z

R

HJ � nd�; (165)

D †J

Z

�

HJ � rV .rs Or/ d�C
Z

�

OH OE;>L;J � rV .rs Or/ d�

C
Z

R

HJ � nd�: (166)

Substituting Eq. (166) into the expression for our estimate Eq. (161) exposes its
bandlimited and broadband constituent terms

QV .re Or/ D HT
#J

Z

�

HJ � rV .rs Or/ d�

C HT
#J†�1

J

�Z

�

OH OE;>L;J � rV .rs Or/ d�C
Z

R

HJ � nd�

�

: (167)

The convenience of our notation is apparent from the comparison of this equation
with Eq. (130), which is functionally very similar. Here, as there, the estimation error
of the bandlimited part of the signal (the first term in Eq. 167) becomes smaller
with less truncation (larger J ), but the bias from the non-bandlimited part of the
signal and the noise (second term) grows, amplified by the concentration factor †�1

J

which becomes less well conditioned with growing J , as Slepian functions with ever
smaller eigenvalues are being included into the estimate.

Statistical Analysis for Vectorial BandlimitedWhite Processes
Even more so than for the scalar case described in Sect. 5.2, the calculation of
the variance, bias, and mean squared error of the estimates (160) and (161), in
the general sense of Eq. (167), would be very involved without imparting much
insight. Instead, as for the scalar case, we narrow our scope to vectorial data d

that satisfy some special properties. Because the field QV .re Or/ that we estimate from
these data is still a scalar function, we can retain the definitions of variance, bias,
and mean squared error given in Eqs. (131)–(134). We update the list of assumptions
as follows:

1. The signal V .re Or/ is bandlimited with the same bandlimit L as the Slepian
functions H.

2. The signal is white on the surface hV .re Or/V .re Or 0
/i D S ı. Or; Or 0

/.
3. The noise is white at the observation level, hn. Or/n. Or 0

/i D N ı. Or; Or 0
/, with

ı. Or; Or 0
/ the vectorial delta function (see Plattner and Simons 2014) and it is zero

outside of R.
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4. The noise has zero mean and none of its components are correlated with the
signal, hn. Or/i D 0 D hn. Or/V . Or 0

/i:

Following assumption 1, we insert the bandlimited portion of Eq. (66) into
Eq. (167), supply the form of Eq. (101), observe the cancellation of the whole-sphere
inner product between OH OE;>L;J and E inside the parentheses in Eq. (167), and then
use the relations (101) and (94) to write

QV .re Or/ D HT
#J

�Z

�

HJ � ET Bure d�C †�1
J

Z

R

HJ � nd�

�

D HT
#J

�

HT
JBure C †�1

J

Z

R

HJ � nd�

�

D HT
#J

�Z

�

H"J V .re Or/ d�C †�1
J

Z

R

HJ � n d�

�

; (168)

the last equality following from Eq. (56), global orthogonality of the E , and
Eq. (153). From Eqs. (154 and 155), we learn that the unknown bandlimited true
signal V .re Or/ can be represented by

V .re Or/ D HT
#

Z

�

H"V .re Or/ d�

D HT
#J

Z

�

H"J V .re Or/ d�C HT
#>J

Z

�

H">JV .re Or/ d�: (169)

The bias of Eq. (132) derives from averaging Eq. (168), using assumption 4, and
then subtracting Eq. (169) to yield a term that grows as J gets lowered,

ˇ D �HT
#>J

Z

�

H">J V .re Or/ d�: (170)

The variance � requires the square of Eq. (168), that is,

QV 2.re Or/ D HT
#J

�Z

�

H"J V .re Or/ d�C †�1
J

Z

R

HJ � nd�

�

�
�Z

�

V .re Or/HT
"J d�C †�1

J

Z

R

n � HT
J d�

�

H#J

D HT
#J

�Z

�

Z

�

H"J . Or/V .re Or/V .re Or 0
/HT

"J . Or 0
/ d�0 d�

C†�1
J

Z

R

Z

R

ŒHJ . Or/ � n. Or/�Œn. Or 0
/ � HT

J . Or 0
/� d�0 d�†�1

J
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C
Z

�

Z

R

H"J . Or/V .re Or/Œn. Or 0
/ � HT

J . Or 0
/� d�0 d�†�1

J

C†�1
J

Z

R

Z

�

ŒHJ . Or/ � n. Or/�V .re Or 0
/HT

"J . Or 0
/ d�0 d�

�

H#J : (171)

