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Abstract

We provide a computationally and statistically efficient

method for estimating the parameters of a stochastic covari-

ance model observed on a regular spatial grid in any num-

ber of dimensions. Our proposedmethod, whichwe call the

Debiased Spatial Whittle likelihood, makes important cor-

rections to the well-known Whittle likelihood to account

for large sources of bias caused by boundary effects and

aliasing. We generalize the approach to flexibly allow for

significant volumes of missing data including those with

lower-dimensional substructure, and for irregular sam-

pling boundaries. We build a theoretical framework under

relatively weak assumptions which ensures consistency

and asymptotic normality in numerous practical settings

including missing data and non-Gaussian processes. We

also extend our consistency results to multivariate pro-

cesses. We provide detailed implementation guidelines

which ensure the estimation procedure can be conducted in

(n logn) operations,wheren is the number of points of the
encapsulating rectangular grid, thus keeping the compu-

tational scalability of Fourier and Whittle-based methods

for large data sets. We validate our procedure over a range

of simulated and realworld settings, and compare with

state-of-the-art alternatives, demonstrating the enduring

practical appeal of Fourier-based methods, provided they

are corrected by the procedures developed in this paper.
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1 INTRODUCTION

Among the challenges of modern data analysis is making sense of large volumes of spatial and
spatiotemporal data. State-of-the-art parameter estimation methods are based on various likeli-
hood approximation methods designed to combine statistical and computational efficiency. Such
methods are primarily reliant on spatial/pixel models (Anitescu et al., 2017; Guinness & Fuentes,
2017; Katzfuss, 2017; Stroud et al., 2017), spectral/Fourier understanding (Guinness, 2019; Kauf-
man et al., 2008; Matsuda & Yajima, 2009; Shaby & Ruppert, 2012) or other methods of likelihood
approximation (Banerjee et al., 2008; Lee & Mitchell, 2013; Sang & Huang, 2012; Stein et al.,
2004). Fourier methods, typically based on the Whittle likelihood, are fast and scale well to mas-
sive data sets. Fourier-based methods, on the other hand, are known to engender large sources of
bias, particularly in dimensions greater than one (Dahlhaus & Künsch, 1987), in the presence of
missing data, or under irregular sampling (Fuentes, 2007; Matsuda & Yajima, 2009). In this paper
we propose a novel methodology that simultaneously addresses these challenges for spatial data
observed on a regular grid, with potentially missing data and irregular sampling boundaries, and
in any number of dimensions.

The bias which we remove is due to finite-domain effects, the multidimensional boundary
and aliasing. Much of the literature on Whittle estimation has focused on modifications to the
periodogram to reduce bias, such as tapering (Dahlhaus & Künsch, 1987), edge effect estima-
tion (Robinson & Sanz, 2006) or accounting for non-standard sampling scenarios (Fuentes, 2007;
Matsuda & Yajima, 2009; Rao, 2018). The solution we propose is simple yet effective: determine
the true expectation of the periodogram under the proposed model and sampling regime, and
construct a quasi-likelihood using this quantity rather than the true spectrum—further develop-
ing and generalizing a procedure recently proposed by Sykulski et al. (2019) for one-dimensional
completely observed time series. We shall show that the Debiased Spatial Whittle likelihood
almost completely removes estimation bias in spatial inference, even in the presence of signifi-
cant amounts of missing data, while leaving estimation variance essentially unaffected. We also
establish a convergence rate under very general sampling and model assumptions.

DebiasingWhittle estimates using the expected periodogram has been notionally investigated
in various more restrictive frameworks by Fernández-Casal and Crujeiras (2010), Simons and
Olhede (2013) and Deb et al. (2017). This article, however, is the first to formalize the estima-
tion procedure by providing theoretical guarantees that apply in any number of dimensions,
allow for missing and/or non-Gaussian data, and account for aliasing and irregular sampling
boundaries. To achieve this we introduce the concept of significant correlation contribution, which
provides weak conditions on sampling regimes that allow for asymptotically consistent param-
eter estimation—leveraging ideas from modulated time series proposed by Guillaumin et al.
(2017). Boundary effects play a significant role as d, the dimensionality of the sampling domain,
increases: the bias for a d-dimensional cube with side l scales like 1/lwhile the standard deviation
scales like 1∕ld∕2. Thus for d > 2 the bias is of primary significance, and it is important even for
d= 2. This paper is also the first to provide fast(n logn) computational implementation, includ-
ing for missing data and higher dimensions. We also prove consistency for multivariate processes
which may exhibit different missingness patterns across components.
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We establish the choice of notation and assumptions in Section 2. We propose our spatial
quasi-likelihood in Section 3. In Section 4we introduce significant correlation contribution (SCC),
with conditions guaranteeing consistent estimation under a wide range of sampling schemes.
Section 5 develops our theoretical results which include consistency, convergence rates, and
asymptotic normality of parameter estimates in a wide range of settings. Section 6 shows the
improved performance on simulated data, and on actual data of Venus’ topography. We conclude
with discussion in Section 7.

2 NOTATION AND ASSUMPTIONS

Consider a finite-variance and zero-mean random field X(s), for s ∈ Rd, where d ≥ 1 is a positive
integer. Under the assumption of homogeneity, we denote the covariance function of X(s) by
cX (u), u ∈ Rd, and assume the existence of a positive piecewise continuous Riemann-integrable
spectral density function fX (𝝎), such that ∀u, s ∈ Rd,

cX (u) = E{X(s)X(s + u)} = ∫
Rd

fX (𝝎) exp(i𝝎 ⋅ u)d𝝎, (1)

and fX (𝝎) = (2𝜋)−d ∫
Rd cX (u) exp(−i𝝎 ⋅ u)du. We shall assume the spectral density belongs to

a parametric family indexed by the parameter 𝜸 ∈ Θ, with fX (𝝎) = f (𝝎;𝜽), denoting the true
parameter value by 𝜽 ∈ Θ. The random field X(s) is taken to be homogeneous but not neces-
sarily isometric. We denote n = (n1, … ,nd) ∈ (N+)d, with N+ the set of positive integers, the
dimensions of an orthogonal regular and rectangular bounding grid, defined by

n = {𝜹◦ [x1, … , xd]
T ∶ (x1, … , xd) ∈ N

d, 0 ≤ xi ≤ ni − 1, i = 1, … , d}, (2)

and denote by |n| = ∏d
i=1ni the total number of points of this grid. We denote by Xs, s ∈ n the

values of the process on the grid. In Equation (2), the quantity 𝜹 ∈ (R+)d indicates the regular
spacing along each axis, with R+ the set of positive real numbers, and ◦ denotes the pointwise
Hadamard product between two vectors.We always take𝜹 = [1, … , 1]T for simplicity, yetwithout
loss of generality. We write fX ,𝜹(𝝎) for the spectral density of the sampled process, the aliased
spectral density, defined by

fX ,𝜹(𝝎) =
∑
u∈Zd

fX (𝝎 + 2𝜋u), 𝝎 ∈ R
d, (3)

which is a Fourier pair with cX (u) = ∫ d fX ,𝛿(𝝎) exp(i𝝎 ⋅ u)d𝝎, ∀u ∈ Zd, and  = [0, 2𝜋), with Z

the set of integers.
To account for irregular domain shapes and missing data, we define a deterministic modula-

tion value gs at each location of the grid n. If a point on the regular grid is missing then gs = 0,
otherwise gs = 1. By convention, gs is extended to the whole set Zd, defining gs = 0 if s ∉ n.
Using this notation, the periodogram of the observed data takes the form of

In(𝝎) =
(2𝜋)−d∑
s∈n g

2
s

||||||
∑
s∈n

gsXs exp(−i𝝎 ⋅ s)

||||||

2

, 𝝎 ∈ R
d, (4)
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where normalizing by
∑

s∈n g
2
s rescales the periodogram for missing data, as performed by

Fuentes (2007). Note that, despite this similarity, our approach is fundamentally different to that
of Fuentes (2007), where this extended definition of the periodogram is used in the Whittle pro-
cedure to address missing data. While this uniform rescaling is central to the method proposed
by Fuentes (2007), it is merely a convention in our case. In practice, this rescaling is not actually
required in our implementation as it will be cancelled out by the rescaling in the expected peri-
odogram, as we shall shortly see. Evaluating the periodogram on the multidimensional Fourier
grid

d∏
j=1

{2𝜋kn−1j ∶ k = 0, … ,nj − 1}

associated with the spatial grid n requires (|n| log |n|) elementary operations using the Fast
Fourier Transform (FFT). If a taper is used in the spectral estimate of Equation (4), then the values
of the taper are directly incorporated into gs, such that gs is proportional to the taper at locations
where data are observed (and still set to zero otherwise). We shall assume that gs takes values
in the interval [0, 1] as would be the case when using the periodogram, however, this condition
could be relaxed to assuming an upper bound for the absolute value.

3 METHODOLOGY

We shall now introduce the Debiased Spatial Whittle likelihood and an algorithm for its com-
putation that only requires FFTs, even in the scenario of missing data and general boundaries.
Thus our estimation method retains the (|n| log |n|) computational cost of frequency-domain
approaches for regular grids.

3.1 Estimation procedure

Exact likelihood has optimal statistical properties in the framework of an increasing domain
(Mardia & Marshall, 1984), however it is computationally inadequate for large data sets of spa-
tial observations due to the determinant calculation and linear system that needs to be solved. A
common approach is to trade off computational cost with statistical efficiency by using approxi-
mations of the likelihood function (Fuentes, 2007; Guinness & Fuentes, 2017; Varin et al., 2011).
Such functions are commonly called quasi-likelihoodmethods. Our proposed estimationmethod
uses the following quasi-likelihood, which we call the Debiased Spatial Whittle Likelihood,

𝓁(𝜸) = |n|−1 ∑
𝝎∈Ωn

{
log In(𝝎; 𝜸) +

In(𝝎)

In(𝝎; 𝜸)

}
(5)

where, for all 𝜸 ∈ Θ,

In(𝝎; 𝜸) = E𝜸{In(𝝎)}, ∀𝝎 ∈  d, (6)

is the expected periodogram given the modulation values gs, under the mean-zero distribution
of Xs with covariance structure specified by the parameter vector 𝜸—see also Fernández-Casal
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and Crujeiras (2010). In Section 4.3.4 we describe the multivariate extension to Equation (22).
Note that in Equation (5) the summation is over Ωn ⊂  d. It is common to use the natural set
of Fourier frequencies Ω(1)

n ≡ ∏d
j=1{2k𝜋n

−1
j

∶ k = 0, … ,nj − 1} for Ωn in Whittle estimation, or
a subset of these for semi-parametric modelling. To ensure identifiability in degenerate sampling
scenarios, when one ormore of the dimensions of the domain are not growing to infinity, we shall
set Ωn to be the set of Fourier frequencies Ω

(2)
n ≡ ∏d

j=1{k𝜋n
−1
j

∶ k = 0, … , 2nj − 1} in our theo-

retical developments. In practice, we shall use the natural set of Fourier frequencies Ω(1)
n in our

simulations and real-data example, as this is computationally faster and the practical difference
was found to be insignificant.

Replacing In(𝝎; 𝜸) with fX (𝝎; 𝜸) in Equation (5) yields the discretized form of the stan-
dard Whittle likelihood. Note, however, that unlike the spectral density fX (𝝎), the expected
periodogram In(𝝎; 𝜸) directly accounts for the sampling, as it depends on the dimensions of
the lattice n and on the modulation values gs that account for missing data. We minimize
Equation (5) over Θ to obtain our estimate,

�̂� = arg min
𝜸∈Θ

{𝓁(𝜸)}. (7)

By minimizing Equation (5), we find the maximum-likelihood estimate of the data under the
following parametric model,

In(𝝎)
i.i.d.
∼ Exp{I

−1
n (𝝎;𝜽)}, 𝝎 ∈ Ωn, (8)

where Exp(𝜆) stands for the exponential distribution with parameter 𝜆. Hence the quantity given
in Equation (5) can be seen as a composite likelihood (Bevilacqua & Gaetan, 2015; Varin et al.,
2011). We also observe that ∇𝜽𝓁(𝜽) = 0 such that our method fits within the general theory of
estimating equations (Heyde, 1997; Jesus & Chandler, 2017).

3.2 Computation of the expected periodogram

In this section we show how the expected periodogram in Equation (5) can be computed using
FFTs such that our quasi-likelihood remains an (|n| log |n|) procedure, for any dimension d,
and independently of the missing data patterns. Direct calculations show that the expected peri-
odogram is the convolution of the spectral density of the process with the multi-dimensional
kernel n(𝝎),

In(𝝎; 𝜸) = {fX ( ⋅ ; 𝜸) ∗ n(⋅)} (𝝎) = ∫ d

fX ,𝜹(𝝎 − 𝝎′; 𝜸)n(𝝎′)d𝝎′,

where

n(𝝎) = (2𝜋)−d∑
g2s

||||||
∑
s∈n

gs exp(i𝝎 ⋅ s)

||||||

2

, 𝝎 ∈ R
d. (9)

When gs = 1, ∀s ∈ n, n(𝝎) is simply the multi-dimensional rectangular Féjer kernel, that is, a
separable product of one-dimensional Féjer kernels. For this reasonwe calln(𝝎) amodifiedFéjer
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kernel. We now provide two lemmata stating that the expected periodogram can be computed via
FFTs for any value of the modulation gs on the grid n.
Lemma 1 (Expected periodogram as a Fourier series). The expected periodogram can be written

as the following Fourier series,

In(𝝎; 𝜸) = (2𝜋)−d
∑
u∈Zd

cn(u; 𝜸) exp(−i𝝎 ⋅ u), ∀𝝎 ∈  d,∀𝜸 ∈ Θ, (10)

where cn(u; 𝜸) is defined by

cn(u; 𝜸) = cg,n(u)cX (u; 𝜸), u ∈ Z
d, with (11)

cg,n(u) =

∑
s∈n gsgs+u∑
s∈n g

2
s

, u ∈ Z
d. (12)

Proof. Direct calculation upon taking the expectation of the periodogram as defined in
Equation (4).

Note that, having set gs to take value zero outside of the sampling domain, we can rewrite
Equation (12) as

cg,n(u) =

∑
s∈Zd gsgs+u∑
s∈Zd g2s

, u ∈ Z
d. (13)

In practice we can evaluate the expected periodogram at the set of Fourier frequencies through a
multidimensional FFT, as detailed in the following lemma.

Lemma 2 (Computation of the expected periodogram via FFT). The expected periodogram can

be expressed as

In(𝝎; 𝜸) = (2𝜋)−d
n1−1∑
u1=0

…

nd−1∑
ud=0

c̃n(u) exp(−i𝝎k ⋅ u), ∀𝝎 ∈ Ω
(1)
n , (14)

where

c̃n(u) =
∑
q

cn(u − q◦n; 𝜸), u ∈ Z
d, (15)

and where the sum over q ranges over all vectors of size d with elements in the set {0, 1} (hence,

2d of them), and where ◦ denotes the Hadamard product. Thus the expected periodogram can

be computed via FFT. Note that c̃n is a periodized version of cn as c̃n(u − q◦n) = c̃n(u).

Proof. Please see the Supplementary Material.

As an example, in dimension d = 2, q takes values in
{
[0 0]T , [1 0]T , [0 1]T , [1 1]T

}
, and

Equation (14) therefore takes the form

In(𝝎; 𝜸) = (2𝜋)−d
n1−1∑
u1=0

n2−1∑
u2=0

{
cn (u1,u2; 𝜸) + cn (u1 − n1,u2 − n2; 𝜸)

+ cn (u1,u2 − n2; 𝜸) + cn (u1 − n1,u2; 𝜸)
}
exp(−i𝝎k ⋅ u).
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We remind the reader that gs is defined to be zero outside n. Hence, in the case of no tapering,
cg,n(u) in Equation (12) is the ratio of the number of pairs of observations separated by the vectoru
over the total number of observed points of the rectangular grid n. In the special case of complete
observations on the rectangular grid, Equation (12) simplifies to

cg,n(u) =

⎧
⎪⎨⎪⎩

|n|−1∏d
i=1 (ni − |ui|) = ∏d

i=1

(
1 − |ui|

ni

)
if |ui| ≤ ni − 1, i = 1, … , d,

0 otherwise.
(16)

which is a multidimensional form of the triangle kernel found in Percival and Walden (1993,
p. 198) for the expected periodogram of regularly sampled time series. In the general case, cg,n(u)
is precomputed for all relevant values of u via an FFT independently of the parameter value
𝜸, such that our method can be applied to scenarios of missing data without loss of computa-
tional efficiency. Similarly, we can combine our debiasing procedure with tapering by using a
tapered spectral estimate for In(𝝎) in Equation (5) with adjusted values for gs (as discussed at
the end of Section 2). The expected periodogram, In(𝝎; 𝜸), is then computed on Ωn by using
these values of gs in the formulation of cg,n(u) in Equation (12). Combining debiasing and taper-
ing therefore remains an (|n| log |n|) procedure. The procedure of Equation (14) automatically
incorporates sampling effects (geometry of the observation region, missing observations), alias-
ing and boundary effects in one(|n| log |n|) operation. Note that merely calculating the aliased
spectral density, and using this in the Whittle likelihood, requires knowledge of the full decay of
the spectrum, and deciding on how many aliased terms to include; a procedure that in general
requires non-automatic intervention and is not guaranteed to be (|n| log |n|).

