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Abstract. Special function systems are reviewed that reflect particular prop-
erties of the Legendre polynomials, such as spherical harmonics, zonal kernels,
and Slepian functions. The uncertainty principle is the key to their classifi-
cation with respect to their localization in space and frequency/momentum.
Methods of constructive approximation are outlined such as spherical har-
monic and Slepian expansions, spherical spline and wavelet concepts. Regu-
larized Functional Matching Pursuit is described as an approximation tech-
nique of combining heterogeneous systems of trial functions to a kind of a
‘best basis’.

Keywords. Spherical harmonics procedures, Slepian, spline and wavelet meth-
ods, regularized functional matching pursuit.

1. Introduction

Up until the present time, modeling geoscientific data is often performed on a
global scale by orthogonal expansions in terms of spherical harmonics. However,
in many aspects global spherical harmonic modeling cannot keep pace with the
prospects and the expectations of the ‘Earth system sciences’. In particular, there
is an increasing need for high-precision modeling on local areas. As we shall discuss,
Slepian functions are important tools for this purpose. For their part, zonal kernel
functions – in the jargon of constructive approximation: radial basis functions –
have become more and more important because of their space localizing properties
(even in the vectorial and tensorial context).

The addition theorem for spherical harmonics enables us to express all types
of zonal kernel functions in terms of a one-dimensional function, the Legendre poly-
nomial. Weighted additive clustering of Legendre polynomials generates specific
classes of space localizing zonal kernel functions, i.e., Legendre series expansions,
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ready for approximation within the scalar, vectorial, and tensorial framework. The
closer the Legendre series expansion is to the Dirac kernel, the more localized is the
zonal kernel in space, and the more economical is its role in (spatial) local computa-
tion. In addition, the Funk–Hecke formula provides the natural tool for establishing
convolutions of spherical fields against zonal kernels. Consequently, by specifying
Dirac families, i.e., sequences of zonal functions tending to the Dirac kernel, (space-
localized) filtered versions of (square-integrable) spherical fields are obtainable by
convolution, leading to ‘zooming-in’, multiscale approximations. Altogether, the
Legendre polynomial is the keystone of any work about special functions in the
mathematical geosciences. It enables the transition from spherical harmonics via
zonal kernels up to the Dirac kernel. The Funk–Hecke formula and its consequences
for spherical convolutions open new methodological perspectives for global as well
as local approximation in scalar, vectorial and tensorial applications.

In this paper, we discuss selected systems of trial functions on the sphere with
a brief excursion to basis functions on the ball. These spherical function systems are
investigated with respect to their localization in space and frequency/momemtum.
Moreover, we briefly summarize a method of finding a best basis by Regularized
Functional Matching Pursuit.

2. Special function systems on sphere and ball

Because of the nearly spherical shape of the Earth, spherical functions and con-
cepts play an essential part in all of the geosciences. By a spherical variant of the
Weierstraß theorem, spherical polynomials, the spherical harmonics, approximate
continuous functions with respect to different topologies.

2.1. Spherical harmonics

Spherical harmonics are the analogues of trigonometric functions for Fourier ex-
pansion theory on the sphere. They were introduced to study gravitational theory
[61, 62]. Early publications on the theory of spherical harmonics in their original
physical interpretation as ‘multipoles’ are by Clebsch [16], Sylvester [93], Heine
[54], Neumann [77], and Maxwell [66]. Global geomagnetic data and basic spher-
ical harmonic expansions became available in the mid 1800s [50]. Today, the use
of spherical harmonics in all geosciences is well established, particularly for the
representation of scalar potentials. Reference models for the Earth’s gravitational
or magnetic fields are distributed as tables of coefficients for the spherical har-
monic expansion of their potentials. In this approach, each spherical harmonic is
a polynomial ‘ansatz-function’, corresponding to one ‘degree’, or in the jargon of
signal processing, to exactly one ‘frequency’. Thus, orthogonal (Fourier) expansion
in terms of spherical harmonics amounts to the superposition of summands with
an oscillating character determined by the degree of the Legendre polynomial (see
Table 1). The more spherical harmonics are involved in the expansion, the more
the oscillations grow in number, but the smaller are their amplitudes.
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Weierstraß approximation theorem ↓ geophysical constraint of harmonicity

spherical harmonics Yn,j as restrictions of homogeneous
harmonic polynomials Hn,j to the unit sphere Ω ⊂ R3

orthonormality and invariance↓ addition theorem

one-dimensional Legendre polynomial Pn:

Pn(ξ · η) =
4π

2n+ 1

2n+1∑
j=1

Yn,j(ξ)Yn,j(η), ξ, η ∈ Ω

convolution by the Legendre kernel↓ Funk–Hecke formula

Legendre transform of F :

(Pn ∗ F )(ξ) =
2n+ 1

4π

∫
Ω

Pn(ξ · η)F (η) dω(η), ξ ∈ Ω

superposition over frequencies↓ orthogonal series expansion

Fourier series of F ∈ L2(Ω):

F (ξ) =

∞∑
n=0

2n+ 1

4π

∫
Ω

Pn(ξ · η)F (η) dω(η), ξ ∈ Ω

Table 1. Fourier expansion of square-integrable scalar functions on the
sphere.

The geosciences deal with the space L2(Ω) of square-integrable functions on
the unit sphere Ω. The quantity

‖F‖L2(Ω) =

(∫
Ω

(F (ξ))2 dω(ξ)

)1/2

(1)

may be understood as the energy of the ‘signal’ F ∈ L2(Ω). The appropriate repre-
sentation of a finite-energy signal in terms of a countable Hilbert basis is one of the
most centrally important problems in the mathematical geosciences. The spherical
harmonics form a Hilbert basis in L2(Ω). Suitable systems of spherical harmon-
ics {Yn,k}n=0,1,...; k=1,...,2n+1 are often defined by the restriction of homogeneous
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harmonic polynomials to the sphere. The polynomial structure has tremendous
advantages. First, spherical harmonics of different degrees are orthogonal. Sec-
ond, the space Harmn of spherical harmonics of degree n is finite-dimensional:
dim(Harmn) = 2n+ 1. Therefore, the basis property of {Yn,k}n=0,1,...; k=1,...,2n+1

is equivalently characterized by the completion of the direct sum
⊕∞

n=0 Harmn, i.e.:

L2(Ω) =

∞⊕
n=0

Harmn

‖·‖L2(Ω)

. (2)

This is the canonical reason why spherical harmonic (multipole) expansions un-
derlie the classical approaches to geopotentials.

Fourier transform. More explicitly, any ‘signal’ F ∈ L2(Ω) can be split into ‘or-
thogonal contributions’ involving the Fourier transforms F∧(n, k) defined by

F∧(n, k) =
∫
Ω

F (ξ)Yn,k(ξ) dω(ξ), (3)

in terms of L2(Ω)-orthonormal spherical harmonics {Yn,k} n=0,1,...
k=1,...,2n+1

. Parseval’s

identity identifies the spatial energy of a signal with the spectral energy, decom-
posed orthogonally into single frequency contributions

‖F‖2L2(Ω) = 〈F, F 〉L2(Ω) =

∞∑
n=0

2n+1∑
k=1

(F∧(n, k))2 .

This explains why the (global) geosciences work more often with the ‘amplitude
spectrum’ {F∧(n, k)} n=0,1,...

k=1,...,2n+1
than with the ‘original signal’ F ∈ L2(Ω).

Inverse Fourier transform. The ‘inverse Fourier transform’

F =

∞∑
n=0

2n+1∑
k=1

F∧(n, k)Yn,k (4)

allows the geoscientist to think of the function (signal) F as a sum of ‘wave func-
tions’ Yn,k corresponding to different frequencies. One can think of measurements
as operating on an ‘input signal’ F to produce an output signal G = ΛF , where Λ
is an operator acting on L2(Ω). Fortunately, large portions of interest can be well
approximated by linear rotation-invariant pseudodifferential operators (see, e.g.,
[33, 47, 92]). If Λ is such an operator on L2(Ω), this means that

ΛYn,k = Λ∧(n)Yn,k, n = 0, 1, . . . ; k = 1, . . . , 2n+ 1, (5)

where the ‘symbol’ {Λ∧(n)}n∈N0
is a sequence of real values (independent of the

order k). Thus, we have the fundamental fact that the spherical harmonics are
the eigenfunctions of the operator Λ. Different pseudodifferential operators Λ are
characterized by their eigenvalues Λ∧(n). All eigenvalues {Λ∧(n)}n∈N0 are collected
in the so-called symbol of Λ. The ‘amplitude spectrum’ {G∧(n, k)} of the response
of Λ is described in terms of the amplitude spectrum of functions (signals) by a
simple multiplication by the ‘transfer’ Λ∧(n).
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Bandlimited/spacelimited functions. Physical devices do not transmit spherical
harmonics of arbitrarily high frequency without severe attenuation. The ‘transfer’
Λ∧(n) usually tends to zero with increasing n. It follows that the amplitude spec-
tra of the responses (observations) to functions (signals) of finite energy are also
negligibly small beyond some finite frequency. Thus, both because of the frequency
limiting nature of the devices used, and because of the nature of the ‘transmitted
signals’, the geoscientist is soon led to consider bandlimited functions. These are
the functions F ∈ L2(Ω) whose ‘amplitude spectra’ vanish for all n > N (N ∈ N
fixed). In other words, each bandlimited function F ∈ L2(Ω) can be written as a fi-

nite Fourier series. So, any function F of the form F =
∑N

n=0

∑2n+1
k=1 F∧(n, k)Yn,k

is said to be bandlimited with the band N , if F∧(N, k) �= 0 for at least one k.
In analogous manner, F ∈ L2(Ω) is said to be locally supported (spacelimited)
with spacewidth ρ around an axis η ∈ Ω, if for some ρ ∈ (−1, 1) the function
F vanishes on the set of all ξ ∈ Ω with −1 ≤ ξ · η ≤ ρ (where ρ is the largest
number for which this is the case). Bandlimited functions are infinitely often dif-
ferentiable everywhere. Moreover, it is clear that any bandlimited function F is an
analytic function. From the analyticity, it follows immediately that a non-trivial
bandlimited function cannot vanish on any (non-degenerate) subset of Ω. The only
function that is both bandlimited and spacelimited is the zero function.

In addition to bandlimited but non-spacelimited functions, numerical analysis
would like to deal with spacelimited functions. However, as we have seen, such a
function (signal) of finite (space) support cannot be bandlimited, it must contain
spherical harmonics of arbitrarily large frequencies. Thus, there is a dilemma of
seeking functions that are somehow concentrated in both space and frequency
(more accurately, angular momentum domain). There is a way of mathematically
expressing the impossibility of simultaneous confinement of a function to space
and angular momentum, namely the uncertainty principle.

2.2. Zonal kernel functions

To understand the transition from the theory of spherical harmonics through zonal
kernel functions to the Dirac kernel, we have to realize the relative advantages
of the classical Fourier expansion method by means of spherical harmonics, and
this not only in the frequency domain, but also in the space domain. It is char-
acteristic for Fourier techniques that the spherical harmonics as polynomial trial
functions admit no localization in space domain, while in the frequency domain
(or: angular momentum domain), they always correspond to exactly one degree,
i.e., frequency, and therefore, are said to show ideal frequency localization. Because
of the ideal frequency localization and the simultaneous absence of space localiza-
tion, in fact, local changes of fields (signals) in the space domain affect the whole
table of orthogonal (Fourier) coefficients. This, in turn, causes global changes of
the corresponding (truncated) Fourier series in the space domain. Nevertheless,
ideal frequency localization is often helpful for meaningful physical interpretations
by relating the different observables of a geopotential to each other at a fixed
frequency.
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Taking these aspects on spherical harmonic modeling by Fourier series into
account, trial functions which simultaneously show ideal frequency localization as
well as ideal space localization would be a desirable choice. In fact, such an ideal
system of trial functions would admit models of highest spatial resolution which
were expressible in terms of single frequencies. However, from the uncertainty
principle – the connection between space and frequency localization – we will see
that both characteristics are mutually exclusive.

In conclusion, Fourier expansion methods are well suited to resolve low and
medium frequency phenomena, i.e., the ‘trends’ of a signal, while their applica-
tion to obtain high resolution in global or local models is critical. This difficulty
is also well known to theoretical physics, e.g., when describing monochromatic
electromagnetic waves or considering the quantum-mechanical treatment of free
particles. There, plane waves with fixed frequencies (ideal frequency localization,
no space localization) are the solutions of the corresponding differential equations,
but they do certainly not reflect the physical reality. As a remedy, plane waves
of different frequencies are superposed into ‘wave-packages’ that gain a certain
amount of space localization, while losing their ideal spectral localization. In a
similar way, a suitable superposition of polynomial functions leads to so-called
zonal kernel functions, in particular to kernel functions with a reduced frequency,
but increased space localization.

More concretely, any kernel function K : Ω×Ω → R that is characterized by
the property that there exists a function K̃ : [0, 2] → R such that

K(ξ, η) = K̃(|ξ − η|) = K̃
(√

2− 2ξ · η
)
= K̂(ξ · η), ξ, η ∈ Ω, (6)

is called a (spherical) radial basis function (at least in the theory of constructive
approximation).

Zonal kernels. The application of a rotation (i.e., a 3 × 3 ‘orthogonal’ matrix t

with tT = t−1) leads to K(tξ, tη) = K̂((tξ) · (tη)) = K̂(ξ · (tTtη)) = K̂(ξ · η) =
K(ξ, η). In particular, a rotation around the axis ξ ∈ Ω (i.e., tξ = ξ) yields
K(ξ, η) = K(ξ, tη) for all η ∈ Ω. Hence, K(ξ, ·) possesses a rotational symmetry
with respect to the axis ξ. In the theory of special functions of mathematical
physics, a kernel K̂ : Ω × Ω → R satisfying K̂(ξ · η) = K̂(tξ · tη), ξ, η ∈ Ω, for
all orthogonal transformations t is known as a zonal kernel function. To highlight
the reducibility of K̂ to a function defined on the interval [−1, 1], the notation

(ξ, η) �→ K̂(ξ · η), (ξ, η) ∈ Ω× Ω, is used throughout this chapter (see also (6)).

From the theory of spherical harmonics we get a representation of any L2(Ω)-
zonal kernel function K in terms of a Legendre expansion

K(ξ·) =
∞∑

n=0

2n+ 1

4π
K∧(n)Pn(ξ·) (7)
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(in the ‖ · ‖L2(Ω)-sense), where the sequence {K∧(n)}n∈N0 given by

K∧(n) = 2π

∫ 1

−1

K(t)Pn(t) dt (8)

is called the Legendre symbol of the zonal kernel K(ξ·). A simple but extreme
example (with optimal frequency localization and no space localization) is the
Legendre kernel where K∧(n) = 1 for one particular n and K∧(m) = 0 for m �= n,
i.e., the Legendre kernel is given by

Ω× Ω � (ξ, η) �→ 2n+ 1

4π
Pn(ξ · η).

In other words, additive clustering of weighted Legendre kernels generates zonal
kernel functions. It is of importance to distinguish bandlimited kernels (i.e.,
K∧(n) = 0 for all n ≥ N) and non-bandlimited ones, for which infinitely many
numbers K∧(n) do not vanish. Non-bandlimited kernels show a much stronger
space localization than their bandlimited counterparts. Empirically, if K∧(n) ≈
K∧(n + 1) ≈ 1 for many successive large integers n, then the support of the se-
ries (7) in the space domain is small, i.e., the kernel is spacelimited (i.e., in the
jargon of approximation theory ‘locally supported’). This leads to the other ex-
tremal kernel (in contrast to the Legendre kernel) which is the Dirac kernel with
optimal space localization but no frequency localization and K∧(n) = 1 for all n,
where, however, the Dirac kernel does not exist as a classical function in the math-
ematical sense. Nevertheless, it is well known that, if we have a family of kernels
{KJ}J=0,1,... where limJ→∞ K∧

J (n) = 1 for each n and an additional (technical)
condition holds, then KJ ∗ F tends to F in the sense of L2(Ω) for all F ∈ L2(Ω).

Assuming limn→∞ K∧(n) = 0, necessary to get a ‘proper’ function, the slower
the sequence {K∧(n)}n=0,1,... converges to zero, the lower the frequency localiza-
tion, and the higher the space localization. A unified scheme is found in Table 2.
Zonal kernel function theory relies on the following principles:

(i) Weighted Legendre kernels are the summands of zonal kernel functions.
(ii) The Legendre kernel is ideally localized in frequency. The Dirac kernel is

ideally localized in space.
(iii) The only frequency- and spacelimited zonal kernel is the zero function.

Legendre
kernels

zonal kernels

general case

Dirac
kernel

bandlimited spacelimited

Table 2. From Legendre kernels via zonal kernels to the Dirac kernel
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2.3. Slepian functions

As we have seen, ‖F‖2L2(Ω) is the energy of a certain function F ∈ L2(Ω). Suppose

now that there is a particular region C ⊂ Ω, and let us define the ‘local’ energy of
that function as ‖F‖2L2(C). Functions F that are band limited,

F =

N∑
n=0

2n+1∑
k=1

F∧(n, k)Yn,k (9)

cannot also be spacelimited, but they can be spaceconcentrated.