After averaging Eq. (171) under the assumptions 3 and 4, using Eq. (102), and
subtracting the square of the average of Eq. (168), we get the estimation variance
of Eq. (133), which grows with J , in the form

� D NHT
#J†�1

J H#J : (172)

The average squared bias under the assumption 2, with Eq. (153) and the global
orthogonality of the spherical harmonics Y , is written as

hˇ2i D SHT
#>J



HT
>JB2H>J

�H#>J ; (173)

which, together with the variance in Eq. (172), leads to the mean squared error
defined in Eq. (134), in the form

h
2i D NHT
#J†�1

J H#J C SHT
#>J



HT
>JB2H>J

�H#>J : (174)

7 Numerical Examples

In this section, we illustrate the use of Eqs. (113) and (114) to solve the noisy
scalar problem P2 and Eqs. (150) and (151) for the noisy vectorial problem P4.
In both cases, our aim is to estimate the scalar potential field on Earth’s surface
from noisy scalar and vectorial data, synthetically generated at a representative
altitude. Throughout the section, we assume the Earth to be a sphere of radius
re D 6;371 km and the satellite to fly in a spherical orbit at .rs � re/ D 500 km
above the Earth’s surface. We implemented the numerical algorithms in Matlab,
and wherever the solution of a linear system of equations was required, such as in
Eq. (112) or Eq. (149), we used the operator mldivide, e.g., .GJGT

J /n.GJdr / and
.HJHT

J /n.HJd/.
The “true” potential field V .re Or/ D YT ure in our numerical experiments is

bandlimited to degree L D 72 and its isotropic signal power is constant within
the bandlimit by satisfying 1

2lC1
Pl

mD�l


urelm

�2 D 1 for 1 � l � L. We ensured
that the signal had zero mean over the entire Earth’s surface by setting ure00 D 0.
Figures 5 and 7 show the potential-field signal in their upper-left panels.

The bandlimited scalar quantity at satellite altitude @rV .rs Or/ is defined by the
bandlimited version of Eq. (57), and likewise, the vectorial quantity rV .rs Or/ by the
bandlimited restriction of Eq. (65). In each of the experiments in this section, we
sampled the fields at altitude at the same set of 2,217 points which were uniformly
distributed (equal surface area) over the target region R, Africa, of solid-angle
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area a D R
R d�. From these points, we created vectors with the data dr or d as

in Eqs. (106) and (143).
The noise for the scalar problem was generated at every location of the data

points by independent sampling from a zero-mean Gaussian distribution with a
variance equal to 2.5 % of the numerical signal power at satellite altitude rs given by
.1=k/kV0

rk2 D .1=k/
Pk

iD1Œ@rV .rs Or i /�2. For the vectorial problem, we generated
the noise for each of the three signal components at satellite altitude, @rV .rs Or/,
@�V .rs Or/, and @�V .rs Or/, independently from zero-mean Gaussian distributions
with identical variances equal to 2.5 % of the numerical power of the signal in each
of the components separately.

At each fixed Slepian-basis truncation level J , the scalar estimates in Eq. (113)
are derived from the solutions (112) which minimize the quadratic misfit (111)
that is our regularized proxy for the noisy problem (108). Similarly, the vectorial
estimates Eq. (150) derive from the solutions (149) to the misfit (148) which is our
regularized version of the noisy problem (145). As we have seen in the theoretical
treatment of the problem, the truncation regularization biases the estimates (see
Eqs. 137 and 170) by an amount that grows when lowering J (more truncation), but
the estimation variances (see Eqs. 140 and 172) are positively affected by lowering
J (which leads to smaller variance). In all this, our ultimate objective is to control
the trade-off between bias and variance and make our estimates of the potential field
at the surface of the Earth as efficient as possible (Cox and Hinkley 1974; Davison
2003). We thus need to evaluate the quality of the estimates made using different
truncation levels J in terms of their mean squared errors (see Eqs. 142 and 174).