4 PROPERTIES OF SAMPLING PATTERNS

To account for missing observations on the rectangular grid n, we replace missing values with
zeros via the modulation function gs. Depending on gs this may result in losing identifiability of
the parameter vector from the second-ordermoment quantities available from the data.More gen-
erally, we wish to understand how the sampling pattern affects the consistency of our estimation
procedure. To this end, we define the notion of SCC for spatial random fields, which determines
whether the sampling pattern samples enough spatial lags where information about the model
lies. This generalizes ideas frommodulated time series (Guillaumin et al., 2017). Following three
simple lemmata on some properties of cg,n(u), we shall provide the formal definition of SCC, and
follow with some general cases and an example with an isometric model family to provide more
intuition and demonstrate the generality of our framework.

4.1 Basic properties of cg,n(u) and n(𝝎)

We state three basic properties of the introduced quantity cg,n(u), in order to provide more
intuition, but also for further use in this paper.

Lemma 3 We have

0 ≤ cg,n(u) ≤ 1, ∀u ∈ Z. (17)
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Proof. The left side of the inequality is obvious as, by assumption, gs ≥ 0. The right side is obtained
by direct application of the Cauchy–Schwarz inequality. □

Lemma 4 (Finite support). The spatial kernel cg,n(u) vanishes for u ∈ Zd if for any j = 1, … , d,
|uj| ≥ nj.

Proof. This is immediate from the definition.

Lemma 5 (Fourier pair). The kernel n(𝝎), 𝝎 ∈  d, defined in Equation (9), and cg,n(u), u ∈ Zd,
defined in Equation (12), form a Fourier pair.

Proof. This is a direct application of the convolution theorem, having noted that cg,n(u) is a
discrete convolution. □

4.2 Definitions

Our concept of SCC is defined in asymptotic terms, since we shall make use of this to establish
consistency of our estimator.More specifically, we consider a sequence of grids, indexed by k ∈ N,
which goes to infinity, rather than a single grid.

Definition 1 (Significant correlation contribution (SCC)). A sequence of observed grids
(nk , gk)k∈N leads to SCC for the model family {f X (⋅; 𝜸): 𝜸 ∈ Θ} if it satisfies both

⎧⎪⎨⎪⎩

∑
u∈Zd cg,nk (u)c

2
X
(u) =

k→∞
o
(∑

g2s
)
,

lim
k→∞

Sk(𝜽1,𝜽2) > 0, ∀𝜽1 ≠ 𝜽2 ∈ Θ,
(18)

where lim
k→∞

denotes the limit inferior and where we have defined, for all 𝜽1,𝜽2 ∈ Θ,

Sk(𝜽1,𝜽2) ≡ ∑
u∈Zd

cg,nk (u)
2{cX (u;𝜽1) − cX (u;𝜽2)}

2. (19)

The rationale for this definition of Sk(𝜽1,𝜽2) is that

Sk(𝜽1,𝜽2) = (2𝜋)−d ∫ d

{
Ink (𝝎;𝜽1) − Ink (𝝎;𝜽2)

}2
d𝝎,

due to Equation (10) and Parseval’s identity for Fourier series. We remind the reader that
the sums in Equations (18) and (19) are de facto finite for a given n, due to the definition
of cg,n(u), which for fixed n has finite support according to Lemma 4. We observe that the
above definition depends on both the sequence of grids, from cg,nk (u), and on the model fam-
ily, from cX (u; γ). In the rest of this paper we shall say that a sequence of grids leads to SCC,
if the model family that this applies to is obvious from the context. In addition we define the
notion of highly significant correlation contribution (HSCC), which will allow us to establish a
convergence rate.

Definition 2 (Highly Significant Correlation Contribution). A sequence of observed grids
(nk , gk)k∈N leads to HSCC for the model family {f X (⋅; 𝜸): 𝜸 ∈ Θ}
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a. if it leads to SCC,
b. if the covariance function is differentiable with respect to the parameter vector, and in

particular, the quantity minv∈Rp,||v||=1
∑

u∈Zd c2g,nk (u)
(∑p

j=1
vj
{

𝜕cX
𝜕𝜽j

(u;𝜽)
})2

is asymptoti-

cally lower bounded by a non-zero value, denoted S(𝜽),
c. if the expected periodogram is twice differentiable with respect to the parameter vec-

tor, and such that its first and second derivatives are both upper bounded in norm by a
constant denotedM𝜕𝜃2 > 0.

Note that a necessary andmore intuitive condition for the second item of the above definition

is that for all j= 1, … , d,
∑

u∈Zd c2g,nk (u)
[
𝜕cX
𝜕𝜽j

(u; 𝜸)
]2
be lower bounded by a positive value. Broadly

speaking, the first part of Equation (18) is required so that information grows fast enough. It can
be compared to necessary conditions of decaying covariances in laws of large numbers, with the
additional requirement of accounting for sampling when considering spatial data. Note that the
first part of Equation (18) is obviously satisfied if the sample covariance sequence is assumed
square summable and the number of observations grows infinite.

The second part of Equation (18) ensures that the expected periodograms for any two param-
eter vectors of the parameter set remain asymptotically distant in terms of2 norm. In Lemma 11
in Section 5, we show how this transfers to the expectation of the likelihood function, ensuring
that it attains its minimum at the true parameter vector uniquely. Then in Lemma 15 we show
that the likelihood function converges uniformly in probability to its expectation over the param-
eter set, as long as the first part of Equation (18) is satisfied. This all together will eventually
lead to the consistency of our inference procedure, which is the result of Theorem 1. Hence the
second part of Equation (18) is required to ensure that the sampling allows to distinguish param-
eter vectors based on the expectation of our approximate likelihood function. To provide further
understanding, we shall now consider some general cases and specific examples with respect to
this definition.

4.3 General sampling cases and sampling example

Definition 1 extends the definition of SCC provided by Guillaumin et al. (2017) for time series in
twoways. First, it provides a generalization for spatial data with the notable difference that spatial
sampling is more complex than sampling in time. Indeed, one needs to not only account for the
frequency of the sampling but also for the spatial sampling direction. Second, even in dimension
one, the version provided by Guillaumin et al. (2017) implies the version provided here, while the
reverse is not always true—thus relaxing the assumptions required for consistency. Specifically,
in the second part of Equation (18), we do not require observing a specific finite set of lags that
will allow identification of the parameters, unlike Guillaumin et al. (2017). We now provide more
intuition about SCC through general cases, and a specific example.

4.3.1 General sampling cases

Under standard sampling conditions, SCC takes a simpler form, as we show through the two
following lemmata.

Lemma 6 (SCC for full grids). If we observe a sequence of full rectangular grids that grow

unbounded in all directions (i.e. nj → ∞, j = 1, … , d), then SCC is equivalent to the
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standard assumption that for any two distinct parameter vectors 𝜽1,𝜽2 ∈ Θ, the measure of
the set {𝝎 ∈  d ∶ fX ,𝜹(𝝎;𝜽1) ≠ fX ,𝜹(𝝎;𝜽2)} is positive.

Proof. Please see the Supplementary Material.

Importantly, we do not require the growth to happen at the same rate in all directions. We
do require that grids grow unbounded in all directions to obtain this equivalence when we
have no further knowledge on the functional form of the spectral densities. However, in many
practical cases, such as that of an isometric exponential covariance function, our results still hold
if the grid grows unbounded in one direction rather than all. Another important case for practical
applications is that of a fixed shape of observations that grows unbounded, which is the subject
of the following lemma.

Lemma 7 (Fixed shape of observations). Consider a fixed shape defined by a function Ξ ∶

[0, 1]d → {0, 1}, and let gk,s = Ξ(s◦n−1
k
),∀s ∈ nk ,∀k ∈ N. If the grids grow unbounded in all

directions, and if the interior of the support of Ξ is not empty, then SCC is again equivalent to

the condition stated in Lemma 6 on the parametric family of spectral densities.

Proof. Please see the Supplementary Material.

In Section 6.2 we provide a simulation study for the particular case of a circular shape of
observations, which satisfies this lemma.

Finally, from a frequency-domain point of view, the second part of SCC can be understood
according to the following lemma.

Lemma 8 The second part of SCC is equivalent to

Sk(𝜽1,𝜽2) = ∫ d

||||∫ d

nk (𝝎′)
{
fX (𝝎

′ − 𝝎;𝜽1) − fX (𝝎
′ − 𝝎;𝜽2)

}
d𝝎′

||||
2

d𝝎 > 0.

Proof. This comes as a consequence of Lemma 5 and standard Fourier theory.

Most importantly, note that in general SCC requires more than the necessary requirement
that for two distinct parameters, the expected periodograms for the sequence of grids should be
non-equal, and this is to correctly account for missing data mechanisms and their impact on
consistency. To obtain SCC (c.f. [19]) this means we require that information about 𝜽1 relative
to 𝜽2 grows as we observe ever larger patches of data. Our vulnerability to adversarial sampling
will depend on the structure of the covariance pattern under study; for example if we only sam-
ple along a boundary then between points on the boundary we get information about very short
scales, or between parts of the boundary only very long scales. We will now provide further
intuition about SCC through a specific example.

4.3.2 Examples

We consider a separable exponential covariance function (d= 2 here) with parameters 𝜌1 > 0 and
𝜌2 > 0 defined by

cX (u) = 𝜎2 exp
(
−𝜌−11 |u1|) exp (−𝜌−12 |u2|) , u ∈ R

2. (20)
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If we sample along one axis only, it is clear that the second part of SCC fails as the range parameter
along the other axis cannot be identified from the data. In contrast, the second part of SCCwill be
satisfied for this particular model and for a full rectangular grid as long as n1 ≥ 2 and n2 ≥ 2. The
first part of SCC is valid as long as the sample size grows to infinity, since the sample covariance
function is square summable. For this model class, SCC is therefore satisfied if and only if n1 ≥ 2
and n2 ≥ 2 and n1n2 goes to infinity. It is also worth observing that under those conditions, the
convergence rate of our estimator will be (

(n1n2)−1∕2
)
(see Theorem 2), irrespective of the ratio

n1∕n2, which, in particular, is allowed to converge to zero or infinity. The SupplementaryMaterial
provides an example where SCC fails.

These two examples show the flexibility of SCC compared to standard assumptions. They
show that the two parts of SCC are complimentary and help understand their role in establishing
consistency. The second part is required to ensure identifiability of the parameter vector from the
expected periodogram. The first part of SCC is required to ensure that some form of a law of large
numbers holds for linear combinations of the periodogram.

4.3.3 Application to randomly missing data

Our extended definition of SCC can be applied to the scenario where data are missing at random,
on the condition that the randomness scheme for the missing data is independent from that of
the observed process. For such applications we shall say that a sequence of grids leads to SCC
almost surely if (18) is satisfied almost surely under the probability that defines the missingness
scheme. If a sequence of grids leads to SCC almost surely, it is easy to verify that all our consis-
tency results derived in Section 5 still hold. Yet again for consistency we need our information
about 𝜽1 relative to 𝜽2 to grow as we observe ever larger patches of data with randomly missing
observations. This need not correspond to a linear relationship between the observed number of
samples and the nominal number of samples in the observational domain, but instead depends
on the true covariance of the random field under study.

A simple application of these considerations is one where each point of a rectangular grid is
observed or missed according to a Bernoulli random variable (with a positive probability of being
observed), independently of other points of the grid, and independently of the observed process.

4.3.4 Extension to multivariate random fields

In this section we define the notation necessary for multivariate random fields. Assume we
observe p ≥ 1 random fields jointly,

Y
(q)
s = g

(q)
s X

(q)
s , s ∈ R

d, q ∈ {1, … , p}, (21)

and allow the observation pattern defined by the modulations g(q)s to differ across the p ran-
dom fields. This is a realistic observation scheme in many real-world settings, for example, for
multi-spectral and repeated remote-sensing observations, where cloud cover will contribute to
varying degrees of censoring, yet with the underlying grids essentially unchanged (e.g. Song et al.,
2018).

Just like Rao (1967) we compute the cross-periodogram of pairs of processes. Assume we
observe the p-variate process Xs and that for each process sampled at the same grid we have
a masking function g

(q)
s for 1 ≤ q ≤ p, so that we can incorporate some variation in sampling

frequency, see, for example, Gotway and Young (2002). We calculate the DFT to be



GUILLAUMIN et al. 1537

J(q)(𝝎) =
(2𝜋)−d∕2√∑

s∈n g
(q)2

s

∑
s

g
(q)
s X

(q)
s exp{−is ⋅ 𝝎},

and we collect the DFTs in the vector J(𝝎)T = (J(1)(𝝎) … J(p)(𝝎)). We can define the
cross-periodogram from this quantity:

I
(qr)
n (𝝎) = J(q)(𝝎)J(r)∗(𝝎).

We can define the expected periodogram at a given frequency 𝝎 by the p × pmatrix,

In(𝝎) = E{J(𝝎)JH(𝝎)},

and this is in turn requiring us to define notation for the cross-covariance function:

c
(qr)
X

(u) = cov{X (q)
s ,X (r)

s+u}.

The expected periodogram matrix therefore has the elements

I
(qr)
n (𝝎) =

(2𝜋)−d√∑
s1∈n g

(q)2

s1

∑
s2∈n g

(r)2

s2

∑
s

∑
u

g
(q)
s g(r)s+uc

(qr)
X

(u) exp{−iu ⋅ 𝝎}.

Then with the definition

c
(qr)
g,n (u) =

∑
s∈n g

(q)
s g(r)s+u√∑

s∈n g
(q)2

s

∑
s∈n g

(r)2

s

,

the expected periodogram takes the form of

I
(qr)
n (𝝎) = (2𝜋)−d

∑
u

c
(qr)
g,n (u)c

(qr)
X

(u) exp{−iu ⋅ 𝝎}.

The computation of the above quantity can be carried out by applying Lemma 2 for each
(q, r) ∈ {1, … , p}2. TheWhittle likelihood is then trivially extended to this setting as was already
remarked upon by Whittle (1953) and Shea (1987). The Whittle likelihood in the multivariate
setting can be re-written as (e.g. Hosoya & Taniguchi, 1982, 1993; Kakizawa, 1997):

𝓁n(𝜽) = |n|−1∑
𝝎

{
log det{I(𝝎;𝜽)} + JH(𝝎)I

−1
(𝝎;𝜽)J(𝝎)

}
. (22)

We can still use this for estimation, only requiring that the eigenvalues of I(𝝎) are positive in the
neighbourhood of 𝜽. We extend the definition of SCC to themultivariate SCC (m-SCC) as follows:

Definition 3 (Multivariate SCC). A sequence of observed grids (nk , gk)k∈N leads to SCC for the
multivariate model family {f (⋅; 𝜸): 𝜸 ∈ Θ} if it satisfies



1538 GUILLAUMIN et al.

⎧
⎪⎨⎪⎩

∑p
q,r=1

∑
u c

(qr)
g (u)c

(qr)
X

(u)2√∑
g
(q)
s

2 ∑
g(r)s

2
= o(1),

lim
k→∞

Sk(𝜽1,𝜽2) > 0, ∀𝜽1 ≠ 𝜽2 ∈ Θ,

(23)

where Sk(𝜽1,𝜽2) has been changed to accommodate for the multivariate scenario,

Sk(𝜽1,𝜽2) ≡
p∑

q,r=1

∑
u∈Zd

c
(qr)
g,nk

(u)2
{
c
(qr)
X

(u;𝜽1) − c
(qr)
X

(u;𝜽2)
}2

, ∀𝜽1,𝜽2 ∈ Θ2. (24)

5 THEORY

In this section we first provide the proof of our estimator’s consistency in the general setting that
encompasses both non-Gaussian and multivariate random fields. We then also derive its rate of
convergence and the asymptotic distribution in univariate Gaussian and non-Gaussian settings.
We assume the following set of assumptions holds in order to establish consistency.

Assumption 1 (Consistency assumptions).

a. The parameter set Θ is compact.
b. The aliased spectral density fX ,𝛿(𝝎; 𝜸),𝝎 ∈  d, 𝜸 ∈ Θ is bounded above by f𝛿,max < ∞ and

below by f𝛿,min > 0. Additionally, fX ,𝛿(𝝎; 𝜸) admits a derivative with respect to the param-
eter vector 𝜸, which is upper bounded in norm byM𝜕𝜃 . For a multivariate random field,
we similarly require that the eigenvalues of the matrix spectral density f (𝝎; 𝜸) are lower
and upper bounded by positive analogous constants f𝛿,min and f𝛿,max respectively.

c. The sequence of observation grids leads to SCC for the considered model family.
d. The modulation gs, s ∈ Zd, takes its values in the interval [0, 1].
e. The random field X(s) has finite and absolutely summable fourth-order cumulants.

Two main asymptotic frameworks coexist in spatial data analysis, namely infill asymptotics
and growing-domain asymptotics (Zhang & Zimmerman, 2005). We study our estimator within
the latter framework, which we consider most plausible for finite-resolution remote-sensing
observations, imposing that the sample size goes to infinity (through our SCC assumption) while
having fixed 𝜹. Our set of assumptions is standard, except for SCC, which generalizes the standard
assumption of a fully observed rectangular grid associated with the requirement that two distinct
parameter vectors map to two spectral densities that are distinct on a Lebesgue set of non-zero
measure.