Bandlimited/spaceconcentrated Slepian functions. By maximizing the spatial en-
ergy ratio

λC(F ) =
‖F‖2L2(C)

‖F‖2L2(Ω)

, 0 < λC(F ) < 1, (10)

we obtain bandlimited spherical ‘Slepian functions’ [56, 67, 87], named in analogy
with the prolate spheroidal wave functions of Slepian [90]. They are not, in general,
zonal functions.

The Fourier coefficients of the Slepian functions are the (N + 1)2 orthogonal
eigenvectors of the symmetric concentration matrix whose elements are the limited-
domain inner-product terms 〈Ym,j , Yn,k〉L2(C), 0 ≤ m,n ≤ N , i.e.,

N∑
n=0

2n+1∑
k=1

〈Ym,j , Yn,k〉L2(C) F
∧(n, k) = λC(F )F∧(m, j). (11)

We will give their associated eigenvalues superscripted labels and rank them in

decreasing order of concentration, 1 > λ
(1)
C (F ) ≥ λ

(α)
C (F ) ≥ λ

((N+1)2)
C (F ) > 0. The

bandlimited Slepian functions can alternatively be obtained by solving a Fredholm
integral equation with a ‘Shannon’ concentration kernel:∫

C

N∑
n=0

2n+ 1

4π
Pn(ξ · η)F (η) dω(η) = λC(F )F (ξ), ξ ∈ Ω. (12)

Spacelimited/bandconcentrated Slepian functions. We can define spacelimited
Slepian functions which are bandconcentrated. They are obtained by the restriction
of the bandlimited Slepian functions F to the region of interest C, or, equivalently,
their Fourier coefficients are

N∑
n=0

2n+1∑
k=1

〈Ym,j , Yn,k〉L2(C) F
∧(n, k), (13)

extending the F∧(n, k) to all degrees m = 0, 1, . . . ,∞ and order indices j =
1, . . . , 2m+ 1.
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A central concept is the effective dimension of functions that are ‘essentially’
space- and bandlimited. The Shannon number is the trace of the concentration
operators in (11)–(12), given by (using the addition theoremin 14b–14c),

NC =

(N+1)2∑
α=1

λ
(α)
C (F ) (14a)

=

N∑
n=0

2n+1∑
k=1

〈Yn,k, Yn,k〉L2(C) (14b)

=

∫
C

N∑
n=0

2n+ 1

4π
Pn(η · η) dω(η) (14c)

= (N + 1)2
∫
C dω(η)

4π
. (14d)

The eigenvalue spectrum λ
(α)
C (F ) has a characteristic step-like shape, with the

property
∑(N+1)2

α=1 λ
(α)
C (F ) ≈

∑NC

α=1 λ
(α)
C (F ) revealing that NC will be close to

the number of Slepian functions that usefully contribute to the approximation of
arbitrary target functions on domains C ⊂ Ω.

While computation can be carried out via either (11) or (12), when the region
of interest C is a spherical cap (one whose boundary ∂C is a circle and whose half-
opening angle is Θ), the integral equation (12) commutes with a Sturm–Liouville
differential equation whose spectral-domain representation has an extremely sim-
ple analytical form, rendering the computation of Slepian functions of domains
essentially trivial [51]. In that case, the Slepian functions degenerate to being
the solutions of fixed-order (j) versions of equation (11), with a partial Shannon
number given in terms of products of the associated Legendre functions and their
derivatives (primed), namely

Nj =
(N − j + 1)!

2(N + j)!

∫ 1

cosΘ

[
P ′
N+1,j(t)PN,j(t)− P ′

N,j(t)PN+1,j(t)
]
dt. (15)

Only on circularly symmetric domains and when the spherical-harmonic order
j = 0 are the Slepian functions zonal, and in that case, the fixed-order partial
Shannon number is well approximated by Wieczorek and Simons [104] as

N0 ≈ 2

√
NC

π
≈ (N + 1)

Θ

π
. (16)

Figure 1 shows examples of spherical-cap Slepian functions, their power spectra,
and their eigenvalue spectra.

When the concentration domain is a spherical cap, the best-concentrated
(highest-eigenvalue) bandlimited Slepian function is a zonal function that is close
to optimally localized under the uncertainty principle (see Section 3). All the lower-
eigenvalue zonal Slepian functions, and finally, all the non-zonal Slepian functions,
together form a complete orthonormal basis for the space of functions on the unit
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Figure 1. The four best-concentrated (in decreasing gray shading)
fixed-order (top to bottom, j = 0, 1, 2, 3) Slepian functions and their
power spectra, for a common bandwidth N = 18, with the domain C a
40◦ spherical cap. Also shown are the complete eigenvalue spectra with
the fixed-order (partial) Shannon numbers indicated. Compare to [87]
(their Figs. 5.1, 5.2 and 5.3.).

sphere Ω that are bandlimited to N . The partial Shannon numbers Nj sum to the
full Shannon number NC via

NC =

2N+1∑
j=0

Nj. (17)

2.4. From the scalar to the vector and tensor context

In the second half of the last century, a physically motivated approach for the de-
composition of spherical vector and tensor fields was presented based on a spherical
variant of the Helmholtz theorem, e.g., [6–8, 75]. Following this concept, the tan-
gential part of a spherical vector field is split up into a curl-free and a divergence-
free field by use of two differential operators, viz. the surface gradient and the
surface curl gradient. Of course, an analogous splitting is valid in tensor theory.
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scalar
Legendre → vector

Legendre → tensor
Legendre

↓ ↓ ↓
scalar
zonal → vector

zonal → tensor
zonal

↓ ↓ ↓
scalar
Dirac → vector

Dirac → tensor
Dirac

Table 3. From scalar via vectorial to tensorial kernels

In subsequent publications during the second half of the last century, how-
ever, the vector spherical harmonic theory was usually written in local coordinate
expressions that make mathematical formulations lengthy and hard to read. Ten-
sor spherical harmonic settings were even more difficult to understand. In addition,
when using local coordinates within a global spherical concept, differential geome-
try tells us that there is no representation of vector and tensor spherical harmonics
that is free of singularities. As a consequence, vector and tensor spherical harmon-
ics have suffered from an inadequately complex and inconsistent literature. Absent
coordinate-free explicit formulas, the orthogonal invariance based on specific vec-
tor/tensor extensions of the Legendre polynomials was not worked out suitably in
a unifying scalar/vector/tensor framework, nor was the concept of zonal (kernel)
functions adequately generalized to the spherical vector/tensor case.

All new structures for spherical functions in mathematical (geo)physics were
developed by Freeden and Schreiner [43] and Freeden and Gutting [32]. Two funda-
mental transitions underlie their approach: one from spherical harmonics via zonal
kernel functions to the Dirac kernels, and the other one from scalar to vector and
tensor theory (see Table 3).

Helmholtz decomposition of spherical vector/tensor fields. To explain the tran-
sition from the theory of scalar spherical harmonics to its vectorial and tensorial
extensions, Freeden and Schreiner [43] start from physically motivated dual pairs of
operators (the reference space being always the space of signals with finite energy,
i.e., the space of square-integrable fields). The pair o(i), O(i), i ∈ {1, 2, 3}, origi-
nates in the ingredients of the Helmholtz decomposition of a vector field, while
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o(i,k), O(i,k), i, k ∈ {1, 2, 3}, take the analogous role for the Helmholtz decomposi-
tion of tensor fields (see, e.g., [7, 43, 47]).

For example, in vector theory, o(1)F is the normal field

ξ �→ o
(1)
ξ F (ξ) = F (ξ)ξ, ξ ∈ Ω,

whereas o(2)F is the surface gradient field

ξ �→ o
(2)
ξ F (ξ) = ∇∗

ξF (ξ), ξ ∈ Ω,

and o(3)F is the surface curl gradient field

ξ �→ o
(3)
ξ F (ξ) = L∗

ξF (ξ), L∗
ξ = ξ ∧ ∇∗

ξ , ξ ∈ Ω,

applied to a scalar function F . In addition, O(1)f is the normal component

ξ �→ O
(1)
ξ f(ξ) = f(ξ) · ξ, ξ ∈ Ω,

while O(2)f is the negative surface divergence

ξ �→ O
(2)
ξ f(ξ) = −∇∗

ξ · f(ξ), ξ ∈ Ω,

and O(3)f is the negative surface curl

ξ �→ O
(3)
ξ f(ξ) = −L∗

ξ · f(ξ), ξ ∈ Ω,

taken over a vector-valued function f .
Clearly, the operators o(i,k), O(i,k) are also definable in orientation to the

tensor Helmholtz decomposition theorem (for reasons of simplicity, however, their
explicit description is omitted here). The pairs o(i), O(i) and o(i,k), O(i,k) of dual
operators lead us to an associated palette of Legendre kernel functions, all of them
generated by the classical one-dimensional Legendre polynomial Pn of degree n.
To be more specific, three types of Legendre kernels occur in the vectorial as well
as tensorial context (see Table 4).

The Legendre kernels o(i)Pn and o(i)o(i)Pn pertain to the vector approach
for spherical harmonics, whereas o(i,k)Pn and o(i,k)o(i,k)Pn, i, k = 1, 2, 3, form the
analogues in tensorial theory. Corresponding to each Legendre kernel, we are led
to two variants for representing square-integrable fields by orthogonal (Fourier)
expansion, where the reconstruction – as in the scalar case – is undertaken by
superposition over all frequencies.

In a unified notation, the formalism for vector/tensor spherical harmonic
theory is based on the following principles (cf. [43]):

(i) The vector/tensor spherical harmonics involving the o(i), o(i,k)-operators, re-
spectively, are obtainable as restrictions of three-dimensional homogeneous
harmonic vector/tensor polynomials, respectively.

(ii) The vector/tensor Legendre kernels are obtainable as the outcome of sums
extended over a maximal orthonormal system of vector/tensor spherical har-
monics of degree (frequency) n, respectively.
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Scalar Legendre polynomial:

Pn =
O(i)O(i)p

(i,i)
n

μ
(i)
n

=
O(i,k)O(i,k)P

(i,k)
n

μ
(i,k)
n

application
of o(i)

↓↑ application
of O(i)

application
of o(i,k)

↓↑ application
of O(i,k)

vector Legendre kernel

p(i)n =
o(i)Pn(
μ
(i)
n

)1/2
=

O(i)p
(i,i)
n(

μ
(i)
n

)1/2

tensor Legendre kernel (order 2)

p(i,k)
n =

o(i,k)Pn(
μ
(i,k)
n

)1/2
=

O(i,k)P
(i,k)
n(

μ
(i,k)
n

)1/2

application
of o(i)

↓↑ application
of O(i)

application
of o(i,k)

↓↑ application
of O(i,k)

tensor Legendre kernel (order 2)

p(i,i)
n =

o(i)p
(i)
n(

μ
(i)
n

)1/2
=

o(i)o(i)Pn

μ
(i)
n

tensor Legendre kernel (order 4)

P(i,k,i,k)
n =

o(i,k)p
(i,k)
n(

μ
(i,k)
n

)1/2
=

o(i,k)o(i,k)Pn

μ
(i,k)
n

vectorial context tensorial context

Table 4. Legendre scalar, vectorial, and tensorial kernel functions.

(iii) The vector/tensor Legendre kernels are zonal kernel functions, rotation-invar-
iant (in vector/tensor sense, respectively) with respect to orthogonal trans-
formations (leaving one point of the unit sphere Ω fixed).

(iv) Spherical harmonics of degree (frequency) n form an irreducible subspace of
the reference space of (square-integrable) fields on Ω.

(v) Each Legendre kernel implies an associated Funk–Hecke formula that de-
termines the constituting features of the convolution (filtering) of a square-
integrable field against the Legendre kernel.

(vi) The orthogonal Fourier expansion of a square-integrable field is the sum of
the convolutions of the field against the Legendre kernels being extended over
all frequencies.

To summarize, the theory of spherical harmonics provides us with a frame-
work to unify, review and supplement the different approaches in real scalar, vector,
and tensor theory. The essential tools are the Legendre functions, used in orthog-
onal Fourier expansions and endowed with rotational invariance. The coordinate-
free construction yields a number of formulas and theorems that previously were
derived only in coordinate (e.g., polar) representations. Consequently, any kind
of singularities is avoided at the poles. Finally, our transition from the scalar to
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the vectorial as well as the tensorial case opens new promising perspectives of
constructing important zonal classes of spherical trial functions by summing up
Legendre kernel expressions, thereby providing (geo-)physical relevance and in-
creasing local applicability [43]. Similar considerations apply to the construction
of vector/tensor Slepian functions, e.g., [21, 79].

2.5. From the sphere to the ball

The modeling of structures inside the Earth requires basis functions on the ball
B = {x ∈ R3 : |x| ≤ β} with β > 0. Several approaches for the construction
of such basis systems exist. Of course, from the mathematical point of view, one
could easily take a basis {Bk}k=0,1,... on the Cartesian domain [−β, β] to con-
struct a basis on the cube [−β, β]3 by simply taking the tensor product basis
(x1, x2, x3) �→ Bk1(x1)Bk2 (x2)Bk3(x3), k1, k2, k3 = 0, 1, . . . However, the Earth’s
interior is usually subdivided into structural layers that are approximately bounded
by spheres. In view of this fact, the use of cartesian-coordinate-based trial func-
tions appears to be inappropriate and the spherical harmonics also here play an
essential role.

An intuitive approach is to look for basis functions of the form

Gm,n,k(rξ) = Fm,n(r)Yn,k(ξ), ξ ∈ Ω, r ∈ [0, β],

for m,n = 0, 1, . . . and k = 1, . . . , 2n+ 1. Also here, orthogonality appears to be
useful, which leads to the requirement that∫

B
Gm1,n1,k1(x)Gm2,n2,k2(x) dx

=

∫ β

0

r2Fm1,n1(r)Fm2,n2(r) dr

∫
Ω

Yn1,k1(ξ)Yn2,k2(ξ) dω(ξ)

=

∫ β

0

r2Fm1,n1(r)Fm2,n1(r) dr = 0, (18)

if m1 �= m2 or n1 �= n2 or k1 �= k2. The weight function r2 in the radial integral
in (18) suggests the use of the Jacobi polynomials as building blocks for Fm,n.
However, there is a notable degree of freedom in the choice of (e.g., polynomial)
functions for Fm,n. This degree of freedom can be used to construct the Gm,n,k in a
manner such that they characterize the non-uniqueness of solutions of tomographic
inverse problems in the geosciences or medical imaging. For further details, see
[9, 63, 67, 68, 70, 97] and the contribution by Leweke, Michel, and Telschow (this
book, pp. 883–919). Note that some of the obtained systems become discontinuous
or even singular at the origin 0 ∈ B but in a way such that they are still elements
of L2(B).

The fact that such orthonormal basis functions on the ball arise from the
spherical harmonics as orthonormal basis functions on the sphere yields a way
to formulate analogies regarding the methodologies and the associated properties
– though often further difficulties occur due to the additional radial coordinate.
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Particular analogies exist with respect to the space and ‘frequency’ localization of
kernels

K(x, y) =

∞∑
m,n=0

2n+1∑
k=1

K∧(m,n)Gm,n,k(x)Gm,n,k(y)

=

∞∑
m,n=0

K∧(m,n)Fm,n(|x|)Fm,n(|y|)
2n+ 1

4π
Pn

(
x

|x| ·
y

|y|

)
, (19)

x, y ∈ B \ {0}. It should be noted, however, that most of the choices of Fm,n

do not lead to functions Gm,n,k which are algebraic polynomials in x1, x2, x3.
Nevertheless, the properties of the Jacobi polynomials and the spherical harmonics
imply that the Gm,n,k also show an increasing oscillatory behavior for increasing
m or n. Furthermore, the Dirac kernel can also here be associated to the case
where all coefficients satisfy K∧(m,n) = 1.

One of the advantages of this approach – in contrast to a cartesian setup –
is that the obtained kernels inherit the rotational invariance from the spherical
kernels in the sense that

K(rtξ, stη) =
∞∑
n=0

K∧(m,n)Fm,n(r)Fm,n(s)
2n+ 1

4π
Pn((tξ) · (tη))

= K(rξ, sη)

for all 3× 3-orthogonal matrices (i.e., rotations) t, see Figure 2.

0.5

x

0
-0.5

0.5

y

0 -0.5

0z

-0.5

0.5

20

40

60

80

100

120

(a) Kernel with K∧(m,n) = 0.8m0.9n

0.5

x

0
-0.5

0.5

y

0 -0.5

0z

-0.5

0.5

2

4

6

8

10

12

14

16

(b) Kernel with K∧(m,n) = 0.8m0.7n

Figure 2. The figures show localized trial functions B � y �→
K(x, y) based on a kernel of the kind in (19) with a fixed point
x = (−0.4,−0.1, 0.5)T. The functions are plotted on the sphere with
radius |x|. Each function is a hat function concentrated around x. Its
restriction to a sphere around 0 is a rotationally symmetric function,
as it is known for the case of spherical kernels. Note that the series
representations were truncated at n = m = 400 in the numerical imple-
mentation.
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Moreover, the localization with respect to the radius (or the ‘depth’) can be
separated from the localization with respect to the angular coordinates by taking,
for example, symbols of the form K∧(m,n) = AmBn like K∧(m,n) = hm

r hn
ang

for parameters hr, hang ∈ (0, 1), see Figure 3. This is useful, e.g., for tomographic
problems where it is known that the solution has a finer structure in the angular
domain than in the radial domain (or vice versa).
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Figure 3. The figures show localized trial functions B � y �→
K(x, y) based on a kernel of the kind in (19) with a fixed point
x = (−0.4,−0.1, 0.5)T. The functions are plotted on the planar cross
section with normal vector (1, 1, 1)T. By choosing a symbol K∧(m,n) =
hm
r hn

ang, the localization in radial and in angular domain can be con-
trolled separately. Note that the series representations were truncated
at n = m = 400 in the numerical implementation.
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3. Spherical uncertainty principle

As pointed out in Section 2, four classes of zonal kernel functions can be distin-
guished, namely bandlimited and non-bandlimited, spacelimited and non-space-
limited ones. In addition, Slepian functions exist in bandlimited and spacelimited
varieties. What is the right kernel function for the purpose of local approximation?
Of course, the user of a mathematical method is interested in knowing the trial
system which fits ‘adequately’ to the problem. When several choices are possible
or an optimal choice cannot be found it is necessary to choose the trial systems in
close adaptation to the data extent or density, and the required smoothness of the
field to be approximated. This, however, is often a local property, i.e., the data
density can be high in one area and low in another. In addition, the field to be ap-
proximated can have a high-detail structure in some parts of the sphere (e.g., over
mountainous regions) and a low-detail structure elsewhere (e.g., over the oceans).
This makes the selection of appropriate trial functions even more challenging.