For each experiment, we will compute as a measure of efficiency the mean
squared error between the estimated potential-field and the (bandlimited) truth, at
the Earth’s surface, averaged over the area of interest, as follows:

mse D 1

a

Z

R

�
V .re Or/� QV .re Or/

�2
d� D 1

a



ure � Qure�T

D


ure � Qure�: (175)

With the truth V .re Or/ D YT ure and the estimates in the common form QV .re Or/ D
YT Qure as given by either Eqs. (114) or (151), the truncation-level J -dependent
Eq. (175) can be calculated directly with the aid of the localization kernel Eq. (70),
as shown. We will express the regional mean squared error relative to the mean
squared signal strength over the same area, which is given by

mss D 1

a

Z

R

V 2.re Or/ d� D 1

a



ure /TD



ure

�
: (176)

We will call the relative measure

'.J / D mse

mss
; (177)
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and plot it in function of the Slepian-function truncation level J . Finally, we will
also quote the relative quadratic measure of data misfit, Eq. (111), between the given
data dr and the predicted data, YTAQure ,

 .J / D
�
�
�YTAQure � dr

�
�
�
2

kdrk2 ; (178)

where we recall that the prediction Qure is given by Eq. (113) and thereby remains a
function of the truncation level J . In the vectorial case, the equivalent metric is the
relative mean squared data misfit, Eq. (148), between the three vectorial components
of the given data d and the three vectorial components of the predicted data, ETBQure ,

 .J / D
�
�
�ETBQure � d

�
�
�
2

kdk2 : (179)

7.1 Estimating the Potential Field at the Surface from
Radial-Component Data at Satellite Altitude

Figure 5 shows the results from a suite of experiments with noisy scalar data. For
generality we omitted a color bar and legend. We used the same linear color scale,
normalized to the maximum absolute V .re Or/ value, for all three panels on the left
side. Blue is positive, red is negative, and all points with absolute value smaller than
1 % of the maximum are left white. The data, shown on the right, are also color-
coded in the same color map, but the colors are scaled with respect to the scale
of the panels in the left column to account for the reduced data values at satellite
altitude.

The true potential field, V .re Or/, is displayed in the upper-left panel of Fig. 5,
and one realization of the noisy radial-derivative data at altitude, dr , is shown in the
upper-right panel. In the middle-left panel, we plot the estimate QV .re Or/, at Earth’s
surface �re , from Eq. (114), with J D 412. In the bottom-left panel, we show the
absolute value of the difference between the truth and the estimate. The relative
mean squared error, following Eq. (178), is 0.126. The Slepian-function truncation
level J D 412 was chosen based on the numerical experiment shown in Fig. 6. For
this value of J , the estimated potential field QV .re Or/ approximates the true potential
field V .re Or/ very well within Africa, and it has almost no energy outside the region
of interest.

In Fig. 6, each of the 64 gray lines labeled ' is a curve of '.J /, the regional
relative mean squared model error calculated as in Eq. (177). The same true signal
values V0

r were used, but every experiment used data dr , as given by Eq. (106), that
were contaminated by a different realization of the noise field nr , as described at
the beginning of this section. Every curve starts at '.0/ D 1, as without any basis
functions, only the zero model is obtained. The relative mse decreases dramatically
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Fig. 5 Example of the estimation of a potential field on Earth’s surface from noisy radial-
derivative data at satellite altitude rs D re C 500 km, using Slepian functions bandlimited to
L D 72 and spatially concentrated to the target region Africa. The upper-left panel shows the true
potential field V .re Or/ on Earth’s surface. The upper-right panel shows the 2,217 noisy data dr at
satellite altitude. The middle-left panel shows the estimated potential field QV .re Or/ calculated from
the data using Eq. (114), with Slepian-function truncation level J D 412. The lower-left panel
shows the absolute value of the difference jV .re Or/ � QV .re Or/j between the true and the estimated
potential fields

after about J D 250, and the estimation improves as more Slepian functions are
involved. As we have explained earlier for the theoretical behavior in Eq. (142),
the squared bias term ˇ2 diminishes in value with increasing J . Less truncation
(larger J ) reduces the estimation bias, but this decrease is in competition with the
variance � term, which increases with J . The influence of data noise is felt more
and more with the inclusion of additional basis functions.