Theorem 1 (Consistency).Under Assumption 1, the sequence of estimates �̂�k defined by Equation
(7) converges in probability to the true parameter vector 𝜽 as the observational domain

diverges.

This result holds for a wide class of practical applications, as

• we do not require the rectangular grid to be fully observed. We allow for a wide class of
observational domains, as long as SCC is satisfied;

• we do not require the grid to grow at the same rate along all dimensions. Classical
frequency-domain results make use of the fact that the multilevel Block Toeplitz with Toeplitz
Blocks covariance matrix has its eigenvalues distributed as the spectral density. However, this
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result only holds under the assumption that the sampling grid grows at the same rate along all
dimensions.

Theorem 1 holds for Gaussian, non-Gaussian and multivariate Gaussian random fields that
satisfy the required conditions. The proof of Theorem 1 is the same for all three cases, but some
lemmata and propositions on which Theorem 1 relies will require additional detail for each case.
We shall prove Theorem 1 in a series of steps. We start by introducing some additional notation.

5.1 Additional notation

The vector of the values taken by the process on the rectangular grid n is denoted X =

[X0, … ,X|n|−1]T , where points are ordered into a vector according to the colexicographical order.
Therefore in dimension d= 2,X0, … ,Xn1−1 are values from the first row ofn,Xn1 , … ,X2n1−1 are
values from the second row, and so on. Similarly we denote g the vector of the values taken by the
modulation function on n, with points ordered in the same way. We also denote by s0, … , s|n|−1
the locations of the grid ordered according to the same order, such that X0 = X(s0),X1 = X(s1),

etc.
We also denote by G the diagonal matrix with elements taken from g, such that the vector

corresponding to the observed random field (rather thanXwhich corresponds to the random field
on the rectangular grid n) is given by the matrix product G X.

Finally, for any vector v ∈ Rp we shall denote by ||v||q its q norm (in particular || ⋅ ||2 is the
Euclidean norm), and for any p × p matrix A, ||A|| shall denote the spectral norm, that is, the
2-induced norm,

||A|| = max
v∈Rp,v≠0

||Av||2
||v||2 . (25)

We remind the reader that if H is a Hermitian matrix, since ||Hv||22 = v∗H∗Hv = v∗H2v, the
spectral norm of H is its spectral radius, that is,

||H|| = 𝜌(H) ≡ max{|𝜆| ∶ 𝜆 eigenvalue of H}.

5.2 Distributional properties of the periodogram

It is well known for time series that the bias of the periodogram as an estimator of the spec-
tral density is asymptotically zero (Koopmans, 1995). However, for spatial data in dimension
d ≥ 2, the decay of the bias of the periodogram is known to be the dominant factor in terms
of mean-squared error (Dahlhaus & Künsch, 1987). Additionally, the bias is asymptotically zero
under often non-realistic assumptions, such as: full knowledge of the aliased spectral density,
fully observed grid, growth of the domain in all directions. By directly fitting the expectation of
the periodogram, rather than the spectral density, we circumvent this major pitfall of the Whit-
tle likelihood for random fields. Having removed the effect of bias, we are left with studying the
correlation properties of the periodogram. We show that the variance of a bounded linear combi-
nation of the periodogram at Fourier frequencies goes to zero. This is the result of Proposition 1,
which we use later, in Lemma 15, to prove that if Assumption 1 holds our likelihood function
converges uniformly in probability to its expectation.
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Proposition 1 (Variance of linear functionals of the periodogram). Suppose Assumption 1 holds
and the random field is Gaussian. Let ak(𝝎) be a family of functions with support  d, indexed
by k ∈ N, and uniformly bounded in absolute value. Then,

var

⎧
⎪⎨⎪⎩
|nk|−1

∑
𝝎∈Ωnk

ak(𝝎)Ink (𝝎)

⎫
⎪⎬⎪⎭
= 

{∑
u∈Zd cg,k(u)c2X (u)∑

g2s

}
. (26)

Proof. Please see the Supplementary Material.

Corollary 1 (Extension to non-Gaussian random fields). Suppose Assumption 1 holds. Let ak(𝝎)
be a family of functions with support  d, indexed by k ∈ N, and uniformly bounded in abso-
lute value. Then, for non-Gaussian random fields, the variance of linear combinations of the

periodogram behaves according to

var

⎧
⎪⎨⎪⎩
|nk|−1

∑
𝝎∈Ωnk

ak(𝝎)Ink (𝝎)

⎫
⎪⎬⎪⎭
= 

{∑
u∈Zd cg,k(u)c2X (u)∑

g2s
+

|nk|(∑
g2s
)2

}
. (27)

Proof. Please see the Supplementary Material.

In the non-Gaussian case, the first requirement of SCC is adapted by accounting for the addi-
tional term in Equation (27) compared to Equation (26). If we observe a full rectangular grid with
no tapering, then we have

∑
g2s = |nk|, the total number of points of the grid. If we assume square

summability of the covariance function, then under the Gaussian assumption, the variance under
study vanishes even if

∑
g2s = |n|1∕2. As we see with Equation (27), this may not hold anymore for

non-Gaussian data. One such example would be on a d-rectangular grid. Assume we nominally

sampled sides of length 𝓁 on a d-dimensional cube. If we replace this by sampling Θ(
√
𝓁) points,

leaving the rest as missing data then
∑
g2s = |n|1∕2, and convergence is no longer guaranteed in

the non-Gaussian case. If we no longer have a regularly sampled grid with some missing data,
but a very complex spatial sampling then the DFT may not be the most convenient implemen-
tation, and we may adapt other methods, for example, Barnett et al. (2019). From Equation (27),
however, we see that for non-degenerate sampling scenarios, we can expect consistency of our
estimator even for non-Gaussian random fields.

Finally, for multivariate random fields, the same question arises about the variance of
sesquilinear forms involving the elements of the vector-Fourier transform. We present this as a
second corollary to Proposition 1.

Corollary 2 (Extension to multivariate random fields). Let {Ak(𝝎)} be a family of matrix-valued

functions with support  d, indexed by k ∈ N, and uniformly bounded in terms of the maxi-
mum eigenvalues across all frequencies by 𝜆max. If the random field is p-multivariate Gaussian
with absolutely summable cross-covariance sequence, the variance of sesquilinear functionals

of the discrete Fourier transform behaves according to,

var

⎧
⎪⎨⎪⎩
|nk|−1

∑
𝝎∈Ωnk

J∗nk (𝝎)Ak(𝝎)Jnk (𝝎)

⎫
⎪⎬⎪⎭
= 

⎧
⎪⎨⎪⎩

p∑
q,r=1

∑
s c

(qr)
g (s)c(qr)

2

X
(s)

√∑
s1
g
(q)2

s1

∑
s2
g(r)

2

s2

⎫
⎪⎬⎪⎭
.
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Proof. Please see the Supplementary Material.

5.3 Lemmata required for Theorem 1

All the lemmata in this section suppose that Assumption 1 holds. We provide all the proofs of
this section in the Supplementary Material. To establish consistency we introduce some specific
notation for the expectation of our quasi-log-likelihood,

𝓁n(𝜸) = E𝜽 {𝓁n(𝜸)} = |n|−1 ∑
𝝎∈Ωn

{
log In(𝝎; 𝜸) +

In(𝝎;𝜽)

In(𝝎; 𝜸)

}
, ∀n ∈ (N+)d ⧵ {0},∀𝜸 ∈ Θ, (28)

whichwe shall regard as a function of 𝜸. Formultivariate random fields this is extended according
to,

�̃�n(𝜸) = E𝜽{𝓁n(𝜸)} = |n|−1∑
𝝎

{log det{I(𝝎; 𝜸)} + trace [I
−1
(𝝎; 𝜸)I(𝝎;𝜽)]}.

The following lemma relates the minimum of that function to the true parameter vector (with no
uniqueness property as of now).

Lemma 9 (Minimumof the expected quasi-likelihood function).The expected likelihood function
attains its minimum at the true parameter value, that is,

𝓁n(𝜽) = min
𝜸∈Θ

𝓁n(𝜸). (29)

We shall also make repeated use of the following lemma.

Lemma 10 (Lower and upper bounds on the expected periodogram). The expected periodogram
satisfies, for all parameter vector 𝜸 ∈Θ, and at all wave numbers 𝝎 ∈  d, for any n ∈ (N+)d,

f𝛿,min ≤ In(𝝎; 𝜸) ≤ f𝛿,max.

We now provide additional lemmata which are key to proving the consistency of our max-
imum quasi-likelihood estimator. Lemma 11 states that the expected likelihood value at a
parameter vector distinct from the true parameter value is asymptotically bounded away from the
expected likelihood at the true parameter value. This comes as a consequence of the second part
of SCC and the upper bound on the spectral densities of the model family.

Lemma11 (Identifiability from the expected likelihood function).Let 𝜸 ∈Θdistinct from𝜽.Then,

lim
k→∞

|||�̃�nk (𝜸) − �̃�nk (𝜽)
||| > 0, (30)

where lim
k→∞

denotes the limit inferior as k goes to infinity.

For multivariate random fields, the proof of Lemma 11 requires an additional simple lemma,

Lemma 12 Let H1,H2 be two Hermitian positive definite Hermitian matrices. Then,

trace[H1H2]
2 ≥ (min sp (H1))

2trace[H2]
2, (31)

where sp(H1) denotes the set of eigenvalues of H1, which are all positive.
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Lemma 13 now states a form of regularity of our expected likelihood functions. It relies on our
regularity assumption on the spectral model family, where we have assumed the existence and
boundedness of the partial derivatives with respect to the parameter vector (Assumption 1b).

Lemma 13 Let 𝜸 ∈ Θ and let (𝜸k)k∈N be a sequence of parameter vectors that converges to 𝜸. Then,

𝓁nk (𝜸k) − 𝓁nk (𝜸) −→ 0, (k −→ ∞). (32)

Lemma 14 Let 𝜸k ∈ ΘN be a sequence of parameter vectors such that 𝓁nk (𝜸k) − 𝓁nk (𝜽) converges to

zero as k tends to infinity. Then 𝜸k converges to 𝜽.

And finally, the following lemma helps us understand how the likelihood function, as a
random element, behaves with regard to the expected likelihood function.

Lemma 15 (Uniform convergence in probability of the likelihood function). The log-likelihood
function 𝓁nk (⋅) converges uniformly in probability to 𝓁nk (⋅) over the parameter set Θ as k goes

to infinity.

With these lemmata we have all the necessary results to establish Theorem 1. This theorem is
important as it establishes the consistency of our estimator under a very wide range of sampling
schemes and model families. We contrast our results with those of Dahlhaus and Künsch (1987),
Guyon (1982), as well as Fuentes (2007). The insight from Theorem 1, as compared to the insight
of the need for tapering provided by Dahlhaus and Künsch (1987) is clear. The aim of this paper
is to balance computational tractability with estimation performance. Very standard assumptions
allow us to still derive the results required for estimation.

5.4 Convergence rate and asymptotic normality

We now study the convergence rate and asymptotic distribution of our estimates within the
increasing-domain asymptotics framework. In Theorem 2 we establish a convergence rate in the
general framework of HSCC (Definition 1) for both Gaussian and non-Gaussian random fields,
and we also establish asymptotic normality in the scenario of a Gaussian random field observed
on a full grid. Under further requirements (Assumption 3), asymptotic normality is shown for
non-Gaussian random fields in Theorem 3, together with a limiting form of the covariance
structure of our estimator.

To prove our theorems, we first need to understand better the behaviour of quantities of the
form |n|−1∑𝝎∈Ωnk

wk(𝝎)In(𝝎), for some weights wk. In Proposition 1, we had already showed

that under mild conditions, their variance vanished at a rate driven by the number of observed
points. Now in Proposition 2, and under the assumption of a full grid, by writing this quantity as
a quadratic form in the random vector X and extending a result by Grenander and Szegö (1958),
we show that this quantity is asymptotically normally distributed, under mild conditions on the
family of functions wk(⋅). Before getting there, we need the following intermediary result, which
extends a standard result for Toeplitz matrices to their multi-dimensional counterpart, Block
Toeplitz with Toeplitz Block matrices.

Lemma 16 (Upper bound on the spectral norm of the covariance matrix). Suppose Assumption 1
holds. In the case of a full grid, the spectral norm of CX and that of its inverse are upper

bounded according to
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||CX|| ≤ f𝛿,max, ||C−1
X || ≤ f −1

𝛿,min.

Proof. Please see the Supplementary Material.

Proposition 2 (Asymptotic normality of linear combinations of the periodogram). Suppose
Assumption 1 holds and that the random field is Gaussian and observed on a full grid.

Let wk(⋅), k ∈ N be a family of real-valued functions defined on  d bounded above and

below by two constants, denoted MW , mW > 0 respectively. Then |n|−1∑𝝎∈Ωnk

wk(𝝎)In(𝝎) is

asymptotically normally distributed.

Proof. Please see the Supplementary Material.

Before finally establishing our convergence rates, as well as the asymptotic normality in
the case of a Gaussian random field observed on a full grid, we require one additional set of
assumptions.

Assumption 2 (Assumptions for convergence rate and asymptotic normality).

a. The interior ofΘ is non-null and the true length-p parameter vector 𝜽 lies in the interior
of Θ.

b. The sequence of observation grids leads to HSCC for the considered model family.

The following lemma relates HSCC to the minimum eigenvalue of the expectation of the
Hessian matrix of l(⋅) at the true parameter vector.

Lemma 17 Under HSCC, the minimum eigenvalue of the expectation of the Hessian matrix (with

respect to the parameter vector) at the true parameter, given by

⎛
⎜⎜⎝
|nk|−1

∑
𝝎∈Ωnk

Ink (𝝎;𝜽)
−2∇𝜃Ink (𝝎;𝜽)∇

T
𝜃 Ink (𝝎;𝜽)

⎞
⎟⎟⎠
, (33)

is lower bounded by S(𝜽), which was defined in Definition 2.

Proof. This can be established by a direct adaptation of lemma 7 of Guillaumin et al. (2017).

Theorem 2 (Convergence rate and asymptotic normality of estimates). Suppose Assumptions 1
and 2 hold. Our estimate converges in probability with rate

rk =

(∑
u∈Zd cg,k(u)c2X (u)∑

g2s
+

|nk|(∑
g2s
)2

)1∕2

.

If the random field is Gaussian the convergence rate simplifies to,

rk =

(∑
u∈Zd cg,k(u)c2X (u)∑

g2s

)1∕2

.

In addition, if the grid is fully observed and the random field is Gaussian, then �̂� is asymptot-

ically normally distributed.
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Proof. Please see the Supplementary Material.

Note that in Theorem 2 we do not make assumptions about the dimensions of the observation
domain, as is usually the case for Whittle-type estimators where a common growth rate in all
directions is typically assumed. Asymptotic normality of our estimate can also be established for
non-Gaussian random fields under appropriate assumptions on high-order cumulants, which we
introduce below.

Assumption 3

a. Observation domain. The grid is fully observed, and we set gs = 1 on the grid and 0
otherwise. Additionally, we require the domain to be unbounded in all directions for
asymptotic forms to hold.

b. Higher-order homogeneity. Joint moments of any order are finite and for any posi-
tive integer L ≥ 2 and locations s1, … , sL ∈ Rd, for any u ∈ Rd, cum[Xs1 , … ,XsL] =

cum[Xs1+u, … ,XsL+u]. If this assumption holds we define for u1, … ,uL−1 ∈ Rd,

cL(u1, … ,uL−1) = cum
[
Xs0 ,Xs0+u1 , … ,Xs0+uL−1

]
,∀s0 ∈ R

d. (34)

In particular c2(⋅) is just the autocovariance function of the random field.
c. Short-length memory. For any positive integer L ≥ 2,

∑
u1,… ,uL−1∈Rd

(
1 + ||uj||d) |cL(u1, … ,uL−1)| < ∞, j = 1, … , d. (35)

Proposition 3 Suppose Assumptions 1 and 3 hold. Letwk(⋅) be uniformely bounded vector-valued

functions from  d to Rd such that {wk(⋅)} converges to w(⋅) pointwise, where w(⋅) is a
Rieman-integrable function with values in Rd. Then, |n|−1∑𝝎∈Ωn

wk(𝝎)In(𝝎) is asymptot-

ically jointly normal. Additionally, suppose the grid grows to infinity in all directions, the

asymptotic covariance structure of |n|−1∑𝝎∈Ωn
wk(𝝎)In(𝝎) is then determined by

(2𝜋)d|n|−1 ∫ d

(w(𝝎) +w(−𝝎))wT(𝝎)fX ,𝜹(𝝎)
2d𝝎

+ (2𝜋)d|n|−1 ∫ d ∫ d

w(𝝎1)w
T(𝝎2)fX ,4,𝛿(𝝎1,𝝎2,−𝝎1)d𝝎1d𝝎2,

where fX ,4,𝛿(⋅, ⋅, ⋅) is the fourth-order cumulant spectral density, that is,

fX ,4,𝛿(𝝎1,𝝎2,𝝎3) =
∑

u1,u2,u3

c4(u1,u2,u3)e
−i(u1⋅𝝎1+u2⋅𝝎2+u3⋅𝝎3),

and wherew(−𝝎) is obtained by 2𝜋 periodic extension of w along all dimensions.