3.1. Derivation and basic theory

An uncertainty principle that specifies the degree of space and frequency localiza-
tion is helpful to serve as a decisive criterion. The essential outcome is a better
understanding of the classification of zonal kernel functions, and Slepian functions,
based on the development of suitable bounds for their quantification with respect
to space and frequency localization.

Localization in space. Assume F is of class L2(Ω) with energy

‖F‖L2(Ω) =

(∫
Ω

(F (η))2 dω(η)

)1/2

= 1.

We associate to F the normal (radial) field η �→ ηF (η) = o
(1)
η F (η), η ∈ Ω. This

function maps L2(Ω) into the associated set of normal fields on Ω. The ‘center of
gravity’ of F is the expectation of the normal operator o(1) on Ω,

go
(1)

F =

∫
Ω

(
o(1)η F (η)

)
F (η) dω(η) =

∫
Ω

η(F (η))2 dω(η) ∈ R3 (20)

thereby interpreting (F (η))2 dω(η) as surface mass distribution over the sphere

Ω embedded in Cartesian space R3. It is clear that go
(1)

F lies in the closed inner

space Ωint of Ω: |go(1)F | ≤ 1. The variance of the operator o(1) is understood in the
canonical sense as the variance in the space domain,(

σo(1)

F

)2

=

∫
Ω

((
o(1)η − go

(1)

F

)
F (η)

)2

dω(η)

=

∫
Ω

(
η − go

(1)

F

)2

(F (η))
2
dω(η) ∈ R. (21)

Observing the identity (η − go
(1)

F )2 = 1 + (go
(1)

F )2 − 2η · go(1)F , η ∈ Ω, it follows

immediately that (σo(1)

F )2 = 1− (go
(1)

F )2. Naturally, 0 ≤ (σo(1)

F )2 ≤ 1.
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Since we are particularly interested in zonal functions, some simplifications
can be made. Let K be of class L2[−1, 1] and ‖K‖L2[−1,1] = 1, where ‖F‖L2[−1,1] =

(2π
∫ 1

−1(F (t))2 dt)1/2 for F ∈ L2[−1, 1]. Then the corresponding center of gravity

can be computed readily as follows (ε3 = (0, 0, 1)T):

go
(1)

K(·ε3) =
∫
Ω

η
(
K

(
η · ε3

))2
dω(η) =

(
2π

∫ 1

−1

t (K(t))
2
dt

)
ε3. (22)

Letting to
(1)

K =
∣∣∣go(1)K(·ε3)

∣∣∣ = 2π
∣∣∣∫ 1

−1
t (K(t))

2
dt
∣∣∣ ∈ R we find for the variance(

σo(1)

K

)2

=

∫
Ω

(
η − go

(1)

K(·ε3)
)2 (

K
(
η · ε3

))2
dω(η)

= 1−
(
to

(1)

K

)2

= 1−
(
go

(1)

K(·ε3)
)2

∈ R. (23)

go
(1)

F

σo(1)

F

ηo
(1)

F

1

C

Figure 4. Localization in a spherical cap.

Figure 4 gives a geometric interpretation of go
(1)

F and σo(1)

F . We associate

to go
(1)

F , go
(1)

F �= 0, and its projection ηo
(1)

F onto the sphere Ω the spherical cap

C = {η ∈ Ω | 1 − η · ηo(1)F ≤ 1 − |go(1)F |}. Then the boundary ∂C is a circle with

radius σo(1)

F . Thinking of a zonal function F as a ‘spherical window function’ on

Ω, the window is determined by C, and its width is given by σo(1)

F .

Localization in frequency (‘momentum space’). The ‘expectation in the frequency
domain’ is introduced as the expectation of the surface curl operator o(3) on Ω.
Then, for F ∈ H(2l)(Ω), l ∈ N, i.e., for all F ∈ L2(Ω) such that there exists a
function G ∈ L2(Ω) with G∧(n, k) = (−n(n + 1))lF∧(n, k) for all n = 0, 1, . . .;
k = 1, . . . , 2n+ 1, we have

go
(3)

F =

∫
Ω

(
o(3)η F (η)

)
F (η) dω(η) = 0 ∈ R3. (24)
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operator expectation value

space o(1) go
(1)

F =

∫
Ω

(
o(1)η F (η)

)
F (η) dω(η)

frequency o(3) go
(3)

F =

∫
Ω

(
o(3)η F (η)

)
F (η) dω(η)

operator variance

space o(1)
(
σo(1)

F

)2

=

∫
Ω

((
o(1)η − go

(1)

F

)
F (η)

)2

dω(η)

frequency o(3)
(
σo(3)

F

)2

=

∫
Ω

((
o(3)η − go

(3)

F

)
F (η)

)2

dω(η)

Table 5. Localization in terms of the normal and curl operators o(1)

and o(3).

Correspondingly, the variance in the frequency domain is given by(
σo(3)

F

)2

=

∫
Ω

((
o(3)η − go

(3)

F

)
F (η)

)2

dω(η) ∈ R. (25)

The surface theorem of Stokes shows us that(
σo(3)

F

)2

=

∫
Ω

(
o(3)η F (η)

)
·
(
o(3)η F (η)

)
dω(η)

=

∫
Ω

(
−Δ∗

ηF (η)
)
F (η) dω(η) = g−Δ∗

F . (26)

Expressed in terms of spherical harmonics we get via the Parseval identity

(
σo(3)

F

)2

=

∞∑
n=0

2n+1∑
k=1

n(n+ 1) (F∧(n, k))2 . (27)

Note that we require ‖F‖2L2(Ω) =
∑∞

n=0

∑2n+1
k=1 (F∧(n, k))2 = 1. The meaning of

σo(3)

F as measure of ‘frequency localization’ is as follows: the range of σo(3)

F is the

interval [0,∞]; a large value of σo(3)

F occurs if many Fourier coefficients contribute

to σo(3)

F . In conclusion, relating any spherical harmonic to a ‘single wavelength’, a

large value σo(3)

F informs us that F is spread out widely in ‘frequency domain’. In

contrast, a small value σo(3)

F indicates that only a few number of Fourier coefficients
is significant (see Table 5).
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Again we reformulate our quantities in the specific context of zonal functions.
Let K(·ε3) be of class H(2)(Ω) satisfying ‖K(·ε3)‖L2(Ω) = 1, then(

σo(3)

K(·ε3)
)2

= −
∫
Ω

Δ∗
ηK

(
η · ε3

)
K

(
η · ε3

)
dω(η)

= −2π

∫ 1

−1

K(t)LtK(t) dt (28)

where Lt denotes the Legendre operator as given by Lt =
d
dt (1− t2) d

dt .

Uncertainties and the uncertainty principle. The square roots of the variances, i.e.,

σo(1) and σo(3) , are called the uncertainties in o(1) and o(3), respectively. For these

quantities we get (see [43, 76]) an estimate given by (σo(1)

F )2(σo(3)

F )2 ≥ |go(1)F |2. We
summarize our results in Theorem 1. For details on the proof the reader is referred
to [29].

Theorem 1. Let F ∈ H(2)(Ω) satisfy ‖F‖L2(Ω) = 1. Then(
σo(1)

F

)2 (
σo(3)

F

)2

≥
∣∣∣go(1)F

∣∣∣2 . (29)

If go
(1)

F is non-vanishing, then

Δo(1)

F Δo(3)

F ≥ 1, (30)

where we have used the abbreviations

Δo(1)

F =
σo(1)

F∣∣∣go(1)F

∣∣∣ , Δo(3)

F = σo(3)

F . (31)

The uncertainty relation measures the tradeoff between ‘space localization’
and ‘frequency localization’ (‘spread in frequency’). It states that sharp localization
in space and frequency are mutually exclusive.

An immediate consequence of Theorem 1 is its reformulation for zonal func-
tions K(ε3·) : η �→ K(ε3 · η), η ∈ Ω.

Corollary 2. Let K(ε3·) ∈ H(2)(Ω) satisfy ‖K‖L2[−1,1] = 1. If to
(1)

K is non-vanishing,
then

Δo(1)

K Δo(3)

K ≥ 1, (32)

where

Δo(1)

K =
σo(1)

K

to
(1)

K

, Δo(3)

K = σo(3)

K . (33)

The interpretation of (σo(3)

K )2 as variance in ‘total angular momentum’ helped
us to prove Theorem 1. However, this interpretation shows two essential drawbacks:
first, the expectation of the surface curl gradient is a vector which seems to be
inadequate in ‘momentum localization’ in terms of scalar spherical harmonics,

and secondly the value of go
(3)

F vanishes for all candidates F . This means that the
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‘center of gravity of the spherical window’ in ‘momentum domain’ is independent
of the function F under consideration. Therefore, we are finally interested in the
variance of the operator −Δ∗(

σ−Δ∗
F

)2

=

∫
Ω

∣∣∣((−Δ∗
η

)
− g−Δ∗

F

)
F (η)

∣∣∣2 dω(η) (34)

which is a measure for the ‘spread in momentum’. Now the corresponding expec-

tation value g−Δ∗
F is scalar-valued and non-vanishing. It can be easily seen that(

σ−Δ∗
F

)2

= g
(−Δ∗)2

F −
(
g−Δ∗
F

)2

. (35)

In connection with Theorem 1 this leads to the following result.

Theorem 3. Let F be of class H(4)(Ω) such that ‖F‖L2(Ω) = 1. Then

(
σo(1)

F

)2 (
σ−Δ∗
F

)2

≥
∣∣∣go(1)F

∣∣∣ g
(−Δ∗)2

F −
(
g−Δ∗
F

)2

g−Δ∗
F

(36)

provided that g−Δ∗
F �= 0. If the right-hand side of (36) is non-vanishing, then

Δo(1)

F Δ−Δ∗
F ≥ 1, (37)

where

Δ−Δ∗
F =

⎛⎜⎜⎝
(
σ−Δ∗
F

)2

g
(−Δ∗)2

F −(g−Δ∗
F )

2

g−Δ∗
F

⎞⎟⎟⎠
1/2

=
(
g−Δ∗
F

)1/2

= Δo(3)

F . (38)

3.2. Classification of examples

We continue with some examples of particular interest for geoscientific research.

Localization of the spherical harmonics. We know that∫
Ω

(Yn,k(ξ))
2 dω(ξ) = 1 . (39)

One can prove that

go
(1)

Yn,k
= 0, σo(1)

Yn,k
= 1. (40)

Moreover, we have

g−Δ∗
Yn,k

= n(n+ 1), σ−Δ∗
Yn,k

= 0. (41)

In other words, spherical harmonics show an ideal frequency localization, but no
space localization (see Figure 5 for an illustration of space and frequency localiza-
tion for the Legendre polynomials).



774 W. Freeden, V. Michel, and F.J. Simons

    
−1

−0.5

0

0.5

1

− − /2 0 /2
 

 

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Figure 5. The Legendre kernel Pn for n = 2, 5, 9, space representation
for ϑ �→ Pn(cos(ϑ)) (left), and frequency representation m �→ (Pn)

∧(m)
(right).

Localization of the ideally bandlimited Legendre kernel. We have, with P ∗
n =√

2n+1
4π Pn, ∫

Ω

(P ∗
n (ξ · ζ))2 dω(ζ) = 1 (42)

for all ξ ∈ Ω, such that

go
(1)

P∗
n(ξ·) = 0, σo(1)

P∗
n(ξ·) = 1, (43)

g−Δ∗
P∗

n(ξ·) = n(n+ 1), σ−Δ∗
P∗

n(ξ·) = 0. (44)

Localization of the bandlimited Shannon kernel. The Shannon kernel Φρ, ρ > 0,
given by

Φρ(ξ · η) =
∑

n≤ρ−1

2n+ 1

4π
Pn(ξ · η), ξ, η ∈ Ω, (45)

may be interpreted as a truncated Dirac kernel. It is not surprising that the Shan-
non kernel as a ‘finite polynomial kernel’ shows strong oscillations in space. This
is the price to be paid for the sharp separation in frequency space.

The investigation of the uncertainty properties of the Shannon kernel starts
from (cf. [43])

‖Φρ‖2L2(Ω) =

�ρ−1�∑
n=0

2n+ 1

4π
=

1

4π

(
(*ρ−1++ 1) + *ρ−1+*ρ−1 + 1+

)
, (46)

where, as usual, *ρ−1+ is the largest integer which is less or equal ρ−1. Observing
this result, we introduce the normalized Shannon kernel by

Φ̃ρ =
1

‖Φρ‖L2(Ω)
Φρ. (47)
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Figure 6. The Shannon scaling function Φρ for ρ = 1/16, 1/8, 1/4.
Space representation ϑ �→ Φρ(cos(ϑ)) (left) and frequency representa-
tion n �→ (Φρ)

∧(n) (right).

Its localization in space satisfies

(
σo(1)

Φ̃ρ

)2

= 1− 1

‖Φρ‖2

⎛⎝�ρ−1−1�∑
n=1

2n+ 2

4π

⎞⎠2

= 1−
(
2*ρ−1 − 1++ *ρ−1+*ρ−1 − 1+
*ρ−1 + 1++ *ρ−1+*ρ−1 + 1+

)2

, (48)

so that

Δo(1)

Φ̃ρ
=

√√√√√1−
(

2�ρ−1−1�+�ρ−1��ρ−1−1�
�ρ−1+1�+�ρ−1��ρ−1+1�

)2

2�ρ−1−1�+�ρ−1��ρ−1−1�
�ρ−1+1�+�ρ−1��ρ−1+1�

. (49)

Moreover, we find(
σo(3)

Φ̃ρ

)2

=
4π

*ρ−1++ 1 + *ρ−1+*ρ−1 + 1+

�ρ−1�∑
n=0

2n+ 1

4π
n(n+ 1)

=
1

2

*ρ−1+(1 + *ρ−1+)2(2 + *ρ−1+)
*ρ−1++ 1 + *ρ−1+*ρ−1 + 1+ (50)

such that

Δo(3)

Φ̃ρ
=

√
1

2

*ρ−1+(1 + *ρ−1+)2(2 + *ρ−1+)
*ρ−1++ 1 + *ρ−1+*ρ−1 + 1+ . (51)

The results are graphically illustrated in Figure 7.

Localization of the non-bandlimited/non-spacelimited Abel–Poisson kernel. Let
us consider the function Qh : [−1, 1] → R, h < 1, given by

Qh(t) =
1

4π

1− h2

(1 + h2 − 2ht)3/2
=

∞∑
n=0

2n+ 1

4π
hnPn(t). (52)
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Figure 7. Uncertainty classification of the normalized Shannon Dirac

family Φ̃ρ. Shown are Δo(1)

Φ̃ρ
, Δo(3)

Φ̃ρ
, and the product Δo(1)

Φ̃ρ
Δo(3)

Φ̃ρ
as func-

tions of ρ in a double logarithmic setting.

An easy calculation gives us

‖Qh‖L2[−1,1] = (Qh2(1))
1/2

=

(
1 + h2

4π

)1/2
1

1− h2
. (53)

Furthermore, for Q̃h(t) = ‖Qh‖−1
L2[−1,1] Qh(t), t ∈ [−1, 1], we obtain after an

elementary calculation (see also Figure 8)

Δo(1)

Q̃h
=

1− h2

2h
, Δ−Δ∗

Q̃h
=

√
6h

1− h2
. (54)

Thus, we finally obtain

Δo(1)

Q̃h
Δ−Δ∗

Q̃h
=

√
6

2
=

√
3

2
> 1. (55)

Here, the value Δo(1)

Q̃h
Δ−Δ∗

Q̃h
is independent of h. All intermediate cases of ‘space-

frequency localization’ are realized by the Abel–Poisson kernel, but the Abel–
Poisson kernel does not satisfy a minimum uncertainty state.

Localization of the spacelimited Haar kernel. Let k be a non-negative integer, i.e.,

k ∈ N0. The (smoothed) Haar kernel {B(k)
h }h∈(0,1) ⊂ C(k−1)[−1, 1] is defined by

B
(k)
h (t) =

⎧⎨⎩
0 , t ∈ [−1, h)
(t− h)k

(1 − h)k
, t ∈ [h, 1].