The turning points of minimum relative mean squared estimation error for each
of the experiments are indicated by a gray circle. At the corresponding value J , the
optimal Slepian truncation level for each specific data set is reached. The average of
all of the '.J / curves shown is represented by a black dashed line. All individual
turning points are clustered around the average ideal truncation point, which is
the J D 412 indicated by the black circle. The relative regional mean squared
model errors ' do not improve immediately after J D 1, unlike the data errors  .
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Fig. 6 Relative regional mean squared model errors '.J /, from Eq. (177), and relative mean
squared data misfit  .J /, from Eq. (178), for potential-field estimation from radial-derivative data
as described in Eq. (114). The true signal is the one shown in Fig. 5. Each of the 64 realizations
of noise leads to a gray '.J /-curve and a gray  .J /. The optimal truncation points are indicated
by gray circles and the average optimal truncation point by a black circle, and the average '.J /
behavior is the black dashed line. The dashed horizontal line is the relative energy of the noise

There is a local minimum, followed by a rise, and a precipitous decline after
J D 250 or thereabouts. We explain this behavior theoretically by our minimizing
the misfit of the upward-transformed potential field at the altitude of the data (see
Eq. 121) instead of the misfit on the surface, which is measured by '. To obtain
the potential field on the surface, we need to downward-transform the radial-field
estimate at altitude, obtained by truncation, as shown by Eq. (123). The inverse of
the upward-transformation operator A defined in Eq. (32) is poorly conditioned for
high maximum degrees L and large relative satellite altitudes rs=re. The interaction
between all of the terms altogether displays a complex behavior that, however, has a
clear global minimum which leads to a working algorithm and an objective decision
as to the optimal Slepian-function truncation level.

Because the noise level is relatively small compared to the signal strength, and
because we use the same 2,217 data locations, the -lines with the data fits are close
together. The relative mean squared data misfit curves .J / in Fig. 6 are decreasing
fast until their values reach the relative energy of the noise, 2.5 %, indicated by
the dashed horizontal black line. At this point the relative mean squared data misfit
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decreases much slower, or almost not at all. We recall that the noise is generated in
the spatial domain and is therefore not bandlimited. Hence, the noise has appreciable
energy in the degrees larger than 72 which cannot be fit by the L D 72 bandlimited
Slepian functions.

7.2 Estimating the Potential Field at the Surface from
Gradient-Vector Data at Satellite Altitude

Figure 7 shows the results from an experiment with noisy vectorial data. Our plot
color conventions are unchanged from those in Sect. 7.1, except now the three
panels on the right are scaled to the maximum absolute vectorial data value at

Fig. 7 Example of a potential-field estimation on Earth’s surface from noisy gradient data at
altitude rs D re C 500 km for Slepian functions with maximum degree L D 72 and target
region Africa. The upper-left panel shows the true potential field V .re Or/ on Earth’s surface. The
three right panels show the noisy data d at satellite altitude given by 2,217 data values. The top-
right panel depicts the radial component dr , the middle-right panel the tangential colatitudinal
component d� , and the lower-right panel the tangential longitudinal component d� . The middle-left
panel shows the estimated potential field QV .re Or/ calculated from the data with Slepian truncation
J D 472. The lower-left panel shows the absolute difference jV .re Or/� QV .re Or/j between the true
and the estimated potential fields
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satellite altitude. The true potential field V .re Or/ is found in the upper-left panel
of Fig. 7, and the noisy data at altitude d are shown on the right. The top-right panel
shows the radial component dr , the middle-right panel the tangential colatitudinal
component d� , and the lower -right panel the tangential longitudinal component d� .

We use Eq. (151) to calculate an estimate QV .re Or/ for the potential field on
Earth’s surface, choosing the Slepian truncation J D 472 based on the numerical
experiments shown in Fig. 8. The estimated scalar potential field on Earth’s surface
QV .re Or/ is shown in the middle-left panel of Fig. 7. The lower-left panel of Fig. 7

shows the absolute difference
ˇ
ˇV .re Or/ � QV .re Or/

ˇ
ˇ between the true and the estimated

signal. The estimated field QV .re Or/ approximates the true signal V .re Or/ well within
Africa and is close to zero outside of that target region. The relative regional mean
squared model error calculated using Eq. (177) is 0:057.