Proof. Please see the Supplementary Material.

Proposition 3 is similar to Proposition 2. The two differ in terms of the assumptions required
to prove the result. Proposition 2 requires the random field to be Gaussian while Proposition 3
allows for non-Gaussian random fields at the expense of additional constraints on the memory of
the random field.
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Theorem 3 Suppose Assumptions 1–3 hold. Then �̂� is asymptotically normally distributed.

Additionally, if the observed random field is Gaussian and the observation domain

grows to infinity in all directions, �̂� admits an asymptotic covariance structure

determined by,

2d+1𝜋d|n|−1
[
∫ d

∇𝜽 log fX ,𝜹(𝝎;𝜽)∇
T
𝜽
log fX ,𝜹(𝝎;𝜽)d𝝎

]−1
.

Proof. This results from combining Proposition 3 and the proof of Theorem 2.

The asymptotic form of the covariance structure can also be determined for the non-Gaussian
case from Proposition 3. Theorem 3 is a generalization of a standard result in time series anal-
ysis (Brockwell & Davis, 2009, theorem 10.8.2). However, see for example, Simons and Olhede
(2013) for a practical large-sample example where the asymptotic form has not been reached, but
is instead dependent on the true form of the expected periodogram as well as the sample size.
This—in addition to scenarios of incomplete grids—motivates the following section, where we
consider estimation of standard errors in the more general setting where our asymptotic results
do not hold.

5.5 Estimating standard errors

We now seek to derive how to estimate the standard error of �̂� for a given spatial sampling and
model family. Using Equations (20) and (21) from the Supplementary Material, we obtain an
approximation for the variance of �̂� in the following proposition, where  denotes the Fisher
Information matrix.

Proposition 4 (Form of the variance). The covariance matrix of the quasi-likelihood estimator
takes the form of

var{�̂�} ≈ −1(𝜽)var {∇𝓁M(𝜽)}−1(𝜽), (36)

with the covariance matrix of the score taking the form of

cov

{
𝜕𝓁M(𝜽)

𝜕𝜃p
,
𝜕𝓁M(𝜽)

𝜕𝜃q

}
= |n|−2 ∑

𝝎1,𝝎2∈Ωn

cov {In(𝝎1), In(𝝎2)}

I
2
n(𝝎1;𝜽)I

2
n(𝝎2;𝜽)

𝜕In(𝝎1;𝜽)

𝜕𝜃p

𝜕In(𝝎2;𝜽)

𝜕𝜃q
. (37)

The computation that appears in Equation (37) scales like |n|2, that is, not well for large grid
sizes. We instead propose a Monte Carlo implementation to speed this up. The dominant terms
in Equation (37) correspond to 𝝎1 = 𝝎2. We approximate the sum over the rest of the terms, in
the form

cov

{
𝜕𝓁M(𝜽)

𝜕𝜃p
,
𝜕𝓁M(𝜽)

𝜕𝜃q

}
= |n|−2 ∑

𝝎1∈Ωn

{
𝜕In(𝝎1;𝜽)

𝜕𝜃p

var {In(𝝎1)}

I
4
n(𝝎1;𝜽)

𝜕In(𝝎1;𝜽)

𝜕𝜃q

}

+
|n|2 − |n|
M|n|2

∑
i=1…M

𝜕In(𝝎1,i;𝜽)

𝜕𝜃p

cov
{
In(𝝎1,i), In(𝝎2,i)

}

I
2
n(𝝎1,i;𝜽)I

2
n(𝝎2,i;𝜽)

𝜕In(𝝎2,i;𝜽)

𝜕𝜃q
,
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where the 𝝎1,i,𝝎2,i, i = 1 … M are uniformly and independently sampled from the set of Fourier
frequencies Ωn under the requirement 𝝎1,i ≠ 𝝎2,i. Note that if tapering is used, one should
consider a few coefficients near the main diagonal in the above approximation, as tapering
generates strong short-range correlation in the frequency domain.

The covariances of the periodogram at two distinct Fourier frequencies can be approximated
by Riemann approximation of the two integrals that appear in the expression below, before taking
squared absolute values and summing,

cov
{
In(𝝎1,i), In(𝝎2,i)

}
= |n|−1

(||||∫ d

f̃ (𝝀)n(𝝀 − 𝝎1,i)∗
n(𝝀 − 𝝎2,i)d𝝀

||||
2

+
||||∫ d

f̃ (𝝀)n(𝝀 − 𝝎1,i)∗
n(𝝀 + 𝝎2,i)d𝝀

||||
2)

, i = 1, … ,M.

In the above, f̃ is the following approximation to the spectral density, which can be computed by
a DFT,

f̃ (𝝀) =
∑

u∈
∏d

i=1[−(ni−1)… (ni−1)]

cX (u;𝜽) exp(−i𝝀 ⋅ u),

andn(𝜆) is the non-centredmodified (due to themodulation gs) Dirichlet kernel of ordern given
by

n(𝝀) =
∑
s∈n

gs exp(i𝝀 ⋅ s),

where for clarity we omit the dependence on the modulation gs in the notation. Finally we
compute the derivatives of In(𝝎;𝜽) as follows,

∇𝜽In(𝝎;𝜽) =
∑
u∈Zd

∇𝜽cX (u;𝜽) exp(−i𝝎 ⋅ u). (38)

6 SIMULATION STUDIES AND APPLICATION TO THE
STUDY OF PLANETARY TOPOGRAPHY

In this section we present simulation studies and an application to the study of Venus’ topogra-
phy that demonstrate the performance of theDebiased SpatialWhittle estimator.We also refer the
reader to the Supplementary Material which contains additional simulation studies. The simula-
tions presented in Section 6.1 address the estimation of the range parameter of a Matérn process,
whose slope parameter is known, observed over a full rectangular grid. These simulations cor-
roborate our theoretical results on the optimal convergence rate of our estimator despite edge
effects, in contrast to the standard Whittle method. Our second simulation study in Section 6.2
shows how our estimation procedure extends the computational benefits of frequency-domain
methods to non-rectangular shapes of data, where we compare parameter estimates with those
of Guinness and Fuentes (2017) in the scenario of a circular shape of observations. In Section 6.3
we estimate the parameters of a simulated Matérn process sampled according to a real-world
sampling scheme of terrestrial ocean-floor topography (GEBCO Bathymetric Compilation
Group, 2019) with approximately 72% missing data. Finally, in Section 6.4 we demonstrate the
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performance of the Debiased Spatial Whittle estimator when applied to topographical data sets
obtained from Venus (Rappaport et al., 1999).

6.1 Estimation from a fully observed rectangular grid of data

We simulate from the isotropic Matérn model family, which corresponds to the following covari-
ance function,

cX (u) = 𝜎2
21−𝜈

Γ(𝜈)

(√
2𝜈

||u||
𝜌

)𝜈

K𝜈

(√
2𝜈

||u||
𝜌

)
, (39)

where K𝜈(x) is a Bessel function of the second kind. We consider the problem of estimating the
range parameter 𝜌, which is fixed to 10 units, while the amplitude 𝜎2 = 1 and the slope parameter
𝜈 ∈ {

1

2
,
3

2
} are fixed and known. Inference is achieved from simulated data on two-dimensional

rectangular grids of increasing sizes, specifically {2s ∶ s = 4, · · · , 8} in each dimension.We imple-
ment four inference methods:

M1. The Debiased Spatial Whittle method, that is, the estimate derived from Equation (7);
M2. The Debiased Spatial Whittle method combined with a taper, specifically the estimate

derived from Equation (7) with gs proportional to a Hanning taper;
M3. The standardWhittle likelihood, that is, estimators obtained by replacing In(𝝎;𝜽)with fX (𝝎)

in Equation (5) and then minimizing Equation (7);
M4. The standard Whittle likelihood combined with tapering using a Hanning taper, again

derived from Equation (7) fitting to fX (𝝎).

For each configuration of the slope parameter and grid size, we report summary statistics
corresponding to 1000 independently realized random fields. We report bias, standard deviation
and root mean-squared error for 𝜈 = 1/2 and 𝜈 = 3/2 in Figures 1 and 2, respectively.
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F IGURE 1 Bias, standard deviation, and root mean-squared error of estimates of the range parameter

𝜌 = 10 of a Matérn process (39) with 𝜈 = 1∕2, 𝜎2 = 1. The estimation method is identified by the line style, and

grey lines functionally express the theoretical dependence on the square root of the sample size. The side length

of the two-dimensional square grid is indicated by the horizontal axis, leading to a sample size of the length

squared [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 The same simulation setup as in Figure 1, but with 𝜈 = 3/2. This higher slope parameter is

associated with smoother realizations, resulting in worsened edge effects. This illustrates how our method

effectively addresses the edge effect issues even in that setting [Colour figure can be viewed at

wileyonlinelibrary.com]

We first observe that the rate of the Whittle likelihood (M3) is very poor, due to its large bias.
It appears that tapering (M4) leads to improved convergence rates when 𝜈 = 3/2, although bias
remains. In contrast, the rates of our proposed method (M1) and its tapered version (M2) do not
curb down even with larger grid sizes. This concurs with the theoretical results on the rate of
convergence provided in Section 5. This example demonstrates that the Debiased Spatial Whittle
method balances the need for computational and statistical efficiency with large data sets.

In Figure 3 we report the empirical distribution of each estimator obtained from the 1000
independent inference procedures for 𝜈 = 1/2. The four panels (a), (b), (c) and (d) show the distri-
bution of estimates from the four methods. The first two panels, (a) and (b), are broadly unbiased
with estimates centred on 𝜌 = 10 that converge quickly. The standard Whittle method (c) has
issues with underestimation, tending towards 𝜌 = 5. This asymptotic bias is in large part due to
aliasing not being accounted for, combined with the relatively small value of 𝜈 = 1/2; these effects
are still present in the tapered estimates (d). As would be expected, in all four subplots the vari-
ance is decreasing with increasing sample size, at similar rates. In the Supplementary Material
we present the same study where theWhittle and taperedWhittle methods use an aliased version
of the spectral density. This largely reduces the bias of these methods. However, some asymptotic
bias remains, even for the tapered Whittle method, due to our fixed approximation to the aliased
spectral density owing to computational constraints.

6.2 Estimation from a circular set of observations

In this section, we show how our Debiased Spatial Whittle method extends to non-rectangular
data. More specifically, we assume we only observe data within a circle with diameter 97 units.
We consider the exponential covariance kernel given by

cX (u) = 𝜎2 exp

(
−
||u||
𝜌

)
, u ∈ R

2, (40)



GUILLAUMIN et al. 1549

6 8 10 12 14

0

0.1

0.2

0.3

0.4 � = 0.50

� = 10  

estimated range

d
e

b
ia

s
e

d
 |
 p

ro
b

a
b

ili
ty

(a)

7 10 13 16

� = 0.50

� = 10  

estimated range

ta
p

e
re

d
 d

e
b

ia
s
e

d
 |
 p

ro
b

a
b

ili
ty (b)

2 3 4 5

0

0.1

0.2

0.3

0.4 � = 0.50

� = 10  

estimated range

W
h

it
tl
e

 |
 p

ro
b

a
b

ili
ty

(c)

3 5 7 9

� = 0.50

� = 10  

estimated range

ta
p

e
re

d
 W

h
it
tl
e

 |
 p

ro
b

a
b

ili
ty (d)

F IGURE 3 Nonparametric density estimates �̂� of the estimated range parameter �̂� (𝜌 = 10) for a Matérn

random field (39), with 𝜎2 = 1 and 𝜈 = 1/2. The four subplots show different estimation methods of (a) Debiased

Spatial Whittle, (b) Debiased Spatial Whittle with tapering, (c) standard Whittle and (d) standard Whittle with

tapering. The density estimate is shaded to reflect the size of the random field, with the darkest corresponding to

total observations |n| = (24)2, and the shading incrementally taking a lighter colour for |n| = (25)2, (26)2, (27)2,

(28)2. Each density estimate is complemented by the best fitting Gaussian approximation as a solid black or

fading grey line (black corresponds to |n| = (28)2 and the lightest grey to |n| = (24)2) [Colour figure can be

viewed at wileyonlinelibrary.com]

where 𝜎2 = 1 is fixed and known andwe estimate the range parameter 𝜌whose true value is set to
5 units. We note that the case of a growing circle satisfies SCC, according to Lemma 7, and hence
leads to consistency of our estimator. We also expect optimal convergence rates, see Theorem 2.

A total number of 1200 independent simulations are performed. As a state-of-the-art baseline,
we compare to a recentmethod proposed byGuinness andFuentes (2017),which is an approxima-
tion of the circulant embeddingmethod developed by Stroud et al. (2017). These authors proposed
an ExpectationMaximization iterative procedure, where the observed sample is embedded onto a
larger grid that makes the covariancematrix Block Circulant with Circulant Blocks (BCCB), which
can be diagonalized fast through the FFT algorithm. Guinness and Fuentes (2017) point out that
the size of the embedding grid is very large, making the imputations costly and the convergence
over the iterations slow. To address this limitation they propose using a periodic approximation
of the covariance function on an embedding grid which is much smaller than that required for
the exact procedure. They show via simulations that using an embedding grid ratio of 1.25 along
each axis leads to good approximations of the covariance function on the observed grid.
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F IGURE 4 Mean and 95% confidence intervals (left) and root mean-squared error (right) of estimates of

the range parameter 𝜌 = 5 of an exponential covariance model (40). Estimation is performed on a circular set of

data with diameter 97 units. The converged estimates of the Debiased Spatial Whittle method are compared to

the iterated estimates of two implementations of Guinness and Fuentes (2017). The horizontal axis in both panels

corresponds to the average computational time, as performed on an Intel(R) Core(TM) i7-7500U CPU

2.7–2.9GHz processor [Colour figure can be viewed at wileyonlinelibrary.com]

To implement the method developed by Guinness and Fuentes (2017), we use the code pro-
vided by the authors. We set a grid ratio of 1.25 to limit the computational cost, and implement
the method with two choices of the number of imputations per iteration,M = 1 andM = 20. Each
implementation is run for a number of 30 iterations for all samples.

Both our estimation method and that of Guinness and Fuentes (2017) are initialized with
the estimates provided by the method proposed by Fuentes (2007). We show in Figure 4 (left)
how the Debiased Spatial Whittle method achieves computational and statistical efficiency. The
95% confidence interval of our estimate is similar to that obtained via the method of Guinness
and Fuentes (2017) (M = 1), however, our method, despite also using an iterative maximiza-
tion procedure, is significantly faster. As shown in Figure 4 (right panel), Guinness and Fuentes
(2017) (M = 20) leads to lower root mean-squared error but requires more computational
time.

6.3 Application to a realistic sampling scheme of ocean-floor
topography

In this simulation studywe show that our estimator can address complex lower-dimensional sam-
pling substructure. We apply it to the estimation of a Matérn process sampled on a real-world
observation grid of ocean-bathymetry soundings, characterized by a very large amount of
missing data (≈72%). We simulate two Matérn processes, each with slope parameter 0.5 and
with range 20 and 50 units respectively. The initial grid is of size 1081 × 1081. We select
a subgrid of size 256 × 256 with similar missingness properties to those of the whole grid.
In Figure 5 we plot (left) a simulated Matérn process on that grid where missing obser-
vations have been replaced with zeros. We note the large amount of missing observations
within the bounding rectangular grid, as well as its complex patterns (i.e. rather than a uni-
form missingness scheme). For both these reasons the method proposed by Fuentes (2007)
fails, while our method is still able to produce useful estimates, as shown in the right panel
of Figure 5.
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F IGURE 5 (Left) Simulated Matérn process with slope parameter 0.5 and range parameter 50 units, on a

real-world sampling grid, with missing observations replaced by zeros. (Right) Histogram of estimates of the

range parameter of a simulated Matérn process observed on the real-world grid shown in the left panel. We

compare our proposed estimation method, the Debiased Spatial Whittle likelihood, to the method proposed by

Fuentes (2007). The true value of the range is fixed to 20 or 50. Despite an increased variance due to the complex

missing data patterns, our method is still able to produce a useful estimate of the range parameter, in comparison

to the estimates produced by the method proposed by Fuentes (2007), which was not built to address such large

and complex patterns of missing data [Colour figure can be viewed at wileyonlinelibrary.com]

6.4 Application to the study of Venus’ topography

In this section we apply our Debiased Spatial Whittle method to the study of Venus’ topography.
The motivation for modelling a planet’s topography using a parametric covariance model such as
theMatérn process is multifaceted. For instance, wemay expect that the combination of the slope
and range parameters will carry important information about the geomorphological process or
age of formation of the observed topography, that is, it is expected that those parameters will have
an interpretable physical meaning. The slope parameter can be related to the smoothness of the
topography, and the range parameter tells about the typical distance over which two observed
portions are uncorrelated.