(56)

By definition, B
(k)
h is non-negative and has the support [h, 1]. Obviously, the func-

tion B
(0)
h , h ∈ (−1, 1), represents the (classical) Haar function (cf. [53]). The
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Figure 9. The Haar kernelB
(0)
h for h = 0.3, 0.7, 0.9. Space representa-

tion ϑ �→ B
(0)
h (cos(ϑ)), ϑ ∈ [−π, π], (left) and frequency representation

n �→ (B
(0)
h )∧(n) (right).

Legendre coefficients of B
(k)
h , h ∈ (−1, 1), k ∈ N0, can be calculated recursively

(cf. [47]):(
B

(k)
h

)∧
(0) = 2π

1− h

k + 1
�= 0, (57)(

B
(k)
h

)∧
(1) = 2π

1− h

k + 1

(
1− 1− h

k + 2

)
, (58)(

B
(k)
h

)∧
(n+ 1) =

2n+ 1

n+ k + 2
h
(
B

(k)
h

)∧
(n) +

k + 1− n

n+ k + 2

(
B

(k)
h

)∧
(n− 1). (59)

An elementary calculation shows∥∥∥B(k)
h

∥∥∥2
L2(Ω)

= 2π

∫ 1

−1

[
B

(k)
h (t)

]2
dt

= 2π
1− h

2k + 1
. (60)



778 W. Freeden, V. Michel, and F.J. Simons

We define the kernel

B̃
(k)
h =

√
2k + 1

2π(1− h)
B

(k)
h , (61)

since the uncertainty properties are normally defined for kernels with norm one.
We find

go
(1)

B̃
(k)
h ( ·ε3) = 2π

∫ 1

−1

t
(
B̃

(k)
h (t)

)2

dt ε3 =
1 + h+ 2k

2 + 2k
ε3. (62)

Consequently,(
σo(1)

B̃
(k)
h

)2

= 1−
(
1 + h+ 2k

2 + 2k

)2

=
(1− h)(h+ 4k + 3)

(2k + 2)2
. (63)

Using (31), we finally arrive at

Δo(1)

B̃
(k)
h

=
1

1 + h+ 2k

√
(1 − h)(h+ 4k + 3). (64)

For the localization in frequency, we assume k ≥ 2. We have(
σo(3)

B̃
(k)
h ( ·ε3)

)2

= −2π

∫ 1

−1

B̃
(k)
h (t) LtB̃

(k)
h (t) dt

=
2k + 1

2π(1 − h)

−2π

(1− h)2k

∫ 1

h

(t− h)kLt(t− h)k dt

=
k(h+ 2k)

(1 − h)(2k − 1)
, (65)

so that

Δo(3)

B̃
(k)
h

=

√
k(h+ 2k)

(1 − h)(2k − 1)
. (66)

The application of Lt requires that the kernel is twice differentiable. However,
using integration by parts, the results immediately carry over to the case k = 1.
Figure 10 gives a graphical impression of these results for the particular cases
k = 1 and k = 3.

Localization of the ideally spacelimited Dirac kernel. Letting h formally tend to
1 in the results provided by the uncertainty principle for the Abel–Poisson kernel
function we are able to interpret the localization properties of the Dirac kernel on
Ω satisfying δ∧(n) = 1 for all n ∈ N0:

δ(ξ · η) =
∞∑

n=0

2n+ 1

4π
Pn(ξ · η), ξ, η ∈ Ω, (67)

where the convergence is understood in distributional sense. As a matter of fact,
letting h tend to 1 shows us that the variances in the space domain take the con-
stant value 0. On the other hand, the variances in the frequency domain converge
to ∞. Hence, the Dirac kernel shows ideal space localization, but no frequency
localization.
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Figure 10. Uncertainty classification of the normalized smoothed Haar

scaling function B̃
(k)
h (k = 1, left; k = 3 right). Δo(1)

B̃
(k)
h

, Δo(3)

B̃
(k)
h

and the

product Δo(1)

B̃
(k)
h

Δo(3)

B̃
(k)
h

are shown as functions of h.

Localization of the non-bandlimited/non-spacelimited Gaussian function.
The minimum uncertainty state within the uncertainty relation is provided by
the Gaussian probability density function (see [47, 59]). Consider the function Gλ

given by

Gλ(t) = e−(λ/2)(1−t), t ∈ [−1, 1], λ > 0. (68)

An elementary calculation shows us that

G̃λ(t) = γ(λ)e−(λ/2)(1−t), (69)

with

γ(λ) =
(
1/

√
4π

)(
1

2λ

(
1− e−2λ

))−1/2

, (70)

satisfies ‖G̃λ‖L2[−1,1] = 1. It is not difficult to deduce that Δo(1)

G̃λ
Δ−Δ∗

G̃λ
→ 1 as

λ → ∞: the best value of the uncertainty principle (Theorem 3) is 1.

Localization of Slepian functions. The bandlimited Slepian functions solve the
concentration criterion (10) on general domains C ⊂ Ω. If we restrict our attention
to spherical caps as in Figures 1 and 4, the solutions degenerate and equations (11)
and (12) can be solved for fixed spherical-harmonic orders j, with twice-repeated
eigenvalues for the nonzonal functions at the same nonzero absolute orders.

While the Slepian functions do not formally optimize the uncertainty rela-
tion (38), calculations by Wieczorek and Simons [104] reveal that, again on spher-
ical caps C of various opening half-angles Θ, the values attained by the largest-

eigenvalue (λ
(α)
C ≈ 1 for α = 1) zonal Slepian functions of varying bandwidths N

are very close to satisfying the bounds (38) for Shannon numbers N0 = (N+1)Θ/π
(see (16)) greater than about 2. Furthermore, for increasing Shannon numbers,
the uncertainty products for the αth best-concentrated Slepian function, when
N0 ≥ α+ 1, tend to 2α− 1. This favorable behavior was illustrated by Wieczorek
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and Simons [104], see their Figures 5 and 6b. Subsequent work by, among others,
Guilloux et al. [52] and Khalid et al. [57], has substantiated and elaborated on
these early analyses.

Slepian functions vs. the Gaussian. Another way by which the spatiospectral lo-
calization properties of the Slepian functions may be appreciated is by comparing
how close they are to the family of minimum-uncertainty ‘squeezed’ coherent states
(e.g., [15, 58]), a common root for many later developments in spline, Slepian func-
tion, and wavelet analysis [20]. This is of importance because in practical problems
in the geosciences (e.g., [17, 84]), as in cosmology (e.g., [94]), we place as much
value on the precise bandwidth, or bandwidth resolution, of our observations as
on the spatial domain of interest. The Gaussian (68) may satisfy the uncertainty
lower bound exactly, but it is not a bandlimited kernel. In contrast, the Slepian
functions (11–12) can be bandlimited and spaceconcentrated at the same time.
Formally, they are the optimizers of (10), though not of (38).

That they get close is shown in Figure 11. Inspired by Bluhm et al. [14] we
determine the squeeze factor, s that renders the suitably normalized function

Gs(cos θ) = γ(s)es cos θ, 0 ≤ θ ≤ π, (71)

as close as possible, in the mean-squared sense, to the best-concentrated bandlim-
ited zonal Slepian function, concentrated to a spherical cap of a certain radius Θ,
and whereby the tradeoff between spatial (the area of the spherical cap) and spec-
tral concentration (the bandwidth N) is parameterized via the partial Shannon
number N0 = (N + 1)Θ/π.

3.3. Closing remarks

The uncertainty principle represents a trade-off between two ‘spreads’, in position
and in frequency. Sharp localization in space and in frequency are mutually exclu-
sive. The reason for the validity of the uncertainty relation (Theorem 1) is that
the normal and curl operators o(1) and o(3) do not commute, hence, they cannot
be sharply defined simultaneously. Extremal members of the uncertainty relation
are polynomials (spherical harmonics) and Dirac function(al)s. An asymptotically
optimal kernel is the Gaussian function.

Corollary 2 allows a quantitative classification and a hierarchy of the space
and frequency localization properties of kernel functions of the form

K(t) =
∞∑

n=0

2n+ 1

4π
K∧(n)Pn(t), t = ξ · η, (ξ, η) ∈ Ω× Ω. (72)

In view of their space/frequency localization, it is also important to distinguish
bandlimited kernels (i.e., K∧(n) = 0 for all n ≥ N ∈ N0) and non-bandlimited
ones (K∧(n) �= 0 for an infinite number of integers n). Non-bandlimited kernels
show a much stronger space localization than their bandlimited counterparts. It is
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ber N0.

not difficult to prove that, if K ∈ L2[−1, 1] with ‖K(ξ· )‖L2(Ω) = 1,(
σo(1)

K(ξ· )

)2

= 1−
( ∞∑

n=1

2n+ 1

4π
K∧(n)K∧(n+ 1)

)2

. (73)

If K∧(n) ≈ K∧(n + 1) ≈ 1 for many successive integers n, the space-domain
support of K(t) in (72) is small.

Space/frequency localization on the sphere can also be illustrated directly
from (72). Choosing K∧(n) = δnk we obtain a Legendre kernel of degree k, on
the left in our scheme (Table 6). Setting K∧(n) = 1 for n = 0, 1, . . ., we obtain
the Dirac kernel. The slower the sequence {K∧(n)}n=0,1,... converges to zero, the
lower the frequency localization, but the higher the space localization.

Altogether, Table 6 gives a qualitative illustration of the consequences of the
uncertainty principle in the theory of zonal kernel functions on the sphere: on the
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space localization
� �
no space localization ideal space localization

frequency localization
� �
ideal frequency localization no frequency localization

kernel type
� �
Legendre kernel bandlimited spacelimited Dirac kernel

Table 6. The uncertainty principle and its consequences.

left end of this scheme, we have the Legendre kernels with their ideal frequency
(momentum) localization. However, they show no space localization, as they are of
polynomial nature. Thus, the present standard way in applications of increasing the
accuracy in spherical harmonic (Fourier) expansions is to increase the maximum
degree of the spherical harmonics expansions under consideration. On the right
end of the scheme, there is the Dirac kernel which maps a function to its value at
a certain point. Hence, this (generalized) function has an ideal space localization
but no frequency localization. Consequently, it can be used in a finite pointset
approximation.

4. Constructive approximation on the sphere

In Section 4.1, we discuss an approach using Slepian functions, Section 4.2 is an
approach based on splines, and Section 4.3 treats the case of wavelets. Section 4.4
helps combine benefits of various approaches.

4.1. Approximation by Slepian functions

Given a certain region of interest C on the unit sphere Ω and a certain band-
width N (a limiting spherical-harmonic degree in the sense of (9)), optimization
of a concentration criterion yields linear combinations of spherical harmonics that
we call Slepian functions. In Section 2.3, we gave their formulation in terms of
bandlimited functions that are spaceconcentrated. We shall denote these functions
from now on as GC

N (ξ). Of course, we can equally well ask for spacelimited func-
tions that are bandconcentrated – see [84, 87] for details. We shall denote those
functions from now on as HN

C (ξ). The Fourier coefficients of the HN
C can be calcu-

lated from those of the GC
N by extension as in (13). We refer to [60] for an extensive

discussion on the properties of what are, essentially, cases intermediate between
these two endmembers, for functions defined on the real line.
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If we introduce the space of all square-integrable scalar spherical functions
that are spacelimited to the region C as SC , and the space of all square-integrable
spherical functions that are bandlimited to the spherical-harmonic degree N as
SN , then it is implied that HN

C ∈ SC and GC
N ∈ SN .

Reproducing properties. We can show that the spectral-domain kernel that we
first encountered in bandlimited form in (11), and which we now extend to 0 ≤
m,n < ∞,

dC(m,j),(n,k) = 〈Ym,j , Yn,k〉L2(C) =

∫
C

Ym,j(ξ)Yn,k(ξ) dω(ξ), (74)

is a reproducing kernel in the space SC . Indeed, for any function F ∈ SC ,

∞∑
n=0

2n+1∑
k=1

dC(m,j),(n,k)F
∧(n, k) =

∫
C

Ym,j(ξ)

( ∞∑
n=0

2n+1∑
k=1

Yn,k(ξ)F
∧(n, k)

)
dω(ξ)

=

∫
C

Ym,j(ξ)F (ξ) dω(ξ)

= F∧(m, j). (75)

At the same time, the spatial-domain Shannon kernel that we encountered in (12),
and which we rebaptize

DN (ξ, η) =

N∑
n=0

2n+ 1

4π
Pn(ξ · η) =

N∑
n=0

2n+1∑
k=1

Yn,k(ξ)Yn,k(η), (76)

is a reproducing kernel in the space SN , since, for any function F ∈ SN ,∫
Ω

N∑
n=0

2n+ 1

4π
Pn(ξ · η)F (η) dω(η)

=

N∑
n=0

2n+1∑
k=1

Yn,k(ξ)

∫
Ω

Yn,k(η)F (η) dω(η)

=

N∑
n=0

2n+1∑
k=1

Yn,k(ξ)F
∧(n, k)

= F (ξ). (77)

Equations (75) and (77) hold the key to the approximation properties of the
Slepian functions, since they imply that the spacelimited Slepian functions HN

C

provide a complete basis for all spacelimited functions in SC ⊂ L2(Ω), whereas
the bandlimited Slepian functions GC

N are a complete basis for all bandlimited
functions in SN ⊂ L2(Ω).
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Mercer’s theorem. A second set of properties that solidifies these notions is es-
tablished through an identity known as Mercer’s theorem, which in this context
takes the form

DN (ξ, η) =

(N+1)2∑
α=1

(
GC

N

)
α
(ξ)

(
GC

N

)
α
(η), (78)

for all the α-indexed bandlimited Slepian functions GC
N , with eigenvalues λ

(α)
C ,

from which we establish, using (76) and as in (14d), that

DN (ξ, ξ) =

(N+1)2∑
α=1

(
GC

N

)2
α
(ξ) =

(N + 1)2

4π
=

NC∫
C dω(η)

, (79)

recovering the spherical Shannon number NC and the area of the domain of inter-
est,

∫
C dω(η).
A useful corollary is that the eigenvalue-weighted sum of squares of the band-

limited Slepian eigenfunctions closely approximates the value NC/
∫
C
dω(η) when

ξ ∈ C, and vanishes otherwise,

(N+1)2∑
α=1

λ
(α)
C

(
GC

N

)2
α
≈

NC∑
α=1

λ
(α)
C

(
GC

N

)2
α
≈

{
NC/

∫
C
dω(η) if ξ ∈ C

0 otherwise,

which is a consequence of the step-shaped eigenvalue spectrum that we saw in
Figure 1. Eq. (80) testifies to the fact that the effective dimension of the space
SN of bandlimited functions that are also spaceconcentrated to C, is reduced
from the canonical (N +1)2 to the Shannon number NC . It is our first clue to the
approximation qualities of the Slepian functions, e.g., for (linear) signal estimation
from regionally available data [85].

Power spectrum. If we furthermore define the power spectrum or degree variance
of the bandlimited Slepian functions as

P(α)
n =

1

2n+ 1

2n+1∑
k=1

∣∣∣(GC
N

)∧
α
(n, k)

∣∣∣2 (80)

we get, via the spectral theorem, equation (74), and the addition theorem a
spectral-domain equation equivalent to (79)–(80), namely,

(N+1)2∑
α=1

λ
(α)
C P(α)

n =
1

2n+ 1

2n+1∑
k=1

dC(n,k),(n,k) =

∫
C

dω(η)

4π

≈
NC∑
α=1

λ
(α)
C P(α)

n , (81)

which is suggestive of the spectral -domain approximation properties of the Slepian
functions, as arises, e.g., in the theory of (quadratic) power-spectral estimation
from regionally available data [17].
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Equations (80) and (81) together, show that the set of NC < (N + 1)2

Slepian functions provide essentially uniform coverage over the spatial domain C
and spectral bandwidth N . This is of interest when estimating (interpolating,
approximating) functions from observations, as is common to a large number of
research fields, not limited to the geosciences.

Alternative Mercer theorem. We note for completeness, and since the relevant
identities have not been published before, that an alternative version of Mercer’s
theoremwould have transformed (12) and (76) from∫

C

DN (ξ, η)F (η) dω(η) = λC(F )F (ξ) (82)

into the full-domain ∫
Ω

DN (ξ, η)F (η) dω(η) = λC(F )F (ξ), (83)

which have the same eigenfunctions, but where we have defined

DN (ξ, η) =

N∑
m=0

2m+1∑
j=1

N∑
n=0

2n+1∑
k=1

dC(m,j),(n,k)Ym,j(ξ)Yn,k(η). (84)

In that case, the equivalent to (78) is the to some more familiar expression

DN (ξ, η) =

(N+1)2∑
α=1

λ
(α)
C

(
GC

N

)
α
(ξ)

(
GC

N

)
α
(η). (85)

Approximation 0: Noiseless data (interpolation). Imagine a certain function is
‘known’ as a spherical-harmonic expansion. Clearly, considering such a situation
is merely postponing the problem of how to estimate an unknown function from
observations. However, it is a common occurrence in the geosciences that, for
example, space agencies perform exhaustive satellite data reductions that end up in
the official release of spherical harmonic ‘models’ (typically of gravity or magnetic
fields) that are then available for further research [103]. Another situation is where
spectral forward-modeling codes deliver ‘simulations’ that are subsequently in need
of interpretation and evaluation [102].