In Fig. 8, we plot the relative regional mean squared model errors '.J / defined
in Eq. (177) as a function of the truncation level J , for each of the 64 experiments.
Each data set d is generated from the same true vector field V0 using Eq. (143),

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Slepian truncation J

re
la

tiv
e 

m
se

472

0.025
0.052

Fig. 8 Relative regional mean squared model error '.J /, from Eq. (177), and relative mean
squared data misfit  .J /, from Eq. (179), for potential-field estimation from vectorial data
described in Eq. (151). The true signal is the same as for Fig. 7. Each of the 64 realizations of
noise leads to a gray '.J /-line and a gray  .J /. The optimal truncation points are indicated by
the gray circles, the average optimal truncation point by the black circle, and the average '.J / line
by the black dashed line. The dashed horizontal line is the relative energy of the noise
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but differs by the realization of the noise n, as discussed at the top of this section.
Each experiment starts at '.0/ D 1 and descends from about J D 250 into a
deep valley with increasing number of Slepian functions. The theoretical relation
in Eq. (174) explains how the decreasing bias and increasing variance trade off as
a function of the increasing number J of Slepian functions. The turning points are
indicated by gray circles; they all cluster around the same truncation value. The
average relative regional mean squared model error is shown by a dashed black line,
and the average optimal Slepian truncation level J D 472 by a black circle. As in the
scalar case the curves '.J / go through a local minimum before reaching the global
optimum truncation level. Indeed, since we minimized Eq. (158) at altitude, in order
to obtain the estimate QV .re Or/ at the Earth’s surface, we need to apply the downward-
transformation operator B defined in Eq. (48). At high maximum degreesL and high
relative satellite altitudes rs=re, this operator is poorly conditioned. The interaction
between the various competing effects produces a complex but reproducible error
behavior.

The 64 curves for the relative mean squared data misfit in Fig. 8 are close together
because the signal-to-noise level is high and because we reuse the same 2,217
data locations. As for the scalar case, the relative mean squared data misfit  .J /
decreases fast until it reaches the relative energy of the noise, 2.5 %, indicated by
the dashed horizontal black line.

8 Conclusions

We presented two methods to estimate a potential field from gradient data at satellite
altitude that are concentrated over a certain region. At the heart of both methods lies
the use of spatiospectrally concentrated spherical basis functions. The first method
only considered the radial component of the data and used scalar Slepian functions.
The second method considered all three vectorial components of the data and used
gradient-vector Slepian functions, a special case of vector Slepian functions. From
the theoretical analysis of both methods, and through extensive experimentation,
we show how the mean squared reconstruction error depends on the number of
Slepian or gradient-vector Slepian functions used for the estimation. The more
Slepian functions involved, the smaller the bias but the larger the variance in the
presence of noise.
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Table of Symbols

Symbol Description Eq.

L Spherical-harmonic bandwidth

R Target region of data availability and for Slepian-function concentration

V .re Or/ Three-dimensional potential-field function at Earth’s surface re (9)

V .rs Or/ Three-dimensional potential-field function at satellite altitude rs (18)

urelm Expansion coefficients of V .re Or/ in the basis of spherical harmonics Ylm (19)

urslm Expansion coefficients of V .rs Or/ in the basis of spherical harmonics Ylm (27)

@rV .rs Or/ Radial derivative of the potential field at satellite altitude rs (21)

r V .rs Or/ Three-dimensional gradient of the potential field at satellite altitude rs (20)

v
rs
lm Expansion coefficients of r V .rs Or/ in the basis of gradient-vector harmon-

ics E lm

(24)

ura .L C 1/2 � 1 vector containing the coefficients uralm with 0 � l � L at
radius ra

(19)

Oura Infinite-dimensional vector containing the coefficients uralm with 0 � l � 1
at radius ra

(54)

Oura>L Infinite-dimensional vector containing the coefficients uralm withL < l � 1
at radius ra

(55)

vra .L C 1/2 � 1 vector containing the coefficients vralm with 0 � l � L at
radius ra

(24)