Building on the work of Eggers (2013), we have selected four patches of data (including that
shown in Figure 6 which corresponds to Patch 3), each sampled regularly on a complete rectan-
gular grid. We compare three estimation procedures: the Debiased Spatial Whittle method, the
standard Whittle method, and the standard Whittle method with tapering (again using a Han-
ning taper). Parameter estimates are reported in Table 1. We also compare the value of the exact
likelihood function taken at the estimated parameters for each estimation method in Table 2.
Specifically, if �̂�M and �̂�W respectively denote the estimates obtained via the Debiased Spatial
Whittle and standard Whittle procedure, we compare lE(�̂�M) and lE(�̂�W ), with lE(⋅) denoting the
exact likelihood function (which is expensive to evaluate but only needs to be done once for each
analysed method). The results in Table 2 show a much better fit of the model corresponding to
the parameters estimated via the Debiased Spatial Whittle method, in comparison to the parame-
ters estimated via either standard Whittle or tapered Whittle. The parameter estimates in Table 1
should be interpreted with care due to the challenges inherent in joint estimation of all three
parameters of a Matérn covariance function (see, e.g. Zhang, 2004). However, in all four patches
we observe that the standard and tapered Whittle likelihood appear to overestimate the range
while underestimating the smoothness, consistent with results found by Sykulski et al. (2019) for
oceanographic time series.
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F IGURE 6 (a) A realized random field from the topography of Venus; and simulated random fields from a

Matérn model with parameters estimated using (b) Debiased Spatial Whittle estimation, (c) standard Whittle

estimation and (d) standard Whittle estimation using a Hanning taper. Simulated random fields were obtained

using the same random seed to facilitate comparison. Parameter values for eachmethod are given in Table 1 (Patch

3) in Section 6.4. Sample means (m) and standard deviations (s) are in the titles. Colour bars are marked at the

2.5th, 50th and 97.5th quantiles. Axis labels are in pixels [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Estimates of the three parameters of a Matérn process, see Equation (39)

Patch 1 Patch 2 Patch 3 Patch 4

Parameter: 𝝈 𝝂 𝝆 𝝈 𝝂 𝝆 𝝈 𝝂 𝝆 𝝈 𝝂 𝝆

Debiased Spatial Whittle 1.2 0.5 17.7 1.2 0.7 6.8 2.1 0.5 36.5 1.5 0.6 15.0

Standard Whittle 1.6 0.3 62.7 1.8 0.3 73.9 1.5 0.2 77.3 1.7 0.3 87.3

Tapered Whittle 2.0 0.4 52.0 1.7 0.2 80.6 1.2 0.2 88.1 1.9 0.4 83.7

TABLE 2 Percentage of increase in the exact likelihood value at the estimated parameter values from Table

1 in comparison to the minimal value obtained among the three methods

Patch 1 Patch 2 Patch 3 Patch 4

Debiased Spatial Whittle 60.60 104.80 91.60 48.40

Standard Whittle 0 16.10 0 0

Tapered Whittle 23.20 0 53.90 25.20
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Finally, Figure 6 presents a comparison of Patch 3 with three simulated samples, obtained
using theMatérnmodel estimated using theDebiased SpatialWhittle, standard and taperedWhit-
tle methods respectively. This analysis supports the conclusion that the Debiased Spatial Whittle
method is able to find more appropriate parameter values for the model fit.

7 DISCUSSION

In this paper we addressed the estimation of parametric covariance models for Gaussian and
non-Gaussian random fields using the discrete Fourier transform. Key to understanding a ran-
dom field is its spatial sampling; this can range from a spatial point process, to regular sampling
with an irregular boundary, to observationsmissing at random on a grid, to a fully sampled square
regular grid. To maintain computational feasibility, this paper addresses the analysis of a regu-
larly sampled random field, with potentially missing observations and an irregular (not cuboid)
sampling domain.

The Whittle likelihood uses the FFT to achieve computational efficiency. The approximation
is based on results for Block Toeplitz with Toeplitz Blocks matrices (Kazeev et al., 2013; Tyrtysh-
nikov & Zamarashkin, 1998), on (growing-domain) asymptotics, and on arguments that equate
the Gaussian non-diagonal quadratic form with another Gaussian, nearly diagonal, form. For
time series this argument is relatively straightforward, but is somewhat more complex for spatial
data in higher dimensions, where the bias becomes the dominant term (Guyon, 1982), and the
geometry of the sampling process leaves a strong imprint.

The bias of the periodogram as an estimator of the spectral density (which drives subsequent
bias) decreases with rate  (|n|−1∕d) (Dahlhaus & Künsch, 1987; Guyon, 1982) in the ideal case
of a fully observed rectangular lattice in d dimensions that grows at the same rate along all direc-
tions. Dahlhaus (1983) proposed tapering to remedy this issue. Amore general result by Kent and
Mardia (1996) shows that the approximation resulting from replacing the exact likelihood with
theWhittle likelihood in the case of a full grid is driven by the size of the smallest side of the rect-
angular lattice. Tapering on its own cannot solve this issue. To address bias in a general setting
we proposed replacing the spectral density by the true expectation of the periodogram. From the
notion of SCC, we can understand the technical underpinning of this bias removal process and
draw a general framework of sampling schemes and model families for which our estimator is
statistically efficient.

In addition, our Debiased Whittle procedure also explicitly accounts for aliasing in the
computation of the expected periodogram, thus avoiding computationally-expensive wrapping
operations to fold in higher unobserved frequencies into the likelihood. As would be expected,
in simulations we found the bias correction from aliasing to be most important when the rate of
decay in the spectral density in frequency is slow (e.g. a Matérn process with small slope param-
eter). In contrast, we found that accounting for finite sampling and boundary effects to be most
important when the rate of decay is high and the spectrum therefore has a large dynamic range
(e.g. a Matérn process with large slope parameter). Overall, our explicit handling for the effects of
missing data provided further improvements for all processes studied, regardless of the specific
form of the spectral density.

For random fields with missing observations, Fuentes (2007) suggested to replace the missing
points of a rectangular lattice with zeros, as we do in Equation (4), and correcting uniformly
across frequencies for the amplitude of the periodogram, based on the ratio of the number of
observed points to the total number of points in the grid. This only partly corrects for the bias of
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the periodogram that results from any non-trivial shape of the data, as frequencies are likely to
not be affected uniformly by the sampling scheme; in contrast to our estimation procedure which
directly encodes the observed data, and the observed missingness pattern. Under relatively weak
assumptions, and through the notion of SCC, we establish consistency and asymptotic normality
in both Gaussian and non-Gaussian settings.

When studying non-Gaussian observations one can take two approaches; either limiting the
effects of the non-Gaussianity on the variance of the estimator (Giraitis & Taqqu, 1999; Sykulski
et al., 2019), or even permittingWhittle-type estimation based on higher order spectral moments,
see e.g. Anh et al. (2007). If infill asymptotics are considered (Bandyopadhyay & Lahiri, 2009),
then the limiting distribution of the Fourier transform need not be Gaussian. Note that the afore-
mentioned authors assumed completely random sampling of the fields, which we do not, as such
sampling leads to a ‘nugget effect’ at frequency zero and beyond.

To treat more general multivariate processes, we defined a multivariate sampling mechanism
that is initially on the same grid, but where the missingness pattern may be different between
processes. To be able to arrive at consistent estimators, we again use a version of the concept
of SCC, but now adapted to the multivariate nature of the data. Under this assumption, which
ensures we gain more information as our sampling scheme diverges in cardinality, we do achieve
estimation consistency.

Stroud et al. (2017) have proposed an approach that does not require approximating the
multi-level Toeplitz covariance matrix of the rectangular lattice sample by a multi-level circu-
lant matrix. Instead, their method finds a larger lattice, termed an embedding, such that there
exists a BCCB matrix that is the covariance matrix of a Gaussian process on this extended lat-
tice, and such that the covariance matrix of the real process is a submatrix of this extended
matrix. One can then simulate efficiently the missing data on the extended lattice, and esti-
mate the parameters of the models. This process can be iterated until a convergence criterion is
met. This elegant method still suffers from computational issues, as the size of the embedding
might be quite large. A solution suggested by Guinness and Fuentes (2017) is to use a circu-
lant approximation of the covariance on a smaller rectangular lattice. In that case, the method
is no longer exact, but Guinness and Fuentes (2017) showed via simulations that using small
embeddings can in some cases provide a good compromise between statistical and computational
efficiency.

In contrast, in this paper we revisited the root cause of why the approximation of the like-
lihood may deteriorate, while continuing to require that any proposed bias elimination result
in a computationally competitive method. Our method of bias elimination is ‘built in’ by fit-
ting the periodogram to its expectation In(𝝎;𝜽). This is in contrast to estimating the bias and
removing it, which typically increases variance, and might lead to negative spectral density
estimates.

We have thus proposed a bias elimination method that is data-driven, fully automated and
computationally practical for a number of realistic spatial sampling methods, in any dimen-
sion. Our methods are robust to huge volumes of missing data, as backed up by our theoret-
ical analysis, and evidenced by our practical simulation examples. As a result, our method-
ology is not only of great benefit for improved parameter estimation directly, but also has
knock-on benefits in, for example, the problem of prediction. Here a huge number of meth-
ods exist and there is some debate as to which are most practically useful (Heaton et al.,
2019). The broader point is that many of these methods are based on Matérn covariance
kernels, and therefore our methods, which we have shown greatly improve Matérn param-
eter estimation, can be naturally incorporated to improve the performance of such spatial
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methods for prediction. Quantifying this benefit over a range of settings is a natural line of further
investigation.

Within parameter estimation, there are a number of large outstanding challenges which are
nontrivial extensions and merit further investigation as stand-alone pieces of work: (a) exten-
sions to fully irregularly sampled process on non-uniform grids; and (b) extensions tomultivariate
processes with complex sampling patterns. In each case the impact on the Fourier transform
and the expected periodogram need to be carefully handled to properly account for the bias of
naively using basic Whittle-type approximations. We do, however, expect that large improve-
ments are possible both in terms of bias reduction (vs. standard Whittle methods where edge
effect contamination will increase), and in terms of computational speed (vs. exact likelihood
and other pseudo-likelihoods which will become increasingly intractable as assumptions are
relaxed).
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Aliased Whittle likelihood comparison

In this section, we provide simulation results in the same manner as those of Section 6.1 in the
main document, except for the fact that here both the Whittle and tapered Whittle estimator use
a truncated approximation of the aliased spectral density of the sampled process, see Figure 1.
We limited the approximation to include the contribution of frequencies from [−3π, 3π]2 to keep
computational cost reasonable. The fact that we use a fixed approximation to the aliased spectral
density explains why, despite largely reducing the bias for the Whittle and tapered Whittle, in
comparison to the version in the main document, the efficiency of both the Whittle and tapered
Whittle estimators appears to saturate for large grid sizes.
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Fig. 1. Bias, standard deviation, and root mean-squared error of estimates of the range parameter ρ = 10
of a Matérn process (39) with ν = 1/2, σ2 = 1. Compared to Figure 1 in the main document, the Whittle

and tapered Whittle estimation methods use an approximation to the aliased spectral density function, by

incorporating contributions from frequencies within the square domain [−3π, 3π]2.
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Fig. 2. Simulated sample from the discrete model defined by equation (1), with θ = 3.

Estimation for a discrete spatial model

In this section we apply the Spatial Debiased Whittle to the estimation of a discrete parametric
model. In comparison to continuous models, the estimation of the parameters of a discrete spatial
model is not hindered by aliasing. The model we consider is defined in the frequency domain
according to,

f(ω1, ω2) =

{
exp {−θ(|ω1|+ |ω2|)} if ω ∈ (−π, π)2

0 o/w
, (1)

where θ ≥ 0. The covariance function of this model is easily obtained analytically, and takes the
form of,

cX(u1, u2) = 4R

{
1

iu1 − θ
(exp [(iu1 − θ)π]− 1)

}
R

{
1

iu2 − θ
(exp [(iu2 − θ)π]− 1)

}
, (2)

which is separable in u1 and u2, since the spectrum is separable in ω1 and ω2. We display a
simulated realization in Figure 2.

In our experiments we set θ = 3 and initialize estimates to 0.2 for all estimation methods.
In a first experiment we consider estimation on growing squares, see Figure 3. The tapered
Whittle method performs very well for this discrete model for large sizes, but suffers from bias
for smaller grid sizes. The tapered version of the Spatial Debiased Whittle performs better than
its non-tapered counter-part, due to remaining boundary effects. However, it is notable that
even without tapering, the Spatial Debiased Whittle appears to perform at the expected square
root n rate.

In a second experiment, we demonstrate the ability of the Spatial Debiased Whittle to perform
well for rectangular but not square domains, see Figure 4. We fix one side of the domain to 16
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Fig. 3. Bias, standard deviation, and RMSE of estimates of θ = 3 for rectangular grids of size N×N where

N increases in powers of 2 which are indicated by the values on the x-axis. All estimators are initialized to

the value 0.2.

units, while the other side grows in powers of 4, so that the sample sizes increase in the same
way as in the previous experiment. In this configuration, the asymptotic bias of the tapered
Whittle is non-zero—this is because the expected periodogram never converges to the spectral
density, due to the bounded sample size along one dimension. In contrast, the observed rate of
the Spatial Debiased Whittle likelihood remains of the order of square root the sample size.
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Fig. 4. Bias, standard deviation, and RMSE of estimates of θ = 3 for rectangular grids of size 16 × N
where N increases in powers of 4 and is indicated on the x-axis. We observe how even for a simple

discrete model, tapering has its limits and cannot fully account for the shape of the observational domain.
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Fig. 5. This figure illustrates the geometric characteristics of Significant Correlation Contribution in 2D.

We plot cX(u;θ) as a contour plot and superimpose s1,j and s2,j , even if s1,j and s2,j are used to sample

X(r)(s) to give X
(r)
s rather than sampling the covariance kernel.

Example of a violation of SCC

We start by assuming that the autocovariance is

cX(u;θ) = 0.04× exp

{
−
θ1
2
(u1 + u2)

2

}
exp

{
−
θ2
2
(−u1 + u2)

2

}
, (3)

and then we sample the process according to

s1,j =
(
j j

)
, s2,j =

(
−j j

)
.

It is fairly straightforward, with either these line samplings, to convince oneself that with one
sampling we only learn about θ1 and with the other only about θ2 as illustrated by Figure 5.
Note that cX() is a valid auto–covariance, as the Fourier transform of Gaussians is Gaussian and
thus non–negative. Sampling the process X(s) with s1,j means that sums and differences of the
sampling pattern lives in the same linear subspace of R2. This means that we only learn about
one of the two functions in (3).
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Proofs of lemmata, propositions and theorems

Proof of lemma 2

Proof. Let k = (k0, . . . , kd−1) ∈
∏d−1

j=0 {0, . . . , nj − 1}. We remind the reader that for u ∈ ZZd,
cn(u) = cg,n(u)cX(u), where,

cg,n(u) =

∑
s∈ZZd gsgs+u∑

s∈ZZd g2
s

.

Using the fact that for any q ∈ {0, 1}
d
,

cn(u− q ◦ n) exp


−i

d−1∑

j=0

2kjπ

nj
(uj − qjnj)


 = cn(u− q ◦ n) exp


−i

d−1∑

j=0

2kjπ

nj
uj


 ,

where ◦ denotes the Hadamard product, i.e. element-wise multiplication, and since cn(u−q◦n)
is zero if any component of u is zero and the corresponding component of q is one (due to the def-

inition of cg,nk
), we obtain the proposed formula. Indeed, any u ∈

∏d−1
j=0 {−(nj − 1), . . . , nj − 1}

that contribute to the LHS of the proposed formula can be written as u = u+ − q ◦ n for some
unique u+ ∈

∏d−1
j=0 {0, . . . , nj − 1}. The extra terms in the RHS of the proposed formula take

value zero according to the previous argument.

Proof of Lemma 6

Proof. This comes as a consequence of the two following observations. First, two continuous
functions on T d are equal if and only if their Fourier coefficients are equal, see for instance Körner
(1988). Second, for a sequence of full rectangular grids indexed by k ∈ IN that grow unbounded
in all directions, for any u ∈ ZZd, we have cg,nk

(u) → 1 as k goes to infinity, see equation (16) in
the main body.

Proof of Lemma 7

Proof. The argument is very similar to that of Lemma 6, with the difference that for any
u ∈ ZZd we have that cg,nk

(u) converges to a positive constant (which might be strictly smaller
than one) as k goes to infinity.

Proof of Theorem 1

Proof. We will show in Lemma 15 that lnk
(·), as a random function, converges uniformly to

l̃nk
(·) in probability, i.e. their difference converges uniformly to the zero function in probability.

Hence the difference lnk
(θ̂k) − l̃nk

(θ̂k) converges to zero in probability. Additionally, lnk
(θ̂k) −

l̃nk
(θ) converges to zero in probability. Indeed, by definition, the parameter vector θ̂k minimizes

the function lnk
(·) over the parameter set Θ, and according to Lemma 9, the parameter vector

θ minimizes the function l̃nk
(·). We therefore have, by the triangle inequality,

∣∣∣l̃nk
(θ)− l̃nk

(θ̂k)
∣∣∣ ≤

∣∣∣lnk
(θ̂k)− l̃nk

(θ̂k)
∣∣∣+
∣∣∣lnk

(θ̂k)− l̃nk
(θ)
∣∣∣ ,

which converges to zero in probability. Making use of Lemma 14 we conclude that θ̂k converges
in probability to θ.
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Proof of Proposition 1

Proof. We write the proof for the case Ωn = Ω
(1)
n , while the case Ωn = Ω

(2)
n is the same, up

to a constant factor. We first write the proof of the proposition for the univariate Gaussian case.
Let amax > 0 be a finite constant such that |an(ω)| ≤ amax, ∀ω ∈ T , ∀n ∈ INd. We first make the
observation that the sum of the periodogram values at the Fourier frequencies is the squared L2

norm of the sample, up to some multiplicative constant, since the Discrete Fourier Transform is
orthonormal, i.e.