Whatever the source, and however large the bandlimit, the key property
of the Slepian function basis is that the function expansion coefficients can be
obtained by a simple transformation. If indeed the known function is F , then
it is immaterial whether it is expressed in the spherical-harmonic basis, or in a
bandlimited Slepian basis designed for whichever region C of interest, as long as
its bandwidth N matches the original :

F =

N∑
n=0

2n+1∑
k=1

F∧(n, k)Yn,k =

(N+1)2∑
α=1

F∧(α)
(
GC

N

)
α
. (86)

The Slepian-function expansion coefficients F∧(α), α = 1, . . . , (N + 1)2 are
simply obtained from the spherical-harmonic expansion coefficients F∧(n, k),
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n = 0, 1, . . . , N and order indices k = 1, . . . , 2n + 1, by the (orthogonal) trans-
formation [85]

F∧(α) =
N∑

n=0

2n+1∑
k=1

(
GC

N

)∧
α
(n, k)F∧(n, k). (87)

A linear basis transformation (87) is exact and thus, strictly speaking ‘uninterest-
ing’. However, the properties of the Slepian functions designed for a region C are
such that after a partial Slepian expansion to J < (N +1)2 terms, denoted FJ (ξ),
equation (86) will hold approximately in the region of interest:

F (ξ) =

N∑
n=0

2n+1∑
k=1

F∧(n, k)Yn,k(ξ) ≈
J∑

α=1

F∧(α)
(
GC

N

)
α
(ξ), ξ ∈ C. (88)

Clearly, a truncation of the spherical-harmonic series to its first J terms, however
ordered, would generally result in poor approximations, precisely because of the
non-localized spatial behavior of the basis functions. The eigenvalue-ranked Slepian
transformation (87), on the other hand, has reordered the basis such that its
first J functions increasingly uniformly ‘cover’ the spatial region of interest while
providing an increasingly complete coverage over the entire spectral band, see (80)
and (81). As a measure of approximation quality we take the area-weighted relative
mean-squared error. It can be easily shown to depend on the truncation level in
the manner

‖F − FJ‖2L2(C)

‖F‖2L2(C)

=

(N+1)2∑
α>J

(F∧(α))2 λ(α)
C

(N+1)2∑
α=0

(F∧(α))2 λ(α)
C

. (89)

Given the universally favorable decay of the eigenvalue spectrum of the spatio-
spectral concentration problem (11), in this noiseless case, the Shannon numberNC

is an obvious practical first choice for the truncation level J , although (89) of course
shows the role played by the spectrum of the signal itself. An illustrative numerical
example is given by Simons et al. [88], their Figure 3.

Approximation 1: Noisy data. We finally turn to the approximation problem that
is most familiar in geophysical inverse theory, namely that of the estimation of
a certain unknown signal from noisily observed data. We will briefly discuss the
traditional spherical-harmonics based approach, and then clarify the beneficial role
that localized basis functions (here: Slepian functions) may play in this context. We
adhere to the continuous viewpoint for notational convenience and to lay bare the
structure of the solutions. In practice, all datasets will be sample values at discrete
geographic locations. As a consequence, the properties derived for constructive
approximation by Slepian functions will themselves hold only approximately – to
the degree by which continuous integrals are (hopefully, well) approximated by
their Riemann sums [17, 84].



Spherical Harmonics Based Special Function Systems 787

However, therein lies the crux of the Slepian-function method: if the data
are regionally (in some region C) and densely (warranting a certain ‘Nyquist’
bandlimit at spherical-harmonic degree N) available, computing the Slepian basis
for the idealized acquisition geometry ahead of time is what will lead to man-
ageably sized inverse problems (on the order of the Shannon number NC , and
NC , (N +1)2 when |C| , |Ω|) that solve for the unknown signal from which we
assume the data to have been sampled.

Such a viewpoint, in a sense, embodies a strict geographical prior, and is very
different from the splines and wavelets that will be discussed in the remaining
Sections 4.2 and 4.3. Indeed, in contrast to Slepian functions, splines and wavelets
made from zonal kernel functions do not strictly select for particular regions of
interest, although of course, when particular combinations of any of those con-
structions are sought by optimization, as they are in Section 4.4, effectively, they
do. Simons et al. [89] discuss a hybrid situation termed ‘Slepian trees’, as well as
an alternative spherical wavelet transform obtained via a simple ‘cubed-sphere’
mapping of the ‘usual’ separable Cartesian discrete wavelet transforms [20].

The most detailed and up-to-date discussion of approximation by Slepian
functions (both scalar and vector-valued, and for geomathematics problems in-
volving measurements made by satellites at altitude) is found in the works by
Simons and Plattner [80, 81, 86]. From these references, we retain and present a
few essential points.

Suppose that we have ‘data’, M , consisting of a superposition of ‘signal’, F ,
and ‘noise’, E. What is F? The measurements are only available over some closed
region C of the unit sphere Ω, i.e.,

M(ξ) =

{
F (ξ) + E(ξ) if ξ ∈ C
unknown/undesired if ξ ∈ Ω \ C. (90)

We assume that both signal and noise can be represented via an infinite spherical
harmonic expansion as in (4), and we furthermore assume that they are uncor-
related realizations of zero-mean Gaussian random processes. Paying no heed to
the structure of the noise (i.e., without explicit prior information that could be
weighted into the norms in the form of a noise covariance) we elect to seek solutions
to the optimization problem that results in a regularized bandlimited (to N , which

remains to be determined) estimate of the signal, F̂ , in the form of equation (9),
and which solves

∥∥F̂ −M
∥∥2
L2(C)

+ λ
∥∥F̂∥∥2

L2(Ω\C)
= minimum, (91)

where λ ≥ 0 is a regularization (damping) parameter forcing the solution to vanish
outside of the observation domain. In the following two paragraphs, we distinguish

solutions F̂N and F̂J , both bandlimited.
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Approximation 2: Regularized spherical-harmonic expansions. Simons and Dahlen
[85] give the Fourier coefficients that solve equation (91) as

F̂∧
N (m, j) =

N∑
n=0

2n+1∑
k=1

(
dC(m,j),(n,k) + λd

(Ω\C)
(m,j),(n,k)

)−1

〈M,Yn,k〉L2(C) . (92)

We note from equation (74) that dC(m,j),(n,k) + d
(Ω\C)
(m,j),(n,k) is the identity matrix.

Regularization is unavoidable: as we have seen, the eigenvalues of dC(m,j),(n,k) trail

off quickly to nearly zero, see Figure 1. Restricted-region data availability is the
prime reason for our inverse problem to be ill posed – even if no downward con-
tinuation from satellite height is required and if no internal density distributions
(in the case of gravimetry) are being sought.

How well are we doing when accepting (92) as our solution? Rewriting the

inverse Slepian eigenvalues λ
(α)
C with the damping parameter λ as(

λ
(α)
C

)∗
(λ) =

[
λ
(α)
C + λ

(
1− λ

(α)
C

)]−1

, (93)

[85] derive the regional relative mean-squared error, the expected value of the ratio
of approximation-error to signal norms as

E

{∥∥∥F̂N − F
∥∥∥2
L2(C)

}
E
{
‖F‖2L2(C)

} =

(N+1)2∑
α=1

λ
(α)
C

NC

[(
λ
(α)
C

)∗
(λ)

]2 [
R−1λ

(α)
C + λ2

(
1− λ

(α)
C

)2
]
.

(94)
In the expression above, both signal and noise were assumed to be characterized
by a white (flat) power spectrum (defined in (80)), and we introduced R, the
signal-to-noise ratio. Valid only for this admittedly idealized case, (94) neverthe-
less contains all the elements by which the quality of the approximation can be
appreciated: the bandwidth N and the size and shape of the region C enter through

the eigenvalues λ
(α)
C and the Shannon number NC , and of course the dependence

on the signal-to-noise ratio R and the damping parameter λ are important control-
ling factors. Minimization of the relative error norm provides an implicit criterion
for the regularization parameter:

λopt = R−1

(N+1)2∑
α=1

[(
λ
(α)
C

)∗
(λ)

]3 (
λ
(α)
C

)2(
1− λ

(α)
C

)
(N+1)2∑
α=1

[(
λ
(α)
C

)∗
(λ)

]3 (
λ
(α)
C

)2(
1− λ

(α)
C

)2
. (95)

At high signal-to-noise ratios, (95) is well approximated by λopt ≈ R−1.

Approximation 3: Truncated Slepian expansions. Where did the Slepian functions
go? We solved (91) using spherical harmonics, but we discussed the statistics of
the solution (92) in terms of the eigenvalues of the Slepian concentration problem.
The link, of course, is that the spherical-harmonic solution is derived via the
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K = 91 , Nd = 500 , S/N = Inf

R rms =  33.86,  98.05%

J = 91 , d rmse =  26.72%

R rmse =  13.28,  38.46%

15° 0° 15° 30° 45°

R rms =  34.55, 100.08%

J = 182 , d rmse =   0.08%

R rmse =   0.22,   0.64%

15° 0° 15° 30° 45°

L = 17 72 , dof = 5329

R rms =  34.53, 100.00%
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5°

20°

35°

50°

Figure 12. Example of Slepian-basis (Shannon number K = 91) ap-
proximation of a non-white bandlimited (bandpass, spherical-harmonic
degrees L = 17 − 72) geomagnetic field from Nd = 500 noiseless data,
for two truncation levels, J = 91 and J = 182, over a circular domain
R. Top: the field, and the two reconstructions. Bottom: the location of
the data points, and the difference between the truth and the approx-
imation. The relative regional root-mean square signal, reconstruction
and error strengths are indicated.

intermediary of the inverse of the Slepian localization matrix dC(m,j),(n,k) and, with

regularization, its complement, d
(Ω\C)
(m,j),(n,k). Both of these are large, full (though

banded) matrices whose inverses (especially at large spherical-harmonic degrees
N) are computed at significant cost. We have previously seen how a partial set
of Slepian functions provides excellent regional approximations in noiseless cases.
To conclude this section, we thus propose an estimator for the situation of the
form (90), where we attempt to reconstruct the unknown signal F from a regionally
observed set of noisy measurements, M .

This time, our estimator does not take the form of a spherical-harmonic
expansion that needs to be regularized (sometimes at great computational cost),
but rather of a Slepian-function expansion which can be truncated (usually without
any difficulty at all). In the context of equation (88): we prefer the approximate
identity over the equality which may well furnish us with a ‘complete’ expansion,
but whose coefficients we can only calculate approximately, after regularization.
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R rms =  32.25,  93.41%

J = 91 , d rmse =  46.56%

R rmse =  14.09,  40.79%
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J = 113 , d rmse =  31.57%
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R rms =  34.53, 100.00%
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Figure 13. Example of Slepian-basis (Shannon number 91) approxi-
mation of a bandlimited field from data with a signal-to-noise ratio of
10, for two truncation levels, 91 and 113. Layout as in Figure 12.

In the framework of Slepian-function estimation, truncation is our regularization.
The Slepian-basis solutions to the ‘unregularized’ (λ = 0) problem (91) are, quite
simply,

F̂∧(α) =
(
λ
(α)
C

)−1 〈
M,

(
GC

N

)
α

〉
L2(C)

. (96)

Truncation means that we only compute J of them, which gives us the freedom to
avoid the blowup of the inverse eigenvalues, i.e., the estimate in the Slepian basis
is given by

F̂J =
J∑

α=1

F̂∧(α)
(
GC

N

)
α
. (97)

By the same metric of (94), we evaluate the quality of this solution as

E

{∥∥∥F̂J − F
∥∥∥2
L2(C)

}
E
{
‖F‖2L2(C)

} = R−1 J

NC
+

1

NC

(N+1)2∑
α>J

λ
(α)
C . (98)

As (94), but unlike (89), again (98) is only applicable in the case of white noise and
white signal with a signal-to-noise power ratio R. Of course, the signal contained
in the neglected terms of what should be a complete Slepian expansion exerts
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a controlling factor on the mean squared error behavior. [85] show how, in the
Slepian basis, the neglected terms positively affect the variance of the estimate,
but negatively the bias; the mean-squared error being the combination of the
two. Minimization of (98) to determine the optimal truncation level for these
circumstances yields it in terms of the Slepian eigenvalue and the signal-to-noise
level, namely

λ
(Jopt)
C ≈ R−1. (99)

In other words, we include Slepian functions in the expansion until their ranked
eigenvalues drop below the noise-to-signal ratio.

We have ignored that in order to ‘solve’ data-driven approximation problems,
we need to determine an optimal bandwidth N and an optimal truncation level J
for data situations that are more involved than just being given by white noise
and white signal. Such vital practical matters are discussed by Slobbe et al. [91]
and Plattner and Simons [81]. The solution procedures involved are always cum-
bersome – but the computational complexity, and the overall size of the numerical
problem, of the truncated Slepian-function approach is always smaller than via
regularized spherical-harmonics. Slepian functions lend themselves well to solving
approximation problems involving noisy and partially observed data on the sphere.

Two realistic examples of truncated Slepian-basis approximation problems
are given in Figures 12 and 13.

4.2. Approximation by splines

Only relatively recently have zonal kernel function techniques such as spline in-
terpolation/approximation and wavelet analysis been playing a fundamental role
in numerical analysis on the sphere. Spherical splines (independently introduced
by Freeden [28] andWahba [99] in 1981) are canonical generalizations of ‘spherical
polynomials’ (spherical harmonics) which have desirable characteristics as inter-
polating, smoothing, and best approximating functions (see also [100]). By spline
interpolation we mean the variational problem of minimizing an ‘energy’-norm
of a suitable Sobolev space. Depending on the chosen norm, bandlimited and
non-bandlimited splines are distinguished. Spherical splines have been success-
fully applied to many areas of application in particular in geodesy for gravita-
tional field determination, radio occultation, ocean flow, etc. (for more details see
[29, 36, 47] and the references therein). Spherical splines, especially their counter-
parts on the ball, have been applied to tomographic inverse problems in geophysics
([1–3, 10–12, 22, 74]) and in medical imaging ([27]).

To understand spherical splines, we adopt the idea of one-dimensional cubic
splines to the sphere. Cubic splines in one-dimension are well known for hav-
ing minimal ‘bending energy’ (roughly, minimal ‘curvature energy’ understood
in a linearized sense). More concretely, among all interpolating functions of the

Sobolev space H(2)([a, b]), the integral
∫ b

a
|F ′′(x)| dx becomes minimal, where F

may be physically interpreted as the deflection normal to the rest position which
is supposed to be horizontal. The physical model is suggested by the classical inter-
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pretation of the potential energy of a statically deflected thin beam which indeed
is proportional to the integral taken over the square of the linearized curvature of
the elastic beam. Analogously, the concept can be applied to the sphere by choos-
ing

∫
Ω
|Δ∗

ξF (ξ)|2 dω(ξ), where F now denotes the deflection of a thin membrane
normal to the rest position supposed to be spherical. In other words, the second
derivative canonically takes on the form of the Beltrami operator Δ∗. Indeed,
our interest now is to state that the interpolating spline to a given dataset has
minimum ‘bending energy’ for all interpolants within the Sobolev space H(2)(Ω).
Furthermore, the spline functions defined in this section are able to simultaneously
interpolate and smooth the data. Hence, we can decide in our spline application,
which knots of the input data should be strictly interpolated and which ones should
be ‘near’ the interpolating function, i.e., the points subjected to smoothing.