A .L C 1/2 � .L C 1/2 diagonal matrix transforming the ure to the Ylm
coefficients of @rV .rs Or/

(32)

OA Infinite-dimensional diagonal matrix transforming the Oure to the Ylm coeffi-
cients of @rV .rs Or/

(57)

OA>L
Infinite-dimensional diagonal matrix transforming the Oure>L to the Ylm coef-
ficients of @rV .rs Or/

(57)

B .L C 1/2 � .L C 1/2 diagonal matrix transforming the ure to the E lm

coefficients of r V .rs Or/
(48)

OB Infinite-dimensional diagonal matrix transforming the Oure to the E lm coeffi-
cients of r V .rs Or/

(66)

OB>L Infinite-dimensional diagonal matrix transforming the Oure>L to the E lm

coefficients of r V .rs Or/
(66)

Ylm Scalar spherical-harmonic function for degree l and order m (1)

Y Vector of all .LC 1/2 scalar spherical-harmonic functions to degree L (51)

Y .LC 1/2 � k matrix of Ylm with bandwidth L evaluated at Or1; : : : ; Ork (28)

OY Vector of all scalar spherical-harmonic functions to degree 1 (52)

OY>L Vector of all scalar spherical-harmonic functions for degrees L < l � 1 (52)

E lm Gradient-vector spherical-harmonic function for degree l and order m (16)

E .LC 1/2 � 1 vector of all E lm up to degree L (58)

E .LC 1/2 � 3k matrix of all of the E lm evaluated at Or1; : : : ; Ork (42)

(continued)
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Symbol Description Eq.

OE Vector of all gradient-vector spherical harmonics up to degree 1 (59)

OE>L Vector of all gradient-vector spherical harmonics for degrees L < l � 1 (59)

G˛ ˛th best spatially concentrated (within R) bandlimited (to L) scalar spheri-
cal Slepian function

(73)

OG˛ ˛th best spectrally concentrated (within L) spacelimited (to R) scalar
spherical Slepian function

(81)

g˛ .LC 1/2 � 1 vector containing the Ylm coefficients of one of the G˛ (73)

Og˛ Infinite-dimensional vector containing the Ylm coefficients of one of the OG˛ (82)

G .L C 1/2 � 1 vector containing all of the G˛ ordered with decreasing
concentration ratio �˛

(75)

GJ J � 1 vector of functions containing the G1; : : : ; GJ (78)

G#J J � 1 vector of localized downward-transformed scalar Slepian functions (115)

G"J J � 1 vector of localized upward-transformed scalar Slepian functions (116)

G#>J

�
.LC 1/2 � J

� � 1 vector complementing G#J (115)

G">J

�
.LC 1/2 � J

� � 1 vector complementing G"J (116)

G .LC 1/2 � k matrix of all of the G˛ evaluated at Or1; : : : ; Ork (107)

GJ J � k matrix of G1; : : : ; GJ evaluated at Or1; : : : ; Ork (110)

G .LC 1/2 � .LC 1/2 matrix containing the Ylm coefficients for all of the G˛ (71)

GJ .LC 1/2 � J matrix containing the Ylm coefficients for the G1; : : : ; GJ (77)

�˛ Energy concentration ratio of G˛ (68)

ƒ .LC 1/2 � .LC 1/2 diagonal matrix containing all of the �˛ (72)

ƒJ J � J diagonal matrix containing the J largest �1; : : : ; �J (79)

D .LC 1/2 � .LC 1/2 localization matrix diagonalized by G (70)

ODL
1 � .LC 1/2 matrix extending D to contain the inner products of OY and Y (84)

OD>L;L
1 � .LC 1/2 matrix containing the portion of ODL for degrees l > L (85)

OG>L;˛ Scalar function made from the degrees l > L of OG˛ (88)

Og>L;˛ Infinite-dimensional vector containing the l > L entries of Og˛ (86)

OG>L;J J � 1 vector of functions containing the first J of the OG>L;˛ (89)

OG>L;J
1 � J matrix containing the Ylm coefficients for l > L of the OG˛ (87)

H ˛ ˛th best-concentrated gradient-vector Slepian function for bandwidth L and
region R

(96)

h˛ .LC 1/2 � 1 vector containing the E lm coefficients of one of the H ˛ (96)