∑

ω∈Ωn

In(ω) =
|n|

(2π)d
∑

s∈ZZd g2
s

∑

s∈ZZd

g2
s
X2

s
.

Therefore,

var

{
|n|−1

∑

ω∈Ωn

an(ω)In(ω)

}
≤ a2maxvar

{
|n|−1

∑

ω∈Ωn

In(ω)

}

=
a2max

(2π)2d (
∑
g2
s
)
2 var




∑

s∈ZZd

g2
s
X2

s



 . (4)

Note that the first inequality is valid since the covariance of the periodogram at two Fourier
frequencies ω,ω′ is non-negative for a Gaussian process (as a consequence of Isserlis’ theorem).
Indeed, letting

J(ω) =
(2π)−d/2

√∑
s∈Jn

g2
s

∑

s∈Jn

gsXs exp(−iω · s),

we have, by Isserlis’ theorem,

cov {I(ω), I(ω′)} = E {J(ω)J∗(ω)J(ω′)J∗(ω′)} − E {I(ω)}E {I(ω′)}

= E {J(ω)J(ω′)}E {J∗(ω)J∗(ω′)}+ E {J(ω)J∗(ω′)}E {J∗(ω)J(ω′)}

= |E {J(ω)J(ω′)}|
2
+ |E {J∗(ω)J(ω′)}|

2
,

which is non-negative as the sum of two squares. We study the term var
{∑

s∈ZZd g2
s
X2

s

}
. We

have, again using Isserlis’ theorem for Gaussian random variables,

var




∑

s∈ZZd

g2
s
X2

s



 = E

(
∑

s∈Jn

g2
s
X2

s

)2

−

(
E
∑

s∈Jn

g2
s
X2

s

)2

=
∑

s∈Jn

∑

s′∈Jn

E
{
g2
s
g2
s′X

2
s
X2

s′

}
− E

{
g2
s
X2

s

}
E
{
g2
s′X

2
s′

}

= 2
∑

s∈Jn

∑

s′∈Jn

g2
s
g2
s′ (E {XsXs′})

2
. (5)
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We now obtain, combining equations (4) and (5),

var

{
|nk|

−1
∑

ω∈Ωn

an(ω)In(ω)

}
≤

2a2max

(2π)2d (
∑
g2
s
)
2

∑

s∈Jn

∑

s′∈Jn

g2
s
g2
s′ (E {XsXs′})

2

≤
2a2max

(2π)2d (
∑
g2
s
)
2

∑

u∈ZZd

cX(u)2
∑

s∈Jn

g2
s
g2
s+u

≤
2a2max

(2π)2d (
∑
g2
s
)
2

∑

u∈ZZd

cX(u)2
∑

s∈Jn

gsgs+u

≤
2a2max

(2π)2d
∑
g2
s

∑

u∈ZZd

cX(u)2cg(u),

where we have made use of the assumption that 0 ≤ gs ≤ 1, ∀s ∈ ZZd. Therefore, we obtain the
stated result, i.e.,

var



|nk|

−1
∑

ω∈Ωnk

ak(ω)Ink
(ω)



 = O

{∑
u∈ZZd cX(u)2cg,k(u)∑

g2
s

}
,

where the big O is with respect to k going to infinity. This concludes the proof for the univariate
Gaussian case. ✷

Proof of Corollary 1

We now treat the extension to the univariate but non-Gaussian case. This requires defining the
fourth-order cumulant according to,

E{Xs1Xs2Xs3Xs4} = c4(s2 − s1, s3 − s1, s4 − s1) + cX(s3 − s1)cX(s4 − s2)

+ cX(s4 − s1)cX(s3 − s2) + cX(s2 − s1)cX(s4 − s3).

Note that in the Gaussian case this equality holds with C4(s2−s1, s3−s1, s4−s1) = 0 (trivially)
always. With this definition, we can study the covariance of the periodogram at two Fourier
frequencies as follows,

cov{In(ω1), In(ω2)} =
(2π)−2d

(
∑

s
g2
s
)2
cov

{
∑

s1,s2

gs1gs2Xs1Xs2e
−iωT

1
(s1−s2),

∑

s3,s4

gs3gs4Xs3Xs4e
−iωT

2
(s3−s4)

}

=
(2π)−2d

(
∑

s
g2
s
)2

∑

s1,s2,s3,s4

gs1gs2gs3gs4cov{Xs1
Xs2

, Xs3
Xs4

}e−iωT
1
(s1−s2)e−iωT

2
(s3−s4).

We write Ck = (2π)−d

∑
s
g2
s

, where the dependence on k comes from the implicit dependence of {gs}

on k. We note that we can determine directly that

cov{Xs1Xs2 , Xs3Xs4} = E{Xs1Xs2Xs3Xs4} − E{Xs1Xs2}E{Xs3Xs4}

= c4(s2 − s1, s3 − s1, s4 − s1) + cX(s3 − s1)cX(s4 − s2)

+ cX(s4 − s1)cX(s3 − s2). (6)
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We additionally define,

G(s1, s2, s3) = cX(s3 − s1)cX(s4 − s2) + cX(s4 − s1)cX(s3 − s2),

where the choice of the letter G comes from the fact that in the Gaussian case cov{Xs1
Xs2

, Xs3
Xs4

}
simplifies to this quantity. Now summing over 2-combinations of Fourier frequencies, we can ap-
ply the triangular inequality,

∣∣∣∣∣∣

∑

ω1,ω2

aω1
aω2

cov{In(ω1), In(ω2)}

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

ω1,ω2

aω1
aω2

C
2
k

∑

s1,s2,s3,s4

gs1gs2gs3gs4 {c4(s2 − s1, s3 − s1, s4 − s1) + G(s1, s2, s3)} e
−iωT

1
(s1−s2)

e
−iωT

2
(s3−s4)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∑

ω1,ω2

aω1
aω2

C
2
k

∑

s1,s2,s3,s4

gs1gs2gs3gs4 c4(s2 − s1, s3 − s1, s4 − s1)e
−iωT

1
(s1−s2)

e
−iωT

2
(s3−s4)

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∑

ω1,ω2

aω1
aω2

C
2
k

∑

s1,s2,s3,s4

gs1gs2gs3gs4G(s1, s2, s3)e
−iωT

1
(s1−s2)

e
−iωT

2
(s3−s4)

∣∣∣∣∣∣

The second term in the sum has already been studied in the proof of Proposition 1 where we
assumed Gaussianity. As for the first term, again using the triangular inequality, we may deduce
that

∣

∣

∣

∣

∣

∑

ω1,ω2

aω1
aω2

C2
k

∑

s1

∑

s2

∑

s3

∑

s4

gs1gs2gs3gs4c4(s2 − s1, s3 − s1, s4 − s1)e
−iωT

1
(s1−s2)e−iωT

2
(s3−s4)

∣

∣

∣

∣

∣

≤
∑

ω1,ω2

aω1
aω2

C2
k

∑

s1

∑

s2

∑

s3

∑

s4

gs1gs2gs3gs4

∣

∣

∣
c4(s2 − s1, s3 − s1, s4 − s1)e

−iωT
1
(s1−s2)e−iωT

2
(s3−s4)

∣

∣

∣

≤
∑

ω1,ω2

aω1
aω2

|n|C2
k

∑

τ1

∑

τ2

∑

τ3

|c4(τ1, τ2, τ3)| .

We now make use of our assumption of absolute summability of fourth-order cumulants. Defining
the positive finite constant K4 =

∑∞
τ1=0

∑∞
τ2=0

∑∞
τ3=0 |c4(τ1, τ2, τ3)| <∞, we obtain,

1

|nk|2

∣∣∣∣∣
∑

ω1,ω2

aω1
aω2

cov{In(ω1), In(ω2)}

∣∣∣∣∣ ≤
∑

u∈ZZd cX(u)2cg,k(u)∑
g2
s

+ |nk|C
2
kK4,

where the first term is the one obtained also for Gaussian random fields. This allows us to
conclude, under our assumption of absolute summability of fourth-order cumulants, that in the
non-Gaussian case,

var



|nk|

−1
∑

ω∈Ωnk

ak(ω)Ink
(ω)



 = O

{∑
u∈ZZd cX(u)2cg,k(u)∑

g2
s

+
|nk|

(
∑
g2
s
)
2

}
. (7)

✷

Proof of Corollary 2

Proof. For a multivariate random field we proceed much in the same way as the proof of
Proposition 1. We study the variance of the quadratic form

|nk|
−1

∑

ω∈Ωnk

J∗
nk
(ω)Ak(ω)Jnk

(ω). (8)
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For all ω ∈ Ωnk
we perform an orthonormal eigendecomposition of Ak(ω),

Ak(ω) =

p∑

j=1

λj(ω)ej(ω)ej(ω)H ,

where we do not indicate the dependence on k to avoid complicating the notation. We then
define the complex-valued scalars,

Zj = JH(ω)ej(ω), j = 1, . . . , p,

and note that, due to the orthonormality of the basis e1, . . . , ep,

Jnk
(ω) =

p∑

j=1

Zj(ω)ej(ω).

We have,

var



|nk|

−1
∑

ω∈Ωnk

JH
nk
(ω)Ak(ω)Jnk

(ω)



 = var



|nk|

−1
∑

ω

p∑

j=1

λj(ω)|Zj(ω)|2





= |nk|
−2

∑

ω1,ω2

∑

j1,j2

λj1(ω1)λj2(ω2)cov{|Zj1(ω1)|
2, |Zj2(ω2)|

2}.

Using Isserliss’ theorem we deduce, for any ω1,ω2 ∈ Ω2
nk
, j1, j2 = 1, . . . , p,

cov{|Zj1(ω1)|
2, |Zj2(ω2)|

2} = E{Zj1(ω1)Zj2(ω2)}E{Z
∗
j1(ω1)Z

∗
j2(ω2)}

+ E{Zj1(ω1)Z
∗
j2(ω2)}E{Z

∗
j1(ω1)Zj2(ω2)} ≥ 0.

Therefore it follows that

var



|nk|

−1
∑

ω∈Ωnk

JH
nk
(ω)Ak(ω)Jnk

(ω)



 ≤ λ2max|nk|

−2
∑

ω1

∑

ω2

∑

j1

∑

j2

cov{|Zj1(ω1)|
2, |Zj2(ω2)|

2}.

Besides,

var



|nk|

−1
∑

ω∈Ωnk

JH
nk
(ω)Jnk

(ω)



 = var



|nk|

−1
∑

ω∈Ωnk




p∑

j=1

Z∗
j e

H
j (ω)






p∑

j=1

Zjej(ω)








= var



|nk|

−1
∑

ω∈Ωnk




p∑

j1,j2=1

Z∗
j1Zj2e

H
j1(ω)ej2(ω)








= var



|nk|

−1
∑

ω∈Ωnk

p∑

j=1

|Zj |
2



 ,

after we again use the orthonormality of the basis e1, . . . , ep. Hence we deduce that,

var



|nk|

−1
∑

ω∈Ωnk

JH
nk
(ω)Ak(ω)Jnk

(ω)



 ≤ λ2maxvar



|nk|

−1
∑

ω∈Ωnk

JH
nk
(ω)Jnk

(ω).
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As in the univariate case, we use the isometry property of the discrete Fourier transform to write
this in the form of,

var



|nk|

−1
∑

ω∈Ωnk

Jnk
(ω)HAk(ω)Jnk

(ω)



 ≤ λ2maxvar





∑

q=1,...,p





(2π)−d

∑
g
(q)
s′

2

∑

s

g(q)
s

2
X(q)

s

2







 .

By applying the Isserlis theorem, we obtain the following upper-bound,

var



|nk|

−1
∑

ω∈Ωnk

Jnk
(ω)

H
Ak(ω)Jnk

(ω)





≤ 2λ2max

∑

q,r

(2π)−2d

∑
g
(q)
s′

2∑
g
(r)
s′

2




∑

s,s′

g(q)
s

2
g
(r)
s′

2 (
E
[
X(r)

s
X

(q)
s′

])2


 .

By a manipulation similar to the one we used earlier for the univariate case, we obtain,

var



|nk|

−1
∑

ω∈Ωnk

Jnk
(ω)∗Ak(ω)Jnk

(ω)



 = O




∑

q,r

∑
u
c
(qr)
X (u)2c

(qr)
g (u)√∑

g
(q)
s

2∑
g
(r)
s

2



 ,

which determines the order of the variance of such quadratic forms. ✷

Proof of Lemma 9

Proof. The difference between the expected likelihood function at the true parameter vector
and any parameter vector γ ∈ Θ takes the form

l̃n(γ)− l̃n(θ) = |n|−1
∑

ω∈Ωn

φ

(
Ink

(ω;θ)

Ink
(ω;γ)

)
,

with φ : x 7→ x − log x − 1. This function is non-negative and attains it minimum uniquely at
x = 1.

The proof in the multivariate case requires a bit more care than the univariate case but
follows the same pattern. Following Taniguchi (1979) and Guillaumin et al (2017) for 1-d and
the multivariate version provided in Hosoya and Taniguchi (1982) we define the function

l̃n(γ) = |n|−1
∑

ω

{
log det{I(ω;γ)}+ trace

{
I
−1

(ω;γ)I(ω;θ
}}

.

We now note that

l̃n(γ)− l̃n(θ) = |n|−1
∑

ω

{
trace

{
I
−1

(ω;γ)I(ω;θ)
}
− log

detI(ω;θ)

detI(ω;γ)
− p

}
.

We defineBω(θ,γ) = I(ω;θ)I
−1

(ω;γ), and assume this matrix has positive eigenvalues {βi(ω)}
p
i=1.

We then obtain,

l̃n(γ)− l̃n(θ) = |n|−1
∑

ω

∑

j

{βj − log βj − 1}.

From here, like in the univariate case we make use of the fact that φ : x 7→ x − log x − 1 is
non-negative and attains it minimum uniquely at x = 1, which corresponds to Bω(θ,γ) being
the identity matrix. ✷
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Proof of Lemma 10

Proof. By combining equations (4) and (12) in the main body then the periodogram can be
expressed as

In(ω) =
(2π)−d

∑
g2
s

∣∣∣∣∣
∑

s∈Jn

gsXs exp(−iω · s)

∣∣∣∣∣

2

, ω ∈ T d.

Making use of equation (9) of the main body, we therefore have,

In(ω;γ) =

∫

T d

fδ,X(ω − λ;γ)Fn(λ)dλ.

Also,

∫

T d

Fn(ω)dω =
(2π)−d

∑
g2
s

∫

T d

∣∣∣∣∣
∑

s∈Jn

gs exp(iω · s

∣∣∣∣∣

2

dω

=
(2π)−d

∑
g2
s

∫

T d

∑

s∈Jn

∑

s′∈Jn

gsgs′ exp{iω · (s′ − s)} dω

=
(2π)−d

∑
g2
s

∑

s∈Jn

∑

s′∈Jn

∫

T d

gsgs′ exp{iω · (s′ − s)} dω

=
1∑
g2
s

∑

s∈Jn

∑

s′∈Jn

gsgs′δs,s′

= 1,

which is a direct adaptation of a standard result for the Féjer kernel. Hence,

∣∣In(ω;γ)
∣∣ ≤

∫

T d

|fδ,X(ω − λ;γ)Fn(λ)| dλ

≤ fδ,max

∫

T d

|Fn(λ)| dλ

≤ fδ,max.

Similarly, we obtain the other inequality, i.e. In(ω;γ) ≥ fδ,min, which concludes the proof. ✷

Proof of Lemma 11

We shall need the following intermediary result in our proof.

Lemma A. We have, for a growing domain,

|nk|
−1

∑

ω∈Ωnk

{
Ink

(ω;θ)− Ink
(ω;γ)

}2
=
∑

u∈ZZd

{cnk
(u;θ)− cnk

(u;γ)}
2
+ o(1).

Proof. We distinguish two cases:

(a) In the case where the domain is unbounded, we have set Ωn = Ω
(1)
n , see the discussion

following (5) in the main document. Then the result in obtained by application of Parseval’s
equality, according to which,

∑

u∈ZZd

{cnk
(u;θ)− cnk

(u;γ)}
2
=

∫

T d

{
Ink

(ω;θ)− Ink
(ω;γ)

}2
dω,
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and application of the Dominated Convergence Theorem.

(b) In the case where one or more dimensions of the domain are bounded, we use Ωn = Ω
(2)
n ,

see the discussion following (5) in the main document, and in that case we have exactly,

|nk|
−1

∑

ω∈Ωnk

{
Ink

(ω;θ)− Ink
(ω;γ)

}2
=
∑

u∈ZZd

{cnk
(u;θ)− cnk

(u;γ)}
2
.