Reproducing kernel Hilbert reference space. As usual (see, e.g., [47]), we introduce
the Sobolev space H(2)(Ω) as the completion of C(2)(Ω) with respect to a specific
scalar product thereby specifying H(2)(Ω) as a certain reproducing kernel space.
In more detail, the inner product 〈·, ·〉H(2)(Ω) is defined by

〈F,G〉H(2)(Ω) =

∫
Ω

F (η)Y0,1(η) dω(η)

∫
Ω

G(η)Y0,1(η) dω(η)︸ ︷︷ ︸
=〈F,G〉H0

+
∞∑
n=1

2n+1∑
j=1

(n(n+ 1))2
∫
Ω

F (η)Yn,j(η) dω(η)

∫
Ω

G(η)Yn,j(η) dω(η)︸ ︷︷ ︸
=〈F,G〉

H⊥
0

,

(100)

which is equivalent in accordance with Parseval’s identity to

〈F,G〉H(2)(Ω) =

∫
Ω

F (η)Y0,1(η) dω(η)

∫
Ω

G(η)Y0,1(η) dω(η)︸ ︷︷ ︸
=〈F,G〉H0

+

∫
Ω

(Δ∗
ηF (η))(Δ∗

ηG(η)) dω(η)︸ ︷︷ ︸
=〈F,G〉

H⊥
0

=〈F,G〉H0 + 〈F,G〉H⊥
0

(101)

for all F,G ∈ C(2)(Ω). The Sobolev space H(2)(Ω) as defined in Section 3.1 is the
completion of C(2)(Ω) under the norm ‖ · ‖H(2)(Ω), i.e.,

H(2)(Ω) = C(2)(Ω)
‖·‖

H(2)(Ω) , (102)

where ‖F‖H(2)(Ω) =
√
〈F, F 〉H(2)(Ω).
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Consider the kernel K : (ξ, η) �→ K(ξ, η), (ξ, η) ∈ Ω2 = Ω × Ω given in the
form

K(ξ, η) = Y0,1(ξ)Y0,1(η) +
∞∑
n=1

2n+1∑
j=1

1

(n(n+ 1))2
Yn,j(ξ)Yn,j(η). (103)

Then K(ξ, ·), ξ ∈ Ω fixed, is a member of H(2)(Ω). Inserting K into the inner
product, we see via the orthogonal properties of the spherical harmonics that

〈F,K(ξ, ·)〉H(2)(Ω) = F (ξ), ξ ∈ Ω, (104)

for all F ∈ H(2)(Ω). Hence, K(·, ·) is the unique reproducing kernel of the Hilbert
space H(2)(Ω). The reproducing kernel K(·, ·) can be decomposed into the repro-
ducing kernels of the spaces H0 and H⊥

0 , respectively, via

K(ξ, η) = Y0,1(ξ)Y0,1(η)︸ ︷︷ ︸
=K0(ξ,η)=

1
4π

+

∞∑
n=1

2n+1∑
j=1

1

(n(n+ 1))2
Yn,j(ξ)Yn,j(η)︸ ︷︷ ︸

=K⊥
0 (ξ,η)

. (105)

Applying the spherical-harmonic addition theorem and comparing with (105),
we get

K⊥
0 (ξ, η) =

∞∑
n=1

2n+1∑
j=1

1

(n(n+ 1))2
Yn,j(ξ)Yn,j(η)

=
1

4π

∞∑
n=1

2n+ 1

(n(n+ 1))2
Pn(ξ · η)

= G((Δ∗)2; ξ, η) (106)

where G((Δ∗)2, ·, ·) is the Green function with respect to the iterated Beltrami
operator (Δ∗)2 = Δ∗Δ∗ (see [28]). Summarizing our results we, therefore, see that

K(ξ, η) = Y0,1(ξ)Y0,1(η)︸ ︷︷ ︸
=K0(ξ,η)=

1
4π

+G
(
(Δ∗)2 ; ξ, η

)
︸ ︷︷ ︸

=K⊥
0 (ξ,η)

, ξ, η ∈ Ω, (107)

is the uniquely determined reprokernel of the space (H(2)(Ω), 〈·, ·〉H(2)(Ω)), i.e.:

(i) For each fixed ξ ∈ Ω, K(ξ, η), a function of η, is an element of H(2)(Ω).
(ii) For every function F ∈ H(2)(Ω) and for every point ξ ∈ Ω, the reproducing

property holds:

F (ξ) = 〈F,K(ξ, ·)〉H(2)(Ω). (108)

Explicit representation of the reproducing kernel. Keeping the reprostructure of
H(2)(Ω) in mind, we are able to handle our announced spline interpolation and
smoothing problem. To this end, we follow the concept presented by Freeden [28]
and observe, in addition, the explicit representation of G((Δ∗)2; ·, ·) known from
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[41]. In fact, Green’s function corresponding to the iterated Beltrami operator
(Δ∗)2 is continuous on Ω× Ω and admits the explicit formulation:

G((Δ∗)2; ξ, η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
4π , 1− ξ · η = 0

1
4π (1− ln(1 − ξ · η)(ln(1 + ξ · η)− ln(2))
−L2(

1−t
2 )− (ln(2))2 + ln(2) ln(1 + ξ · η)), 1± ξ · η �= 0

1
4π − π

24 , 1 + ξ · η = 0,
(109)

where the function L2(x) is the dilogarithm given by

L2(x) = −
∫ x

0

ln(1− t)

t
dt =

∞∑
k=1

xk

k2
. (110)

Spline concept. We have come to the definition of spherical splines corresponding
to one-dimensional cubic splines (a more general concept involving pseudo-differ-
ential operators is known from [47]). Let M1, . . . ,Mn be a linearly independent
system of bounded linear functionals on H(2)(Ω). Any function S ∈ H(2)(Ω) of the
form

S(η) = c0Y0,1(η) +
n∑

i=1

aiMiG((Δ∗)2; η, ·), ai ∈ R, η ∈ Ω (111)

with
n∑

i=1

aiMi(Y0,1) = 0 (112)

is called a spherical spline in H(2)(Ω) relative to M1, . . . ,Mn.

By virtue of (111) and (112), we are now prepared to formulate the following
uniqueness result: let M1, . . . ,Mn be a system of bounded linear functionals on
the Sobolev space H(2)(Ω) such that the ((n+ 1)× (n+ 1))-matrix(

α κ
κT 0

)
(113)

is non-singular, where the matrix α and the vector κ are given as follows:

α =
(
MiMjG((Δ∗)2; ·, ·)

)
i=1,...,n
j=1,...,n

, (114)

κ = (MiY0,1(·))i=1,...,n . (115)

Then, there exists a unique spline in H(2)(Ω) relative to M1, . . . ,Mn that solves the
interpolation problemMiS = μi, i = 1, . . . , n. This spline is called the interpolating
spline. The proof easily follows by inserting the representation (111) intoMiS = μi,
i = 1, . . . , n, resulting in a linear system for the coefficients ai, c0, whose coefficient
matrix is given by (113). Since the matrix is assumed to be non-singular, the
coefficients are uniquely determined.
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The key to spline approximation is the so-called spline integration formula∫
Ω

Δ∗
ηS(η) Δ

∗
ηF (η) dω(η) =

n∑
k=1

akMkF, (116)

valid for the uniquely determined interpolating spline S and all members F ∈
H(2)(Ω), provided that the constraint κTa = 0 is fulfilled. The proof is a di-
rect conclusion of the reproducing kernel property. Its idea is to inspect the sum∑n

k=1 akMkF and substitute F by the reproducing kernel property

n∑
k=1

akMkF =
n∑

k=1

akMk〈F (·),K(η, ·)〉H(2)(Ω). (117)

Evaluating the inner product by inserting the reproducing kernel function leads
to the desired result.

Next, we turn to dealing with the ‘minimum energy property’ of strict spline
interpolation.

Theorem 4. Let M1, . . . ,Mn be a linearly independent system of bounded linear
functionals on H(2)(Ω). Let S be the unique spline which solves the interpolation
problem MiS = μi, i = 1, . . . , n. Then, for all twice continuously differentiable
functions F on Ω, which interpolate the given data, i.e., MiF = μi, i = 1, . . . , n,
the following inequality∫

Ω

(Δ∗
ηS(η))

2 dω(η) ≤
∫
Ω

(Δ∗
ηF (η))2 dω(η) (118)

holds true with equality if and only if S = F .

The proof easily follows from arguments given by Freeden [28]. Theorem 4
tells us that the ‘bending energy’ (the integral over the second derivative) of the
spline is minimal among all functions in H(2)(Ω) interpolating the data.

Combined spline interpolation and smoothing. Theorem 4 allows an extension to
include smoothing at predefined points while interpolating the remaining pointset
(in accordance with [46]). This technique was used by Blick and Freeden [13] to
visualize radio occultation data collected by the satellite CHAMP.

Given n = p + q data points, where the data points μi, i = 1, . . . , p, are
subjected to smoothing and the points νi, i = 1, . . . , q, are subjected to strict
interpolation, we are lead to the following result.

Theorem 5. Suppose that δ and β2
1 , . . . , β

2
p are prescribed positive weights and

that μi, i = 1, . . . , p; νj, j = 1, . . . , q are given data points. Let M1, . . . ,Mp and

N1, . . . , Nq be systems of bounded linear functionals on H(2)(Ω) such that the ((p+
q) + 1)× ((p+ q) + 1)-matrix ⎛⎝ α β κ

βT γ ζ
κT ζT 0

⎞⎠ (119)



796 W. Freeden, V. Michel, and F.J. Simons

is non-singular, where the matrices α, β, γ, κ, ζ are given as follows

α =
(
MiMjG

(
(Δ∗)2 ; ·, ·

)
+ δβ2

i δij
)

i=1,...,p
j=1,...,p

, (Kronecker δij) (120)

β =
(
MiNjG

(
(Δ∗)2 ; ·, ·

))
i=1,...,p
j=1,...,q

, (121)

γ =
(
NiNjG

(
(Δ∗)2 ; ·, ·

))
i=1,...,q
j=1,...,q

, (122)

κ = (MiY0,1(·))i=1,...,p , (123)

ζ = (NjY0,1(·))j=1,...,q . (124)

Then the smoothing spline function S of the form

S(ζ) = c0Y0,1(ξ) +

p∑
i=1

aiMiG
(
(Δ∗)2 ; ξ, ·

)
+

q∑
j=1

bjNjG
(
(Δ∗)2 ; ξ, ·

)
, ξ ∈ Ω,

(125)

with coefficients a ∈ Rp, aT = (a1, . . . , ap); b ∈ Rq, bT = (b1, . . . , bq) and c0 ∈ R
subjected to the constraint

p∑
i=1

aiMi(Y0,1) +

q∑
j=1

bjNj(Y0,1) = 0 (126)

is the unique solution of the interpolation and smoothing problem given by

MiS + δβ2
i ai = μi, i = 1, . . . , p,

NjS = νj , j = 1, . . . , q,

corresponding to the data points μi, i = 1, . . . , p; νj, j = 1, . . . , q and represents

the only element of H(2)(Ω) satisfying
p∑

i=1

(
MiS − μi

β

)2

+ δ〈S, S〉H⊥
0
≤

p∑
i=1

(
MiF − μi

βi

)2

+ δ〈F, F 〉H⊥
0

(127)

for all F ∈ H(2)(Ω) with NjF = νj , j = 1, . . . , q.

As already mentioned, the proof can be given in parallel to the arguments
stated by Freeden and Witte [46]. Moreover, Theorem 4 leads us to the following
comments:

(i) The values μ1, . . . , μp, ν1, . . . , νq are regarded as the observed quantities, e.g.,
geodetic observations and measurements.

(ii) The spline function S ∈ H(2)(Ω) satisfies that MiS is ‘near’ μi, i = 1, . . . , p
and NjS is equal to νj , j = 1, . . . , q. The ‘nearness’ of the values MiS to μi,
i = 1, . . . , p can be controlled by choosing the constant δ in a suitable way.
A small value of δ emphasizes fidelity to the observed data at the expense of
smoothness, while a large value does the opposite.

(iii) Taking δ = 0 yields MiS = μi, i = 1, . . . , p, i.e., the combined smoothing and
interpolation procedure leads back to strict interpolation.

(iv) For numerical purposes, it is advantageous to adapt the quantities β2
1 , . . . , β

2
p

to the standard deviations of the measured values.
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4.3. Approximation by wavelets

As already pointed out, the context of the spectral representation of a square-
integrable function by means of spherical harmonics is essential to solving many
problems in today’s applications. In future research, however, orthogonal (Fourier)
expansions in terms of spherical harmonics {Yn,j} will not be the only way of rep-
resenting a square-integrable function. In order to explain this in more detail, we
think of a square-integrable function as a signal in which the spectrum evolves
over space in significant way. We imagine that, at each point on the sphere Ω, the
function refers to a certain combination of frequencies, and that these frequen-
cies are continuously changing. This space-evolution of the frequencies, however,
is not reflected in the Fourier expansion in terms of non-space localizing spher-
ical harmonics, at least not directly. Therefore, in theory, any member F of the
space L2(Ω) can be reconstructed from its Fourier transforms, i.e., the ‘amplitude
spectrum’ {F∧(n, j)} n=0,1,...,

j=1,...,2n+1
, but the Fourier transform contains information

about the frequencies of the function over all positions instead of showing how the
frequencies vary in space.

Dirac families. In what follows, we present a two-parameter, i.e., scale- and space-
dependent method of achieving a reconstruction of a function F ∈ L2(Ω) involving
(scalar) zonal kernel functions which we refer to as a Dirac family {Φρ}ρ∈(0,∞)

converging to the (zonal) Dirac kernel δ. In other words, a Dirac family is a set of
zonal kernels Φρ : [−1, 1] → R, ρ ∈ (0,∞), of the form

Φρ(ξ · η) =
∞∑
n=0

Φ∧
ρ (n)

2n+ 1

4π
Pn(ξ · η), ξ, η ∈ Ω, (128)

converging to the ‘Dirac kernel’ δ as ρ → 0, ρ > 0. Consequently, if {Φρ}ρ∈(0,∞) is
a Dirac family, its ‘symbol’ {Φ∧

ρ (n))}n=0,1,... constitutes a sequence satisfying the
limit relation

lim
ρ→0, ρ>0

Φ∧
ρ (n) = 1, n = 0, 1, . . . . (129)

Accordingly, if {Φρ}ρ∈(0,∞) is a scaling kernel function, the convolution integrals

(Φρ ∗ F ) (ξ) =

∫
Ω

Φρ(ξ · η)F (η) dω(η), ξ ∈ Ω, (130)

converge (in a certain topology) to the limit

F (ξ) = (δ ∗ F )(ξ) =

∫
Ω

δ(ξ · η)F (η) dω(η), ξ ∈ Ω, (131)

for all ξ ∈ Ω as ρ tends to 0 (from the positive side). In more detail, if F is a
function of class L2(Ω) and {Φρ} is a (suitable) Dirac family (tending to the Dirac
kernel), then the following limit relation holds true:

lim
ρ→0, ρ>0

‖F − Φρ ∗ F‖L2(Ω) = 0. (132)

There is a large number of Dirac families that is of interest for geoscien-
tific application (for more details, the reader is referred to, e.g., [39, 44] and the
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references therein). Only three prototypes of Dirac families should be mentioned
here: the bandlimited Shannon family, the neither bandlimited nor spacelimited
Abel–Poisson and Gauss–Weierstraß families, and the spacelimited Haar family.

It should be noted that an approximate convolution identity (132) acts as a
space and frequency localization procedure in the following way. As {Φρ}ρ∈(0,∞)

is a Dirac family of zonal scalar kernel functions tending to the Dirac kernel, the
function Φρ(η·), is highly concentrated around the point η ∈ Ω, if the ‘scale pa-
rameter’ is a small positive value. Moreover, as ρ tends to infinity, Φρ(η·) becomes
more and more localized in frequency. Correspondingly, the uncertainty principle
states that the space localization of Φρ(η·) becomes more and more decreasing.
In conclusion, the products η �→ Φρ(ξ · η)F (η), η ∈ Ω, ξ ∈ Ω, for each fixed
value ρ, display information in F ∈ L2(Ω) at various levels of spatial resolution
or frequency bands. Consequently, as ρ approaches ∞, the convolution integrals
Φρ ∗ F =

∫
Ω Φρ(·η)F (η) dω(η) display coarser, lower-frequency features. As ρ ap-

proaches 0, the integrals give sharper and sharper spatial resolution. Thus, the
convolution integrals can measure the space-frequency variations of spectral com-
ponents, but they have a different space-frequency resolution.

Scaling and wavelet functions. Next we come to the bilinear theory of scaling and
wavelet functions (note that we only deal with the bilinear theory, for basic aspects
of the linear case the reader is referred to, e.g., [39, 44]).

The point of departure for our multi-scale approach is a particular type of

a Dirac family: a scaling (kernel) function {Φ(2)
ρ }ρ∈(0,∞) is a set of zonal kernels

Φ
(2)
ρ = Φρ ∗ Φρ : [−1, 1] → R, ρ ∈ (0,∞), of the form

Φ(2)
ρ (ξ · η) =

∞∑
n=0

Φ(2)
ρ

∧
(n)

2n+ 1

4π
Pn(ξ · η), ξ, η ∈ Ω, (133)

with

lim
ρ→0, ρ>0

Φ(2)
ρ

∧
(n) = lim

ρ→0, ρ>0
(Φ∧

ρ (n))
2 = 1, n = 0, 1, . . . . (134)

and

Φ(2)
ρ

∧
(0) = 1. (135)

Accordingly, the convolution integrals(
Φ(2)

ρ ∗ F
)
(ξ) =

∫
Ω

Φ(2)
ρ (ξ · η)F (η) dω(η), ξ ∈ Ω, (136)

converge (in a certain topology) to the limit

F (ξ) = (δ ∗ F )(ξ) =

∫
Ω

δ(ξ · η)F (η) dω(η), ξ ∈ Ω, (137)

for all ξ ∈ Ω as ρ tends to 0 (from the positive side). In other words, if F is a

function of class L2(Ω) and {Φ(2)
ρ } is a certain Dirac family (tending to the Dirac
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kernel), then the approximate identity

lim
ρ→0, ρ>0

∥∥∥F − Φ(2)
ρ ∗ F

∥∥∥
L2(Ω)

= 0 (138)

holds true.
Each scale approximation Φ

(2)
ρ ∗ F of a function F ∈ L2(Ω) must be made

directly by computing the relevant convolution integrals. In doing so, however, it

is inefficient to use no information from the approximation Φ
(2)
ρ ∗ F within the

computation of Φ
(2)
ρ′ ∗F provided that ρ′ < ρ. In fact, the efficient construction of

multiscale approximation based on Dirac families usually begins by a multireso-
lution analysis in terms of wavelets, i.e., a recursive method which is efficient for
computation, but not all economic multiscale approaches constitute multiresolu-
tion procedures (see, e.g., [35, 36, 38, 40–43, 47] and the references therein).

Let Ψρ(ξ, η), (ξ, η) ∈ Ω× Ω, be defined via the series expansion

Ψρ(ξ, η) =

∞∑
n=0

Ψρ
∧(n)

2n+ 1

4π
Pn(ξ · η), (ξ, η) ∈ Ω× Ω, (139)

such that the symbol {Ψ(2)
ρ

∧
(n)}n=0,1,... of Ψ

(2)
ρ = Ψρ∗Ψρ is derived from Φ

(2)
ρ

∧
(n)

via the differential equation (‘scale equation’)

Ψ(2)
ρ

∧
(n) = −ρ

d

dρ
Φ(2)

ρ

∧
(n). (140)

As immediate consequences, we obtain from (135) the properties

Ψρ
∧(0) = 0 (141)

and

lim
ρ→0, ρ>0

Ψ∧
ρ (n) = 0

for n = 1, 2, . . . As in classical one-dimensional theory, the condition (135), there-
fore, justifies the notion wavelet of order 0.