H .L C 1/2 � 1 vector containing all of the H ˛ ordered with decreasing
concentration ratio 	˛

(98)

HJ J � 1 vector of functions containing the H 1; : : : ;H J (101)

H#J J�1 vector of scalar-valued downward-transformed gradient-vector Slepian
functions

(152)

H"J J � 1 vector of scalar-valued upward-transformed gradient-vector Slepian
functions

(153)

H#>J

�
.LC 1/2 � J

� � 1 vector complementing H#J (152)

H">J

�
.LC 1/2 � J

� � 1 vector complementing H"J (153)

(continued)
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Symbol Description Eq.
H .LC 1/2 � 3k matrix of all of the H ˛ evaluated at Or1; : : : ; Ork (144)

HJ J � 3k matrix of H 1; : : : ;H J evaluated at Or1; : : : ; Ork (147)

H .LC1/2�.LC1/2 matrix containing the E lm coefficients for all of the H ˛ (94)

HJ .LC 1/2 � J matrix containing the E lm coefficients for the H 1; : : : ;H J (100)

	˛ Energy concentration ratio of H ˛ over R (91)

† .LC 1/2 � .LC 1/2 diagonal matrix containing all of the 	˛ (95)

†J J � J diagonal matrix containing the J largest 	1; : : : ; 	J (102)

K .LC 1/2 � .LC 1/2 localization matrix diagonalized by H (93)

OK>L;L
1 � .LC 1/2 matrix containing the inner products of OE>L with E (104)

OH OE;>L;J J�1 vector of functions containing the OE>L components of the spacelimited
H

(105)

d.Or/ Scalar data function at satellite altitude rs (119)

d.Or/ Gradient data function at satellite altitude rs (156)

dr k � 1 vector of measured radial data values at satellite altitude rs (106)

d 3k � 1 vector of measured gradient data values at satellite altitude rs (143)

n.Or/ Scalar noise function at satellite altitude rs (119)

n.Or/ Vectorial noise function at satellite altitude rs (156)

nr k � 1 vector of radial-derivative noise at satellite altitude rs (106)

n 3k � 1 vector of vectorial noise at satellite altitude rs (143)

V k � 1 vector containing the potential-field signal points V .rs Or/; : : : ; V .rs Or/ (26)

V0

r k � 1 vector containing the radial-derivative signal points
@rV .rs Or/; : : : ; @rV .rs Or/

(33)

V0 3k � 1 vector containing the full gradient signal points V0

r ;V
0

� , and V0

� at
satellite altitude

(38)

QV .re Or/ Potential field at the Earth’s surface estimated from the radial-derivative data
at altitude

(114)

Potential field at the Earth’s surface estimated from the full gradient data at
altitude

(151)

QsrsJ J � 1 vector of G˛ coefficients of V .rs Or/ estimated from the scalar data dr (112)

QtrsJ J�1 vector of H ˛ coefficients of r V .rs Or/ estimated from the vector data d (149)

Qure .LC 1/2 � 1 vector of Ylm coefficients of the estimate QV .re Or/ derived from
the Qsrs

(113)

.LC 1/2 � 1 vector of Ylm coefficients of the estimate QV .re Or/ derived from
the QtrsJ

(150)

� Variance of the estimate QV .re Or/ from the scalar data d.Or/ in truncated
Slepian estimation

(140)

Variance of the estimate QV .re Or/ from the vector data d.Or/ in truncated
Slepian estimation

(172)

ˇ Bias of the estimate QV .re Or/ from the scalar data d.Or/ in truncated Slepian
estimation

(137)

Bias of the estimate QV .re Or/ from the vector data d.Or/ in truncated Slepian
estimation

(170)

h
2i Mean squared error of the estimate QV .re Or/ from the scalar data d.Or/ (142)

(continued)
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Symbol Description Eq.
Mean squared error of the estimate QV .re Or/ from the vector data d.Or/ (174)

'.J / Relative regional mean squared model error between QV .re Or/ and V .re Or/ (177)

 .J / Relative mean squared data misfit between dr and YTAQure for the scalar case (178)

Relative mean squared data misfit between d and ETBure for the vector case (179)
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