This can be established by direct calculations using the expression of the expected peri-
odogram as a Fourier series provided in Lemma 1.

We can now establish the proof for Lemma 11.

Proof. We start by providing a proof in the scalar case (the non–Gaussian but scalar case
requires no adjustment). We first observe, given equation (28) of the main body, that

l̃nk
(γ)− l̃nk

(θ) = |nk|
−1

∑

ω∈Ωnk

{
Ink

(ω;θ)

Ink
(ω;γ)

− log
Ink

(ω;θ)

Ink
(ω;γ)

− 1

}
.

As before, denoting φ : x 7→ x− log x− 1, x > 0, and gn(ω) the piece-wise continuous function
that maps any frequency of T d to the closest smaller Fourier frequency corresponding to the grid
Jn, we have

l̃nk
(γ)− l̃nk

(θ) = (2π)−d

∫

T d

φ

(
Ink

(g(ω);θ)

Ink
(g(ω);γ)

)
dω.

A Taylor expansion of φ(·) around 1 gives, with ψ(x) = (x− 1)2,

φ(x) = ψ(x)(1 + ǫ(x)),

where ǫ(x) → 0 as x → 1. Therefore for any δ > 0 there exists µ > 0 such that for all x such
that |x− 1| ≤ µ, |ǫ(x)| < δ. Now let, for all k ∈ IN,

Πk =

{
ω ∈ T d :

∣∣∣∣
Ink

(g(ω);θ)

Ink
(g(ω);γ)

− 1

∣∣∣∣ ≤ µ

}
.

We distinguish two cases:

(a) If for some δ > 0, the Lebesgue measure of Πk does not converge to (2π)d, equation (30)
of the main body holds.

(b) Otherwise, if for any δ > 0 the Lebesgue measure of Πk does converge to (2π)d, we then
have

∣∣∣l̃nk
(γ)− l̃nk

(θ)
∣∣∣ =

∫

Πk∪ΠC
k

ψ

(
Ink

(g(ω);θ)

Ink
(g(ω);γ)

){
1 + ǫ

(
Ink

(g(ω);θ)

Ink
(g(ω);γ)

)}
dω,

where ΠC
k denotes the complementary of Πk as a subset of T d and where the function ǫ(·)

was defined in equation (10). Denoting h(ω;θ,γ) =
Ink

(g(ω);θ)

Ink
(g(ω);γ)

(note that this quantity

also depends on k),

l̃nk
(γ)− l̃nk

(θ) =

∫

T d

ψ (h(ω;θ,γ))dω

+

∫

Πk

ψ (h(ω;θ,γ)) ǫ (h(ω;θ,γ))dω

+

∫

ΠC
k

ψ(h(ω;θ,γ)ǫ(h(ω;θ,γ))dω.
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We shall now show that the two last terms of the right-hand side of this equation are
asymptotically vanishing, so that we can limit our study to the first term, which will turn
out to take a simple form in relation to our definition of significant correlation contribution
(SCC) in the main body. Given the definition of Πk we have,

∣∣∣∣
∫

Πk

ψ (h(ω;θ,γ)) ǫ (h(ω;θ,γ))dω

∣∣∣∣ ≤ δ

∫

Πk

ψ (h(ω;θ,γ))dω ≤ δ

∫

T d

ψ (h(ω;θ,γ))dω,

where the two inequalities come from the fact that the function ψ(·) is non-negative. We
also have ∣∣∣∣∣

∫

ΠC
k

ψ(h(ω;θ,γ)ǫ(h(ω;θ,γ))dω

∣∣∣∣∣ = o(1),

since the integrand is upper-bounded given Assumption 1.(1b) and since the measure of
the set ΠC

k goes to zero. Hence we obtain, by the triangle inequality,

∣∣∣l̃nk
(γ)− l̃nk

(θ)
∣∣∣ ≥

(∫

Td

ψ (h(ω;θ,γ))dω

)
(1− δ) + o(1).

We now study the term (2π)−d
∫
T d ψ (h(ω;θ,γ))dω = |nk|

−1
∑

ω∈Ωnk

{
Ink

(ω;θ)

Ink
(ω;γ)

− 1
}2

.

We observe that

|nk|
−1

∑

ω∈Ωnk

{
Ink

(ω;θ)− Ink
(ω;γ)

}2
= |nk|

−1
∑

ω∈Ωnk

Ink
(ω;γ)2

{
Ink

(ω;θ)

Ink
(ω;γ)

− 1

}2

≤ |nk|
−1f2max,δ

∑

ω∈Ωnk

{
Ink

(ω;θ)

Ink
(ω;γ)

− 1

}2

.

Additionally, according to Lemma A,

|nk|
−1

∑

ω∈Ωnk

{
Ink

(ω;θ)− Ink
(ω;γ)

}2
=
∑

u∈ZZd

{cnk
(u;θ)− cnk

(u;γ)}
2
+ o(1)

=
∑

u∈ZZd

cg,nk
(u)2 {cX(u;θ)− cX(u;γ)}

2
+ o(1)

≥
1

2
limk→∞Sk(θ,γ) + o(1),

where the last inequality holds for k sufficiently large, given the SCC assumption, see
Definition 1. Therefore we obtain for k sufficiently large,

∣∣∣l̃nk
(γ)− l̃nk

(θ)
∣∣∣ ≥

1

2f2max,δ

(1− δ) limk→∞Sk(θ,γ) + o(1).

Choosing δ = 1/2, we obtain the inequality stated in equation (30) of the main body. This
concludes the proof in the univariate case, as we have shown the absolute difference of the
expected log-likelihood is lower bounded by the assumption of SCC.

We now extend the proof of Lemma 11 to the multivariate case. In the multivariate case,
we first observe that we may write the difference of the expected log–likelihood for different
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parameter values as

ℓ̃n(γ)− ℓ̃n(θ) = |n|−1
∑

ω

{
log det{I(ω;γ)}+ trace

{
I
−1

(ω;γ)I(ω;θ
}}

− |n|−1
∑

ω

{
log det{I(ω;θ)}+ trace

{
I
−1

(ω;θ)I(ω;θ
}}

= |n|−1
∑

ω

{
− log det{I

−1
(ω;γ)I(ω;θ}+ trace

{
I
−1

(ω;γ)I(ω;θ
}
− p
}
. (9)

We define B̃ω(θ,γ) = I
−1

(ω;γ)I(ω;θ), and assume this matrix has positive eigenvalues {β̃i(ω)}
p
i=1.

Rewriting this expression in terms of the eigenvalues we get

ℓ̃n(γ)− ℓ̃n(θ) = |n|−1
∑

ω



−

∑

j

log β̃j(ω) +
∑

j

β̃j(ω)− p





= |n|−1
∑

ω

∑

j

φ{β̃j(ω)}. (10)

We define gn(ω) as the piece-wise continuous function that maps any frequency of T d to the
closest smaller Fourier frequency corresponding to the grid of In, we have

ℓ̃n(γ)− ℓ̃n(θ) = (2π)−d

∫

T d

p∑

j=1

φ
(
β̃j(gn(ω))

)
dω. (11)

A Taylor expansion of φ(·) around 1 gives with φ(x) = ψ(x)(1 + ǫ(x)) with ψ(x) = (x − 1)2,
where ǫ(x) is going to zero as x → 1. Most of this proceeds exactly like for the univariate case,
but we shall now proceed to study what SCC means in this context. Unlike the univariate case
we now have to propose a new approximation that works also in this case. Given we have

ℓ̃n(γ)− ℓ̃n(θ) =
∑

ω

∑

j

(
β̃j(gn(ω))− 1

)2

=
∑

ω

trace
[
B̃ω(θ,γ)− Ip

]2

=
∑

ω

trace
[
I
−1

(ω;γ)
(
I(ω;θ)− I(ω;γ)

)]2

≥ f−2
max,δ

∑

ω

trace
[
I(ω;θ)− I(ω;γ)

]2
(12)

=
∑

ω

p∑

q=1

p∑

r=1

∣∣∣I(qr)(ω;θ)− I
(qr)

(ω;γ)
∣∣∣
2

, (13)

where the inequality results from Lemma 12. We can now relate the above quantity to the
multivariate version of SCC via the use of Parseval’s identity, just like we did in the univariate
case. ✷

Proof of Lemma 12

Proof. Since H1 is Hermitian positive definite it admits p real positive eigenvalues 0 < λ1 ≤
. . . ≤ λp and there exits a unitary matrix U such that H1 = U∗DU , where D is the diagonal
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matrix with elements λ1, . . . , λp on the diagonal. We then have,

trace [H1H2]
2
= trace [U∗DUH2U

∗DUH2] = trace [DUH2U
∗DUH2U

∗] = trace [DZDZ] ,

where Z = UH2U
∗, which is Hermitian positive definite just like H2 is. Therefore,

trace [H1H2]
2
=

p∑

j=1

p∑

k=1

λjZj,kλkZk,j =

p∑

j=1

p∑

k=1

λjλk |Zj,k|
2

≥ λ21

p∑

j=1

p∑

k=1

|Zj,k|
2
= λ21trace Z

2 = λ21trace H2
2.

This concludes the proof. ✷

Proof of Lemma 13

Proof. First we observe that for any fixed ω ∈ T d, Ink
(ω;γk) converges to Ink

(ω;γ) as k
goes to infinity. This comes from Assumption 1.(1b), where we have assumed an upper-bound
on the derivative of the spectral density with respect to the parameter vector. In that case,

∣∣Ink
(ω;γk)− Ink

(ω;γ)
∣∣ ≤

∣∣∣∣(2π)
−d

∫

T d

{fX,δ(ω − ω′;γk)− fX,δ(ω − ω′;γ)}Fn(ω
′)dω′

∣∣∣∣

≤ (2π)−d

∫

T d

|fX,δ(ω − ω′;γk)− fX,δ(ω − ω′;γ)| Fn(ω
′)dω′

≤ (2π)−d

∫

T d

M∂θ
‖γk − γ‖2Fn(ω

′)dω′

≤M∂θ
‖γk − γ‖2

which converges to zero as ‖γk − γ‖2 converges to zero by assumption.

Now using equation (28), we can apply the Dominated Convergence Theorem to (l̃nk
(γk)−

l̃nk
(γ))k∈IN, using the bounds established in Lemma 10, and the ω-pointwise convergence of∣∣Ink
(ω;γk)− Ink

(ω;γk)
∣∣ to zero. Hence (l̃nk

(γk) − l̃nk
(γ))k∈IN converges to zero, which con-

cludes the proof. ✷

Proof of Lemma 14

Proof. Assume, with the intent to reach a contradiction, that (γk) does not converge to θ.
By compactness of Θ, there exists γ ∈ Θ distinct from θ and (γjk

) a subsequence of (γk) such
that γjk

converges to γ. We then have, using the inverse triangle inequality,

|l̃njk
(γjk

)− l̃njk
(θ)| ≥

∣∣∣l̃njk
(γ)− l̃njk

(θ)
∣∣∣−
∣∣∣l̃njk

(γjk
)− l̃njk

(γ)
∣∣∣ .

The second term on the right-hand side of the above equation converges to zero according to
Lemma 13 whereas the first term is asymptotically lower bounded according to Lemma 11.
Therefore the quantity |l̃njk

(γjk
) − l̃njk

(θ)| is asymptotically lower bounded, which contradicts

the initial assumption that l̃nk
(γk) − l̃nk

(θ) converges to zero. This concludes the proof, by
obtaining a contradiction. ✷
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Proof of Lemma 15

Proof. We have, for γ ∈ Θ,

l̃nk
(γ)− lnk

(γ) = |nk|
−1

∑

ω∈Ωn

{
log Ink

(ω;γ) +
Ink

(ω;θ)

Ink
(ω;γ)

− log Ink
(ω;γ)−

Ink
(ω)

Ink
(ω;γ)

}

= |nk|
−1

∑

ω∈Ωn

Ink
(ω;θ)− Ink

(ω)

Ink
(ω;γ)

.

In order to show that l̃nk
(γ) − lnk

(γ) converges uniformly in probability to the zero function
over Θ, we need to show that,

sup
γ∈Θ

∣∣∣l̃nk
(γ)− lnk

(γ)
∣∣∣ = op(1), (14)

as k goes to infinity.
We first observe that, given that the quantity Ink

(ω;γ)−1 is deterministic and upper-bounded
independently of γ by f−1

min,δ, we can use Proposition 1 to write that

var
{
l̃nk

(γ)− lnk
(γ)
}
= O

{∑
u∈ZZd cX(u)2cg(u)∑

g2
s

}
,

where the big O does not depend on γ. Thus using Chebychev’s inequality

l̃nk
(γ)− lnk

(γ) = OP





(∑
u∈ZZd cX(u)2cg(u)∑

g2
s

)1/2


 .

This holds for any fixed γ ∈ Θ. In order to establish uniform convergence in probability we
shall also use smoothness properties of the expected periodogram. Let ǫ > 0 and η > 0. Define
the events,

Ak =

(
sup
γ∈Θ

∣∣∣l̃nk
(γ)− lnk

(γ)
∣∣∣ ≥ ǫ

)
, ∀k ∈ IN.

We wish to show that there exists kA ∈ IN such that for all integer k ≥ kA, P (Ak) ≤ η. We note
that,

Ak =
⋃

γ∈Θ

(∣∣∣l̃nk
(γ)− lnk

(γ)
∣∣∣ ≥ ǫ

)
, ∀k ∈ IN.

Indeed, inclusion ⊃ is obvious, whereas inclusion ⊂ follows from the sup being reached due to
the continuity w.r.t γ and the compacity of Θ. Let

∆nk
(γ,γ′) = l̃nk

(γ)− lnk
(γ)− (l̃nk

(γ′)− lnk
(γ′)).

We have, by Taylor-expension,

∆nk
(γ,γ′) = |nk|

−1
∑

ω∈Ωn

(
1

Ink
(ω;γ)

−
1

Ink
(ω;γ′)

)(
Ink

(ω;θ)− Ink
(ω)
)

= |nk|
−1

∑

ω∈Ωn

{
1

Ink
(ω;γ)2

(γ′ − γ)
T
∇θInk

(ω; γ̃ω)
(
Ink

(ω;θ)− Ink
(ω)
)}

,
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where each γ̃ω depends on ω. Hence, by the triangle inequality,

|∆nk
(γ,γ′)| ≤ |nk|

−1

∣∣∣∣∣
∑

ω∈Ωn

1

Ink
(ω;γ)2

(γ′ − γ)
T
∇θInk

(ω; γ̃ω)Ink
(ω)

∣∣∣∣∣

+ |nk|
−1

∣∣∣∣∣
∑

ω∈Ωn

1

Ink
(ω;γ)2

(γ′ − γ)
T
∇θInk

(ω; γ̃ω)Ink
(ω;θ)

∣∣∣∣∣ .

Using the upper-bound for the norm of the derivative of the spectral density with respect to the
parameter vector, as well as the lower bound for the spectral density, we obtain,

|∆nk
(γ,γ′)| ≤ |nk|

−1f−2
δ,minM∂θ‖γ

′ − γ‖
∑

ω∈Ωn

{
Ink

(ω) + Ink
(ω;θ)

}

= |nk|
−1f−2

δ,minM∂θ‖γ
′ − γ‖

(
2
∑

ω∈Ωn

Ink
(ω;θ) + oP (1)

)
,

according to Proposition 1, and using SCC. This implies that we can choose δ > 0 small enough
such that there exists a natural integer kC such that,

∀k ≥ kC , ∀γ,γ
′ ∈ Θ, ‖γ′ − γ‖ ≤ δ =⇒ P

(
|∆nk

(γ,γ′)| ≥
ǫ

2

)
≤
η

2.
.

Now, let
{
αδ

j

}
j=1,...,J

be a finite family of elements of Θ such that,

J⋃

j=1

B(αδ
j , δ) ⊃ Θ,

with B(αδ
j , δ) denoting the ball centered on αδ

j with radius δ. Existence here follows from the
compacity of Θ, and the positiveness of δ. Define the events,

Bk =

J⋃

j=1

(
|nk|

−1

∣∣∣∣∣
∑

ω∈Ωn

Ink
(ω;θ)− Ink

(ω)

Ink
(ω;αj)

∣∣∣∣∣ ≥
ǫ

2

)
, ∀k ∈ IN,

and Ck = Ak\Bk. Clearly Bk ⊂ Ak so that Ak = Bk∪Ck, and therefore P (Ak) ≤ P (Bk)+P (Ck).
Again by Proposition 1, and because J is finite, there exists kB such that for any integer k ≥ kB ,

P (Bk) ≤
η
2 . Finally, for an outcome in Ck, there exists γ′ ∈ Θ such that

∣∣∣l̃nk
(γ′)− lnk

(γ′)
∣∣∣ ≥ ǫ.

By construction, there exists j ∈ {1, . . . , J} such that ‖αj − γ′‖ ≤ δ, but at the same time we

have
∣∣∣l̃nk

(αj)− lnk
(αj)

∣∣∣ ≤ ǫ
2 . By inverse triangle inequality, we therefore have, ∆n(αj , γ

′) ≥ ǫ
2 .