Typically, within wavelet nomenclature, we may write

Ψρ;η : ξ �→ Ψρ;η(ξ) = Ψρ(ξ · η) = RηDρΨ(·ξ), ξ ∈ Ω,

to indicate Ψρ;η as generated by two parameters, namely the ‘η-rotation operator ’
Rη and the ‘ρ-dilation operator ’ Dρ, respectively, given by

Rη : Ψ(·ξ) �→ RηΨ(·ξ) = Ψ(η · ξ), (142)

Dρ : Ψ(·ξ) �→ DρΨ(·ξ) = Ψρ(·ξ). (143)

The function Ψ = Ψ1 (i.e., ρ = 1) is called the mother wavelet.
The wavelet transform WT is defined as the L2(Ω)-inner product (convolu-

tion) of F ∈ L2(Ω) with the set of ‘rotations’ and ‘dilations’ of F

(WT)(F )(ρ; η) = (Ψρ;η, F )L2(Ω) =

∫
Ω

Ψρ;η(ξ)F (ξ) dω(ξ), (144)
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i.e., the wavelet transform acts as a space and frequency localization operator.
The wavelet transform (WT) is invertible on the space of functions F ∈ L2(Ω)
satisfying F∧(0, 1) = 0, i.e.,

F =

∫
Ω

∫ ∞

0

(WT)(F )(ρ; η)Ψρ;η(·)
dρ

ρ
dω(η) (145)

holds true (in the sense of ‖ · ‖L2(Ω)) for all F ∈ L2(Ω) satisfying F∧(0, 1) = 0.
The reconstruction formula (145), in fact, is based on the simple idea of

dilation and rotation of the mother wavelet.

Figure 14. Shannon scaling (kernel) functions for decreasing scales ρ.

Figure 15. Shannon wavelet (kernel) functions for decreasing scales ρ.

Spectral interrelation between Fourier and wavelet transform. In terms of filter-
ing, {Φρ}ρ∈(0,∞) and {Ψρ}ρ∈(0,∞) may be interpreted (cf. Figures 14 and 15) as
lowpass filter and bandpass filter, respectively. Correspondingly, the convolution
operators are given by

Φρ ∗ F, F ∈ L2(Ω), (146)

Ψρ ∗ F, F ∈ L2(Ω). (147)

The Fourier transforms read as follows:

(Φρ ∗ F )∧(n, j) = F∧(n, j)Φ∧
ρ (n), (148)

(Ψρ ∗ F )∧(n, j) = F∧(n, j)Ψ∧
ρ (n). (149)

These formulas provide the transition from the wavelet transform to the Fourier
transform. Since all scales ρ are used, the reconstruction is highly redundant.

If F,G ∈ L2(Ω) have vanishing moments of order 0, i.e., if the property
F∧(0, 1) = G∧(0, 1) = 0 is satisfied, then it follows from∫ ∞

0

(Ψ∧
ρ (n))

2 dρ

ρ
= 1 (150)
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and the Parseval identity of the theory of spherical harmonics that∫
Ω

∫ ∞

0

〈F,Ψρ;η〉L2(Ω) 〈G,Ψρ;η〉L2(Ω)

dρ

ρ
dω(η)

=

∫ ∞

0

∞∑
n=1

2n+1∑
j=1

F∧(n, j)G∧(n, j)(Ψ∧
ρ (n))

2 dρ

ρ

=

∞∑
n=1

2n+1∑
j=1

F∧(n, j)G∧(n, j)

= 〈F,G〉L2(Ω). (151)

Denote by L2((0,∞) × Ω) the space of all integrable functions H : (0,∞)×
Ω → R such that ∫

Ω

∫ ∞

0

|H(ρ; η)|2 dρ

ρ
dω(η) < ∞. (152)

On the space L2((0,∞) × Ω), an inner product 〈·, ·〉L2((0,∞)×Ω) can be imposed
corresponding to the norm

‖H‖L2((0,∞)×Ω) =

(∫
Ω

∫ ∞

0

|H(ρ; η)|2 dρ

ρ
dω(η)

)1/2

. (153)

From (151), it follows that〈
〈F,Ψ·,·〉L2(Ω) , 〈G,Ψ·,·〉L2(Ω)

〉
L2((0,∞)×Ω)

= 〈F,G〉L2(Ω) (154)

and

‖ 〈F,Ψ·,·〉L2(Ω) ‖
2
L2((0,∞)×Ω) = ‖F‖2L2(Ω). (155)

In other words, the total energy of a signal can be continuously distributed by the
wavelet transform into scale and spatially dependent ‘signal subenergy’.

Least energy representation. WT is a transformation from the one-parameter
space L2(Ω) into the two-parameter space L2((0,∞) × Ω). Thus, it is clear that
(WT) is not surjective on L2((0,∞)×Ω). That means that W = (WT)(L2(Ω)) is
a proper subspace of L2((0,∞)× Ω):

W � L2((0,∞)× Ω). (156)

Thus, the problem is to characterize W within the framework of L2((0,∞) × Ω).
For that purpose, we consider the operator P : L2((0,∞)× Ω) → W given by

(PH)(ρ′; η′) =
∫ ∞

0

∫
Ω

K(ρ′; η′ | ρ; η)H(ρ; η) dω(η)
dρ

ρ
, (157)

where

K(ρ′; η′ | ρ; η) =
∫
Ω

Ψρ′;η′(ξ)Ψρ;η(ξ) dω(ξ).
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W is characterized as follows: H ∈ W if and only if

H(ρ′; η′) =
∫ ∞

0

∫
Ω

K(ρ′; η′ | ρ; η)H(ρ; η) dω(η)
dρ

ρ
. (158)

It can easily be seen that K(ρ′; η′ | ·; ·) ∈ W and K(·; · | ρ; η) ∈ W . The kernel
K(ρ′; η′ | ρ; η) is the reproducing kernel in W . The reproducing property (158)
can also be understood in such a way that H ∈ W is calculable by superpositions
of itself. This shows that there is a kind of linear dependence, which can be in-
terpreted as redundancy. Although it might seem inefficient, such redundancy has
certain advantages. Unlike a non-redundant expansion, errors can be detected and
corrected.

The tendency for correcting errors is expressed in the next result (see [35, 47]):

– Let H be an arbitrary element of L2((0,∞)× Ω). Then the unique function
FH ∈ L2(Ω) which satisfies the property∥∥∥H − F̃H

∥∥∥
L2((0,∞)×Ω)

= inf
F∈L2(Ω)

∥∥∥H − F̃
∥∥∥
L2((0,∞)×Ω)

(with F̃H = (WT)(FH)) is given by

FH(ξ) =

∫ ∞

0

∫
Ω

H(ρ; η)Ψρ;η(ξ) dω(η)
dρ

ρ
.

Indeed, F̃H is the orthogonal projection of H onto W , which explains the afore-
mentioned statement.

The linear dependence of F̃ ∈ W leads to the effect that the coefficients in
L2((0,∞) × Ω) for reconstructing a function F ∈ L2(Ω) are not unique. This can
be easily seen from the following identity:

F (ξ) =

∫ ∞

0

∫
Ω

(
F̃ (ρ; η) + F̃⊥(ρ; η)

)
Ψρ;η(ξ) dω(η)

dρ

ρ

where F̃ = (WT)(F ) and F̃⊥ is an arbitrary member of W⊥. Nevertheless,
we are able to deal with the following question: given an arbitrary H(ρ; ξ) =
(WT)(F )(ρ; ξ), ρ ∈ (0,∞), and ξ ∈ Ω, for some F ∈ L2(Ω), how can we re-
construct F? The answer (see [35, 47]) is provided by the so-called least-energy
representation:

– Of all possible functions H ∈ L2((0,∞) × Ω) for F ∈ L2(Ω), the function
H = (WT)(F ) is unique in that it minimizes the ‘energy’ ‖H‖2L2((0,∞)×Ω).

More explicitly,

‖(WT)(F )‖L2((0,∞)×Ω) = inf
H∈L2((0,∞)×Ω)

(WT)−1(H)=F

‖H‖L2((0,∞)×Ω).
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Wavelet variants. The construction of spherical wavelets has seen an enormous
increase of activity in the last few years. Three features are essential in the thinking
about georelevant wavelets: basis property, decorrelation, and fast computation.

First, wavelets are building blocks for general datasets derived from functions.
By virtue of the basis property, each element of a general class of functions (e.g.,
a geopotential seen as a member of a set of potentials within a Sobolev space
framework) can be expressed in stable way as a linear combination of dilated and
shifted copies of a ‘mother function’ (see [29, 31, 35, 36] and the references therein).
The role of the wavelet transform as a mapping from the class of functions into an
associated two-parameter family of space and scale dependent functions is properly
characterized by least squares properties.

Second, wavelets have the power to decorrelate. In other words, the rep-
resentation of data in terms of wavelets is somehow ‘more compact’ than the
original representation. We search for an accurate approximation by only using a
small fraction of the original information of a function. Typically, the decorrela-
tion is achieved by building wavelets which have a compact support (localization
in space), which are smooth (decay towards high frequencies), and which have
vanishing moments (decay towards low frequencies). Different types of wavelets
can be found from certain constructions of space/momentum localization. The
uncertainty principle tells us that sharp localization in ‘space and momentum’
are mutually exclusive. Nevertheless, decay towards long and short wavelengths
(i.e., bandpass filtering) can be assured without any difficulty. Moreover, vanishing
moments of wavelets (see, e.g., [45, 47]) enable us to combine (polynomial) outer
harmonic expansions (responsible for the long-wavelength part of a function) with
wavelet multiscale expansions (responsible for the medium-to-short-wavelengths
contributions).

Third, the main question of recovering a function on the sphere, e.g., the
Earth’s gravitational potential, is how to decompose the function into wavelet
coefficients, and how to reconstruct efficiently the potential from the coefficients.
There is a ‘tree algorithm’ or ‘pyramid algorithm’ (cf. [29, 47]) that makes these
steps simple and fast. In this respect, it is desirable to switch between the original
representation of the data and its wavelet representation in a time proportional to
the size of the data. In fact, the fast decorrelation power of wavelets is the key to
applications such as data compression, fast data transmission, noise cancelation,
signal recovery, etc.

In the last years, wavelets on the sphere have been the focus of several research
groups which led to different wavelet approaches. Common to all these proposals
is a multiresolution analysis which enables a balanced amount of both frequency
(more accurately, angular momentum) and space localization (see, e.g., [18, 64, 82,
83, 101]).

A group theoretical approach to a continuous wavelet transform on the sphere
is followed by Antoine and Vandergheynst [5], Antoine et al. [4], and Holschneider
[55]. The parameter choice of their continuous wavelet transform is the product
of SO(3) (for the motion on the sphere) and R+ (for the dilations). A continuous
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wavelet transform approach for analyzing functions on the sphere is presented by
Dahlke and Maass [19].

The Kaiserslautern constructions (see, e.g., [32, 39, 43, 47]) are intrinsically
based on the specific properties concerning the theory of spherical harmonics.
Wavelet regularization and multiresolution techniques are applied to ‘downward
continuation’ of spaceborne (satellite) observations (see, e.g., [31, 37, 38, 48] and
the references therein). Multiscale signal-to noise ratio modeling is done by signal
and noise decorrelation Freeden and Maier [33, 34]. Freeden and Schreiner [42] are
interested in a compromise connecting zonal function expressions and structured
grids on the sphere to obtain fast algorithms. Freeden et al. [49] and Freeden and
Gerhards [31] generate locally supported wavelets by regularizing fundamental
solutions to pseudodifferential operators.

Finally, much of the material presented in this paper within a spherical frame-
work can be readily formulated for non-spherical reference surfaces, even for vec-
tor and tensor data. Nevertheless, work remains to be done for more realistic
geometries such as (the actual) Earth’s surface, real satellite orbits, etc. These are
challenges for future research.

4.4. Regularized functional matching pursuit and its variants

The Regularized Functional Matching Pursuit (RFMP) and its variants were de-
veloped by Fischer [23], Fischer and Michel [24], Michel [69], Michel and Telschow
[72, 73], and Telschow [95]. They are based on the Matching Pursuit (MP) and its
enhancements as described by Mallat and Zhang [65] and Vincent and Bengio [98],
where the problem consisted of finding a greedy algorithm for the approximation
of an unknown signal F based on given samples F (xj), j = 1, . . . , N , usually on
Euclidean domains.

For the RFMP, matching pursuit had to be extended to the inverse problem

FF = y

for a linear and continuous operator F : H(D) → Rl, a Hilbert space H(D) of
(some) functions on D ⊂ Rd (e.g., L2(D) or, more generally, a Sobolev space),
a given data vector y ∈ Rl and an unknown function F ∈ H(D). Many inverse
problems of this kind, such as the downward continuation (F is the gravitational
potential at the surface D(= Ω) and y is a vector of samples at satellite height)
or the inverse gravimetric problem (F is a volume or a surface mass distribution
and y is a vector of samples of the gravitational potential), are ill posed. For this
reason, a regularization technique also had to be included into the RFMP.

The different algorithms are summarized here starting with a short introduc-
tion of the MP. All algorithms have in common that a set of possibly useful trial
functions, the ‘dictionary’ D ⊂ H(D), is chosen in advance. These trial functions
need not originate from one single basis system: D may be (and is often chosen on
purpose as) overcomplete. If D is heterogeneous, it may contain different kinds of
basis systems (in particular, with different frequency and space localization). For
instance, in several numerical applications of the RFMP, an approximate solution
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F was combined from spherical harmonics (for a coarse global approximation)
and radial basis functions with different levels of localization (locally improving
the result). Without loss of generality, one can assume that ‖d‖H(D) = 1 for all
d ∈ D.

Matching pursuit. Assume that a function (signal) F ∈ H(D) is to be approx-
imated by m elements of D. In this context, the expression of the best-m-term
approximation (see, e.g., [96]) occurs. It means that one looks for m elements
d1, . . . , dm ∈ D and associated coefficients α1, . . . , αm ∈ R such that the approxi-
mation error ∥∥∥∥∥F −

m∑
k=1

αkdk

∥∥∥∥∥
H(D)

becomes minimal in comparison to all other choices of dk and αk. In formal lan-
guage, the objective is

σm(F,D) = inf
dj∈D, αj∈R; j=1,...,m

∥∥∥∥∥F −
m∑

k=1

αkdk

∥∥∥∥∥
H(D)

.

For large m, it is often numerically too expensive to find an exact minimizer.
However, this concept can be a guideline for the construction of a less expensive
algorithm with still ‘good’ results.

The first idea is to construct an iterative algorithm, i.e., to find the pairs
(α1, d1), . . . , (αm, dm) consecutively. The initial problem is to find α1 ∈ R and
d1 ∈ D such that

J (α1, d1) = ‖F − α1d1‖2H(D) = ‖F‖2H(D) − 2α1 〈F, d1〉H(D) + α2
1 (159)

is minimal. With ∂
∂α1

J(α1, d1) = 0, one obtains

−2 〈F, d1〉H(D) + 2α1 = 0, i.e., α1 = 〈F, d1〉H(D) .

Inserting this result in (159), one gets

J(α1, d1) = ‖F‖2H(D) − 〈F, d1〉2H(D) .

Consequently, this dictionary element d1 ∈ D for which F has the largest projec-
tion, i.e., the dictionary element which is most collinear to F , is the optimal choice
in the first step. The first approximation is, therefore,

F1 = 〈F, d1〉H(D) d1,

where d1 ∈ D is a maximizer of 〈F, d1〉2H(D), i.e.,

d1 = argmax
d∈D

〈F, d〉2H(D) .

With the residual R1 = F − F1, one can analogously proceed. In general, if Rn is
given, then one has to find dn+1 ∈ D such that 〈Rn, dn+1〉2H(D) is maximal and

then sets
Fn+1 = Fn + 〈Rn, dn+1〉H(D) dn+1.
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Functional matching pursuit. In the case of an inverse problem FF = y, one
minimizes the data misfit

J (α1, d1) = ‖y −F (α1d1)‖2Rl

= ‖y‖2
Rl − 2α1 〈y,Fd1〉Rl + α2

1 ‖Fd1‖2Rl ,

which implies that, again by assuming that ∂
∂α1

J(α1, d1) = 0,

α1 =
〈y,Fd1〉Rl

‖Fd1‖2Rl

.

Consequently,

J (α1, d1) = ‖y‖2
Rl −

〈y,Fd1〉2Rl

‖Fd1‖2Rl

shows that d1 has to be chosen such that

〈y,Fd1〉2Rl

‖Fd1‖2Rl

is maximal. Then,

F1 =
〈y,Fd1〉Rl

‖Fd1‖2Rl

d1

is the first approximation. With the residual R1 = y − FF1, one proceeds again
analogously. Hence, for a given residual Rn, one chooses dn+1 such that

〈Rn,Fdn+1〉2Rl

‖Fdn+1‖2Rl

is maximal and we set

Fn+1 = Fn +
〈Rn,Fdn+1〉Rl

‖Fdn+1‖2Rl

dn+1.

Regularized functional matching pursuit. For the handling of ill-posed inverse
problems, the Regularized Functional Matching Pursuit (RFMP) includes a Tikho-
nov-type regularization term

λ ‖Fn‖2H(D) ,

where λ ∈ R+ is a regularization parameter. Note that the choice of the (Sobolev)
spaceH(D) influences the obtained result by requiring a particular kind of ‘smooth-
ness’. For instance, the Sobolev space H(2)(Ω) yields a regularization term which
is not equal but similar to the norm which occurs in the minimum principle of
spherical spline interpolation (see Theorem 4).

In analogy to the above, let Fn ∈ H(D) be the approximation after iteration n
and Rn = y−FFn be the residual, the error on the right-hand side of the inverse
problem FF = y. We find dn+1 ∈ D and αn+1 ∈ R such that

Jλ (αn+1, dn+1) = ‖Rn −F (αn+1dn+1)‖2Rl + λ ‖Fn + αn+1dn+1‖2H(D)
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is minimal. Treating the functional Jλ like J above, one obtains

Jλ (αn+1, dn+1) = ‖Rn‖2
Rl − 2αn+1 〈Rn,Fdn+1〉Rl + α2

n+1 ‖Fdn+1‖2Rl

+ λ
(
‖Fn‖2H(D) + 2αn+1 〈Fn, dn+1〉H(D) + α2

n+1

)
, (160)

where the necessary condition ∂
∂αn+1

Jλ(αn+1, dn+1) = 0 yields

αn+1 =
〈Rn,Fdn+1〉Rl − λ 〈Fn, dn+1〉H(D)

‖Fdn+1‖2Rl + λ
. (161)

If one inserts (161) into (160), one gets

Jλ (αn+1, dn+1) = ‖Rn‖2
Rl + λ ‖Fn‖2H(D) −

(
〈Rn,Fdn+1〉Rl − λ 〈Fn, dn+1〉H(D)

)2

‖Fdn+1‖2Rl + λ

such that dn+1 ∈ D has to be chosen as a maximizer of(
〈Rn,Fdn+1〉Rl − λ 〈Fn, dn+1〉H(D)

)2

‖Fdn+1‖2Rl + λ
.

This yields the following algorithm (where the Functional Matching Pursuit is a
particular case for λ = 0).

Algorithm 6 (RFMP). Let a data vector y ∈ Rl, a linear and continuous operator
F : H(D) → Rl, a dictionary D ⊂ {d ∈ H(D) | ‖d‖H(D) = 1} and an initial
approximation F0 ∈ H(D) be given.

(i) Initialize the iteration with n = 0 and R0 = y − FF0 and select a stop-
ping criterion (data-misfit-based, i.e., choose ε > 0 to require ‖Rn+1‖ < ε,
or iteration-based, i.e., choose N ∈ N to require n + 1 ≤ N) as well as a
regularization parameter λ ∈ R+

0 .
(ii) Determine

dn+1 = argmax
d∈D

(
〈Rn,Fd〉

Rl − λ 〈Fn, d〉H(D)

)2

‖Fd‖2
Rl + λ

, (162)

αn+1 =
〈Rn,Fdn+1〉Rl − λ 〈Fn, dn+1〉H(D)

‖Fdn+1‖2Rl + λ
(163)

and set Fn+1 = Fn + αn+1dn+1 and Rn+1 = Rn − αn+1Fdn+1.
(iii) If the stopping criterion is satisfied, then use Fn+1 as an approximate solution

to FF = y. Otherwise, increase n by 1 and go to step (ii).

The algorithm is accelerated if one implements the following procedures.

• Normalize the dictionary: use the assumption above and choose all d ∈ D
such that ‖d‖H(D) = 1, otherwise the norm of the dictionary elements occurs
in (162) and (163) (see, e.g., [24]).
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• Move as much as possible to the preprocessing: calculate ‖Fd‖Rl for all d ∈ D
and the (symmetric) matrices with the components 〈d,d̃〉H(D) and 〈Fd,F d̃〉Rl ,

respectively, (with d, d̃ ∈ D) once and store them.
• Use preprocessing for finding dn+1 and αn+1: note, in particular, that

〈Rn,Fd〉
Rl =

〈
Rn−1,Fd

〉
Rl − αn 〈Fdn,Fd〉

Rl ,

〈Fn, d〉H(D) = 〈Fn−1, d〉H(D) + αn 〈dn, d〉H(D) ,

where, in both cases, the first summands on the right-hand side are already
known from the previous iteration step (i.e., step n− 1).

It should be mentioned that, in (162), the maximizer need not be uniquely deter-
mined. In this case, no particular strategy for choosing between several maximizers
has been applied yet.

One essential result is the following convergence theorem.

Theorem 7 (Convergence Theorem). Let the dictionary D satisfy:

(i) ‘semi-frame condition’: There exist a constant c > 0 and an integer N such
that, for all expansions H =

∑∞
k=1 βkdk with βk ∈ R and dk ∈ D, where the

dk are not necessarily pairwise distinct but {j ∈ N | dj = dk} is a finite set
with at most N elements for each k ∈ N,

c‖H‖2H(D) ≤
∑∞

k=1
β2
k .

(ii) ‖d‖H(D) = 1 for all d ∈ D and, if λ = 0, then infd∈D ‖Fd‖Rl > 0 is required
additionally.

If the sequence (Fn)n is produced by the RFMP and no dictionary element is chosen
more than N times, then (Fn)n converges in H(D) to F∞ = F0 +

∑∞
n=1 αndn ∈

H(D). Moreover, the following holds true:

(a) If spanD‖·‖H(D) = H(D) and λ ∈ R+
0 is an arbitrary parameter, then F∞

solves
(F∗F + λI)F∞ = F∗y ,

where F∗ is the adjoint operator corresponding to F and I is the identity
operator on H(D). In other words,

‖y −FF∞‖2
Rl + λ ‖F∞‖2H(D) = min

F∈H(D)

(
‖y −FF‖2

Rl + λ ‖F‖2H(D)

)
,

where the minimizer is unique, if λ > 0.
(b) If span {Fd | d ∈ D} = Rl and λ = 0, then F∞ solves FF∞ = y.

Note that the semi-frame condition has been changed (including the require-
ment on repeated choices of dictionary elements) in comparison to earlier publica-
tions on the RFMP by Michel [69] and Michel and Telschow [72], since an unlimited
number of equally chosen dictionary elements would allow a counterexample for
which the semi-frame condition could not be achieved, as it was pointed out in
[73]. For a proof of the convergence theorem and additional properties, see [71].

For numerical examples of RFMP applied to geodetic problems, see [23–26, 72].
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Regularized orthogonal functional matching pursuit. Numerical experiments show
that the RFMP chooses some dictionary elements several times, which actually
means that some of the previously calculated coefficients α1, . . . , αn are corrected.
The reason for this phenomenon is that the dictionary elements (or their images in
the data space) are typically non-orthogonal. In the case of the Matching Pursuit
(MP), this effect is compensated for by introducing a particular orthogonal projec-
tion procedure in the Orthogonal Matching Pursuit (OMP, see [78]) and by using
‘prefitting’ (see [98]). However, the OMP requires that the data and the solution
are in the same space for performing the projection and it also does not contain a
regularization.

In [95] and [73], the idea behind OMP and ‘prefitting’ was used to enhance
RFMP to Regularized Orthogonal Functional Matching Pursuit (ROFMP). It is
now possible to update the coefficients αi in every iteration. For this reason, the
approximation after step n is represented by

Fn =

n∑
i=1

α
(n)
i di.

If one measures the quality of an approximate solution in the data space, i.e., in the
sense of the data misfit, then the best approximation (without a regularization)
in terms of (fixed) d1, . . . , dn would be given by requiring that FFn equals the
orthogonal projection of y onto

Vn = span {Fd1, . . . ,Fdn} ,

i.e., FFn = PVny. This is equivalent to requiring that the residual Rn = y −FFn

is orthogonal to Vn. Geometrically speaking, FFn is the projection of y onto the
hyperplane Vn and Rn is the associated plumbline, see Figure 16.

Vn

0

y

PVny

Rn

Figure 16. Illustration of the orthogonal projection PVny in Rl.



810 W. Freeden, V. Michel, and F.J. Simons

Consequently, the next summand αn+1dn+1 should complement the previous ap-
proximation Fn such that FFn+1 = PVn+1y. However, in general, PVn(Fdn+1) �= 0.
This projection would, however, deteriorate the previously exact approximation of
PVny by FFn. For this reason, this redundant part is subtracted, i.e., one is inter-
ested in

FFn+1 = FFn + αn+1 [Fdn+1 − PVn (Fdn+1)] .

If one sets PVn(Fd) =
∑n

i=1 β
(n)
i (d)Fdi, then

FFn+1 =
n∑

i=1

α
(n)
i Fdi − αn+1

n∑
i=1

β
(n)
i (dn+1) Fdi + αn+1Fdn+1

=

n∑
i=1

(
α
(n)
i − αn+1β

(n)
i (dn+1)

)
Fdi + αn+1Fdn+1.

Hence, the task is now (in step n+ 1) to find α ∈ R and d ∈ D such that∥∥∥∥∥y −
n∑

i=1

(
α
(n)
i − αβ

(n)
i (d)

)
Fdi − αFd

∥∥∥∥∥
Rl

is minimized. As an approximation at step n+ 1, one uses then

Fn+1 =

n∑
i=1

(
α
(n)
i − αn+1β

(n)
i (dn+1)

)
di + αn+1dn+1,

α
(n+1)
i = α

(n)
i − αn+1β

(n)
i (dn+1) for i = 1, . . . , n

and α
(n+1)
n+1 = αn+1. With the regularization, the functional to minimize is∥∥∥∥∥y −

n∑
i=1

(
α
(n)
i − αβ

(n)
i (d)

)
Fdi − αFd

∥∥∥∥∥
2

Rl

+ λ

∥∥∥∥∥
n∑

i=1

(
α
(n)
i − αβ

(n)
i (d)

)
di + αd

∥∥∥∥∥
2

H(D)

.

This is the principle of the ROFMP. We now introduce some abbreviations.

• The orthogonal complement of Vn in Rl is denoted byWn, i.e., Vn⊕Wn = Rl,
and the projection of Fd onto Wn is

PWn(Fd) = Fd−
n∑

i=1

β
(n)
i (d) Fdi.

• The function associated to PVn(Fd) in H(D) is denoted by

Bn(d) =

n∑
i=1

β
(n)
i (d) di.

Similar derivations as in the cases above finally yield the following algorithm.
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Algorithm 8 (ROFMP). Let a data vector y ∈ Rl, a linear and continuous operator
F : H(D) → Rl and a dictionary D ⊂ H(D) \ {0} be given.

(i) Initialize the iteration with n = 0, F0 = 0 and R0 = y and select a stop-
ping criterion (data-misfit-based, i.e., choose ε > 0 to require ‖Rn+1‖ < ε,
or iteration-based, i.e., choose N ∈ N to require n + 1 ≤ N) as well as a
regularization parameter λ ∈ R+

0 .
(ii) Determine

dn+1 = argmax
d∈D

(
〈Rn,PWn(Fd)〉

Rl + λ 〈Fn, Bn(d)− d〉H(D)

)2

‖PWn(Fd)‖2
Rl + λ ‖Bn(d)− d‖2H(D)

,

αn+1 =
〈Rn,PWn (Fdn+1)〉Rl + λ 〈Fn, Bn (dn+1)− dn+1〉H(D)

‖PWn (Fdn+1)‖2Rl + λ ‖Bn (dn+1)− dn+1‖2H(D)

.

(iii) Update the coefficients as follows:

α
(n+1)
i = α

(n)
i − αn+1β

(n)
i (dn+1) for i = 1, . . . , n,

α
(n+1)
n+1 = αn+1

and set Fn+1 =
∑n+1

i=1 α
(n+1)
i di as well as Rn+1 = y −FFn+1.

(iv) If the stopping criterion is satisfied, then use Fn+1 as an approximate solution
to FF = y. Otherwise, increase n by 1 and go to step (ii).

Obviously, a normalization of the dictionary elements to ‖d‖H(D) = 1 does
not yield an improvement for the implementation in the case of the ROFMP.

Note that the orthogonal projection becomes more and more expensive with
an increasing number n. For this reason, it is advisable to restart the algorithm
after a certain number of steps N by using y − FFN as the new data vector
to be approximated and recounting from n = 0. Due to the linearity of F , the
consecutively produced approximations can be summed up in the end to obtain
an approximation of the solution F of FF = y. It turned out to be useful to keep,
after each restart, the previous approximation FN = F̃ in the regularization term
and to regularize with ‖F̃ + Fn‖2H(D), where (Fn) is the approximating sequence

after the restart.
For details of the implementation, see [95]. For numerical experiments and

theoretical results, see [73, 95]. Note that, in the non-regularized case (λ = 0),
the algorithm is able to produce an exact solution of FF = y in at most l steps,
where y ∈ Rl.

5. Conclusion

For the last decades, the possibilities and challenges which have presented them-
selves to geodesists have changed dramatically. Due to tremendously increased pre-
cisions in measurement technologies and the availability of satellite missions, huge
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amounts of highly accurate data related to the Earth have become available. This
has opened previously unexpected options for observing, analyzing and predicting
the processes of the Earth system. Such progresses can be seen in manifold ways,
for example when the ocean dynamics can be understood better, when the mass
transports due to climate change or seasonal climatic phenomena can be better
quantified and localized, when static and dynamic models of the Earth’s interior
can be validated and improved by a more precise model or when unprecedented
ways of determining heights become available to geodesists.

Since mathematics plays a central role in the processes of, e.g., denoising,
analyzing or inverting geoscientific data, the changes in the data situation can
be mapped to changes in the requirements on the methodologies in mathematical
geodesy (see also [30]). In this paper, we focussed on the uncertainty principle
of spherical signal analysis which tells us that precise localization in space and
in frequency/momentum are mutually exclusive. Moreover, we can interpret the
uncertainty principle as a fundamental property of a spectrum ranging from ideal
frequency localization (i.e., no space localization) to ideal space localization (i.e.,
no frequency localization). The former is associated to the use of spherical har-
monics, which have been a common choice as basis system in geodesy. Away from
this extremal case, in order that trial functions possess a space localization, they
need to be sums of several spherical harmonics. The closer we come to the latter
end of the spectrum with ideal space localization, the more spherical harmonics
degrees have to be summed up in a trial function leading, as a limit, finally to the
(only as a theoretical concept existing) Dirac functional which includes all degrees.

The aforementioned new challenges due to today’s data situation can be re-
flected in this spectrum. In former days, when only a few data were available which
allowed a very coarse global modeling only, spherical harmonics were the ultimate
and reasonable choice. Today, the demands on highly accurate models which are,
in particular, provided with a very high resolution in space define the limits of
the use of spherical harmonics. These models can be better constructed with trial
functions which combine certain extents of space and frequency localization.

As we have shown, there are many facets of localized trial functions which can
be positioned in the spectrum of space and momentum localization. They include
basis functions generated from (reproducing) kernels of particular function spaces.
Such tools have successfully been used for spline and wavelet approximations in
the geosciences. They leave sufficient degrees of freedom to control their variance in
space and momentum. Furthermore, also Slepian functions provide another equally
valuable tool for regionally approximating or analyzing a signal. They provide us
with an orthonormal basis which is, in contrast to spherical harmonics, spacecon-
centrated (to a region which can be arbitrarily chosen). Moreover, the Slepian
functions are also orthogonal in the L2-space of the chosen region, which is essen-
tially useful for the modeling of a signal which is only regionally available. Further-
more, Slepian functions can also be not only spaceconcentrated but even space-
limited with the price (due to the uncertainty principle) that they become non-
bandlimited, i.e., they sum up an infinite number of spherical harmonics degrees.
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Certainly, there exist many other systems of trial functions on the sphere but
also the ball, which have their own characteristics regarding space- and frequency
localization. We added some references to other methods in appropriate paragraphs
but do not claim to have provided a complete overview. In general, a wide range of
special functions systems is available for the analysis of geoscientific data. However,
it appears that, still, the main focus of (too) many research projects in geodesy
and other disciplines of Earth sciences lies on the data alone but not on the choice
of the methodology for their handling.

In this paper, we have tried to break new synoptical ground in dealing with
spherical harmonics based special function systems and their role in constructive
approximation methods of mathematical geodesy. We have presented a short in-
sight and guide for the zoo of spherical trial functions to encourage geoscientists
to question the mathematical basis functions which they use for their models and
not to use mathematical tools as ‘blackboxes’. We have also summarized briefly
the possibility that regularized functional matching pursuit and its variants yield
as algorithms for generating a kind of a best basis out of a selection of different
basis systems.

Further research on finding the ‘optimal’ basis system for particular prob-
lems in mathematical geodesy has to be done. However, the present state-of-the-
art shows that there is a high potential in improving (not only) geodetic models
by using sophisticated mathematical methodologies. Obviously, our work as pre-
sented here is selective, but not only with respect to the choice of discussed basis
functions. Also, not all details on the treated topics could be discussed up to an
appropriate extent. For example, most of the proofs have been left out completely,
so that the interested reader is referred to the attached list of literature. Nonethe-
less, we believe that we have provided a deeper insight on how geoscientific and,
particularly, geodetic problems can be attacked in a mathematically systematic
and rigorous way.
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