Hence for integer k ≥ kC , P (Ck) ≤ η
2 . We conclude that, with kA = max(kB , kc), for k ≥

kA, P (Ak) ≤ η. Since this can be achieved for any choice of η, this concludes the proof.
The extension to univariate non-Gaussian random fields follows from Corollary 1. Similarily,

for a Gaussian multivariate random field,

l̃nk
(γ)− lnk

(γ) = |nk|
−1

∑

ω∈Ωn

{
trace

[
Ink

(ω;θ)Ink
(ω;γ)−1

]
− JH(ω)Ink

(ω;γ)
−1
J(ω)

}

and we use Corollary 2. ✷
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Proof of Lemma 16

Proof. The proof is adapted from the one-dimensional case, see Guillaumin et al. (2017)

and Sykulski et al. (2019). We first define the following isomorphism from
∏d

i=1{1, . . . , ni} to
{1, . . . , |n|}, that will be used for a change of variable:

j(j1, . . . , jd) =

d∑

k=1



(jk − 1)

k−1∏

j=1

nj



 ,

and j1(j), . . . , jd(j) the component functions of its inverse. This isomorphism gives the index in
the column vector X of the observation at location (j1, . . . , jd) on the grid, given our choice of
ordering.

Let α be any complex-valued vector of ICn, and denote α∗ its Hermitian transpose. We then
have, using the above isomorphism for a change of variables,

α∗CXα =

|n|∑

j,k=1

α∗
j (CX)j,kαk

=

n1−1∑

j1=0

. . .

nd−1∑

jd=1

n1−1∑

k1=0

. . .

nd−1∑

kd=1

α∗
j(j1,...,jd)

(CX)j(j1,...,jd),k(k1,...,kd)αk(k1,...,kd).

Here we use the fact that

(CX)j(j1,...,jd),k(k1,...,kd) = cX(k1 − j1, . . . , kd − jd),

so that

α∗CXα =

n1−1∑

j1=0

. . .

nd−1∑

jd=1

n1−1∑

k1=0

. . .

nd−1∑

kd=1

α∗
j(j1,...,jd)

αk(k1,...,kd)

∫

T d

fX,δ(ω)ei((k1−j1)ω1+...+(kd−jd)ωd)dω

=

∫

T d

fX,δ(ω)

n1−1∑

j1=0

. . .

nd−1∑

jd=1

n1−1∑

k1=0

. . .

nd−1∑

kd=1

α∗
j(j1,...,jd)

αk(k1,...,kd)e
i((k1−j1)ω1+...+(kd−jd)ωd)dω

=

∫

T d

fX,δ(ω)

∣∣∣∣∣∣

n1−1∑

j1=0

. . .

nd−1∑

jd=1

αj(j1,...,jd)e
i(j1ω1+...+jdωd)

∣∣∣∣∣∣

2

dω

≤ fδ,max

∫

T d

∣∣∣∣∣∣

n1−1∑

j1=0

. . .

nd−1∑

jd=1

αj(j1,...,jd)e
i(j1ω1+...+jdωd)

∣∣∣∣∣∣

2

dω.

By Parseval’s equality, we obtain,

0 ≤ α∗CXα ≤ fδ,max‖α‖22,

where ‖α‖2 is the l2 vector norm of the vector α. This concludes the proof of the upper bound.
The lower bound can be derived in the same way, which concludes the proof. ✷

Proof of Proposition 2

Proof. We only treat the scenario where gs = 1, ∀s ∈ Jnk
, i.e., we do not consider the

situation of missing observations for this proposition. The proof is adapted from Grenander and
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Szegö (1958, p. 217). We write it for the case of Ωn = Ω
(1)
n , the case Ωn = Ω

(2)
n being almost

identical. Define

Lk = |nk|
−1

∑

ω∈Ωnk

wk(ω)Ink
(ω),

as a weighted sum of periodogram values, and Unk
the multi-dimensional Fourier matrix corre-

sponding to Jn. We have

Lk = |nk|
−1X∗U∗

nk
diag(wk(ω0), . . . , wk(ω|nk|−1))Unk

X.

Writing Wk = |nk|
−1U∗

nk
diag(wk(ω0), . . . , wk(ω|nk|−1))Unk

, we then have

Lk = X∗WkX,

which we regard as a quadratic form in the vector X. Following Cramér (1946, p. 134), in
particular his formula 11.12.2, the characteristic function of the random variable Lk therefore
takes the form of

φLk
(α) = E {exp(iαLk)}

= (2π)−n/2 |CX(θ)|−1/2

∫

∞

−∞

. . .

∫

∞

−∞

exp

{

−x∗

(

−iαWk +
1

2
C−1

X (θ)

)

x

}

dx1 . . . dxn,

where for a square matrix A, |A| denotes its determinant. Using a known result (Horn and
Johnson, 1985) for complex-valued symmetric matrices, there exists a diagonal matrix Dk and a
unitary matrix Vk such that

−iαWk +
1

2
C−1

X (θ) = V DkV
T . (15)

By posing the change of variables y = V Tx we obtain,

φLk
(α) = (2π)−n/2 |CX(θ)|

−1/2
n∏

j=1

∫ ∞

−∞

exp
{
−y2dj,k

}
dy,

where the dj,k, j = 1, . . . , n are the complex-valued elements of the diagonal matrix Dk from
equation (15), and where we remind the reader that |V | = 1 since V is unitary. As we recognize
integrals of the form

∫∞

−∞
exp(−y2)dy we obtain,

φLk
(α) = 2−n/2 |CX(θ)|

−1/2

∣∣∣∣−iαWk +
1

2
CX(θ)−1

∣∣∣∣
−1/2

=
∣∣−2iαCX(θ)Wk + I|n|

∣∣−1/2

Hence,

log φLk
(α) = −

1

2
log
∣∣I|nk| − 2iαCX(θ)Wk

∣∣ .

Denoting with ν1,k, . . . , ν|nk|,k the eigenvalues of CX(θ)Wk, we therefore have

log φLk
(α) = −

1

2

|nk|∑

j=1

log (1− 2iανj,k) .
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According to Proposition 16 the spectral norm of CX , the covariance matrix of X, is upper-
bounded by fmax,δ. The spectral norm of Wk is clearly upper-bounded by |nk|

−1MW , as from
the definition of Wk its eigenvalues are exactly

|nk|
−1wk(ω0), |nk|

−1wk(ω1), . . . , |nk|
−1wk(ω|nk|−1).

By property of the spectral norm of a product of matrices, we obtain,

|nk|
−1mW fmin,δ ≤ |νj,k| ≤ |nk|

−1MW fmax,δ, ∀j = 1, . . . , |nk|, k ∈ IN. (16)

The variance of Lk is given by

σ2
k = var {Lk} = 2

|nk|∑

j=1

ν2j,k,

and therefore satisfies

2|nk|
−1(mW fmin)

2 ≤ σ2
k ≤ 2|nk|

−1(MW fmax,δ)
2. (17)

We also observe that
νj,k
σk

→ 0, (k → ∞),

uniformly, given the bounds determined in equations (16) and (17). Denote Lk the standardized
quantity (Lk − E{Lk}) /σk. After Taylor expansion of the logarithm terms to third order, its
characteristic function takes the form of

log φLk
(α) = −

1

2

|nk|∑

j=1

log

(
1−

2iανj,k
σk

)
− i

α
∑|nk|

j=1 νj,k

σk

= −
1

2
α2 +

|nk|∑

j=1

[
4

3

(
iανj,k
σk

)3

+ o

{(
iανj,k
σk

)3
}]

, (18)

where the small o is uniform and is denoted ǫk in what follows, to make it clear that it does not
depend on j. The second term in equation (18) can be shown to become negligible as k goes to
infinity, since

∣∣∣∣∣∣

|nk|∑

j=1

[
4

3

(
iανj,k
σk

)3

+ o

{(
iανj,k
σk

)3
}]∣∣∣∣∣∣

≤ α3σ−3
k

(
4

3
+ ǫk

) |nk|∑

j=1

|νj,k|
3

≤ α3

(
4

3
+ ǫk

)
|nk|

−2M3
W f3max

|nk|−3/2m3
W f3min

= O(|nk|
−1/2).

We conclude that φLk
(α) converges to exp(− 1

2α), and therefore Lk is asymptotically standard
normally distributed after appropriate normalization. ✷

Proof of Theorem 2

Proof. Direct calculations show that the gradient of our quasi-likelihood function at the true
parameter vector is given by,

∇θlnk
(θ) = |nk|

−1
∑

ω∈Ωnk

Ink
(ω;θ)−2

(
Ink

(ω;θ)− I(ω)
)
∇θInk

(ω;θ). (19)
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By expanding this gradient function at the true parameter value, and noting that∇θlnk
(ω; θ̂) = 0

by definition of θ̂ and given Assumption 2.(2a), we obtain

∇θlnk
(ω;θ) = H(θ′

k)(θ − θ̂k),

where H(·) is the Hessian of lnk
(·) and θ′

k is a parameter vector that converges in probability to

the true parameter vector, since θ̂k is consistent as per Theorem 1. Therefore,

θ̂k − θ = −H−1(θ′
k)∇θlnk

(ω;θ). (20)

We now study the expected Hessian of the likelihood function taken at the true parameter vector,
H(θ). Direct calculations lead to

H(θ) = |nk|
−1

∑

ω∈Ωnk

Ink
(ω;θ)−2∇θInk

(ω;θ)∇θInk
(ω;θ)T .

It can be shown, see Sykulski et al. (2019, p. 17 of their supplementary document) for instance,
that in equation (20) the quantity H(θ′

k) satisfies, if Assumption 2.(2b) holds,

H(θ′
k) = H(θ) +OP (rk) + oP (1).

Hence we have, asymptotically,

H−1(θ′
k) = H−1(θ) + oP (1). (21)

Since equation (19) follows the conditions required for Proposition 1 to apply, the gradient at
the true parameter vector ∇θlnk

(ω;θ) is itself OP (rk). Further more, Lemma 17 tells us that
the minimum eigenvalue of H is lower-bounded by S(θ), independently of k. We finally obtain
the stated result,

θ̂k − θ = OP (rk).

In the case of a sequence of full grids, |nk|
1/2∇θlnk

(ω;θ) is additionally shown to follow a
standard normal distribution via Proposition 2, and we conclude to the asymptotic normality of
our estimator. ✷

Definitions, notation and lemmatas required for the proof of Proposition 3

First we introduce some notation for cumulants and remind the reader about their basic prop-
erties. For integer L ≥ 1 and random variables Y1, . . . , YL, all having finite L-th order moments,
the cumulant of Y1, . . . , YL is defined by,

cum [Y1, . . . , YL] =
∑

ν∈P{1,...,L}

(−1)#ν−1 (#ν − 1)!
∏

S∈ν

E



∏

j∈S

Yj


,

where P {1, . . . , L} denotes the set of partitions of {1, . . . , L}, and #ν denotes the cardinality of
the partition ν, i.e. the number of sets it contains. The cases L = 1 and L = 2 correspond to
expectation and covariance respectively. Higher-order cumulants vanish for multivariate normal
Y1, . . . , YL. For a given random variable Y , we denote cumL {Y } its L-th order cumulant, i.e.
cumL {Y } = cum(Y, . . . , Y ) with Y repeated L times. In our proof we shall make use of the two
following lemmas, that can be found in Brillinger (2001).
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Fig. 6. Example of an indecomposable partition of the L × 2 table (22) in the case L = 4, with sets

of the partition indicated by colors red, green and blue. The partition is indecomposable because any

two elements of the table can be joined by a path where two consecutive elements on said path are

either within a same set S ∈ ν or on the same row. For instance, here, such a path between 1 and 8 is

1 → 3 → 7 → 4 → 8.

Lemma B (Basic properties of cumulants). Let L be a positive integer, Z, Y1, . . . YL be ran-
dom variables all having finite L-th order moments, and a ∈ IR. We have the following properties;

(a) Symmetry. The cumulant cum {Y1, . . . , YL} does not depend on the order of the variables.
(b) Multi-linearity. The cumulant is linear with respect to each of its variables, i.e.

cum {aZ + Y1, Y2, . . . , YL} = a cum {Z, Y2 . . . , YL}+ cum {Y1, . . . , YL} .

Lemma C (Cumulant of products of random variables). Let L be a positive integer.
Let Y1, . . . , Y2L be random variables, all having finite 2L-th order moments. We have,

cum [Y1YL+1, Y2YL+2, . . . , YLY2L] =
∑

ν

cum [Yj : j ∈ ν1] . . . cum [Yj : j ∈ νp] ,

where the left-hand side is the cumulant of L products of pairs of random variables, and where
the summation on the right-hand side is over indecomposable—as defined by Brillinger (2001)—
partitions ν = (ν1, . . . , νp) of the L× 2 table below.

1 L+ 1

2 L+ 2

. . . . . . (22)

L− 1 2L− 1

L 2L

A partition ν of the above L× 2 table is indecomposable if and only if any two elements of the
table can be joined by a path where two consecutive elements on said path are either within
a same set S ∈ ν or on the same row. We give an example of an indecomposable partition in
Figure 6.

To establish the proof of Proposition 3 we shall follow the line of proof from Brillinger (2001)
for the analysis of time series. We introduce some additional notation in order to extend to
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random fields of any dimensionality d. Let ∆n(ω) denote the d-dimensional separable Dirichlet
kernel, i.e.,

∆n(ω) =

d∏

j=1

(
nj−1∑

t=0

eiωjt

)
=

d∏

j=1

∆nj
(ωj),

where for a positive integer n, and scalar ω ∈ IR,

∆n(ω) =
n−1∑

t=0

eiωt,

is the usual Dirichlet kernel. We define, for 0 ≤ q ≤ d, and for any l1, . . . , lq ∈ {1, . . . , d},

∆
(l1,...,lq)
n (ω) =

d∏

j=1
j 6=l1,...,lq

∆nj
(ωj). (23)

Note that when ω ∈ Ωn, i.e. is a Fourier frequency, ∆n(ω) = ∆
(k)
n (ω) = 0 except if ωj ≡ 0 [2π],

j = 1, . . . , d (where we write a ≡ b [c] for real numbers a, b, c if there exists an integer k such
that a − b = kc) in which case ∆(ω) = |n|, and except if ωj ≡ 0 [2π], j = 1, . . . , d, j 6= k in

which case ∆
(k)
n (ω) =

∏d
j=1
j 6=k

nj .

Let J̃n(ω) = |n|
1
2 Jn(ω). The following lemma is an adaptation of Brillinger (2001, Lemma

P4.1) to higher dimensions.

Lemma D. Let d ≥ 1 be an integer. Let n ∈ (IN\{0})
d
, u ∈ INd and λ ∈ IRd. Let {gs}

s∈ZZd

take value 1 for s ∈ Jn, and value 0 otherwise. We have the following inequality,

∣∣∣∣∣∣

∑

s∈ZZd

gsgs+ue
−is·λ −∆n(λ)

∣∣∣∣∣∣
≤

d∑

j=1

uj

∣∣∣∆(j)
n

(λ)
∣∣∣+

d∑

j,k=1
k>j

ujuk

∣∣∣∆(j,k)
n

(λ)
∣∣∣+. . .+u1 · · ·ud

∣∣∣∆(1,...,d)
n

(λ)
∣∣∣ ,

where we note that ∆
(1,...,d)
n (λ) = 1, ∀λ ∈ IRd.

Proof. We write,

∣∣∣∣∣∣

∑

s∈ZZd

gsgs+ue
−is·λ −∆n(λ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

s∈ZZd

gsgs+ue
−iλ·s −

∑

s∈ZZd

gse
−iλ·s

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

s∈ZZd

gs(1− gs+u)e
−iλ·s

∣∣∣∣∣∣
.

We first consider the cases d = 1 and d = 2 as examples, before proving the result for any
dimensionality d ≥ 1 by induction. For d = 1, we have u ∈ IN and, by applying the triangle
inequality,

∣∣∣∣∣
∑

s

gs(1− gs+u)e
−iλs

∣∣∣∣∣ ≤
∑

s

∣∣gs(1− gs+u)e
−iλs

∣∣ =
∑

s

|gs| |(1− gs+u)| = u.

The last equality holds because each term |gs| |(1− gs+u)| is non-zero if and only if s is a point
on the grid but s+ u is not, which occurs for a total number of u locations — more specifically
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for s ∈ ZZ such that n1 − u ≤ s ≤ n1 − 1. In dimension d = 2, we split the problem along both
dimensions.

∣∣∣∣∣∣

∑

s∈ZZ2

gsgs+ue
−iλ·s −∆n (λ)

∣∣∣∣∣∣
=

∣∣∣∣∣
∑

s

gs(1− gs+u)e
−iλ·s

∣∣∣∣∣

=

∣∣∣∣∣

n1−1∑

s1=0

n2−1∑

s2=0

(1− gs1+u1,s2+u2)e
−i(λ1s1+λ2s2)

∣∣∣∣∣

=

∣∣∣∣∣

n1−1∑

s1=0

n2−1∑

s2=n2−u2

e−i(λ1s1+λ2s2) +

n2∑

s2=0

n1−1∑

s1=n1−u1

e−i(λ1s1+λ2s2) −

n2−1∑

s2=n2−u2

n1−1∑

s1=n1−u1

e−i(λ1s1+λ2s2)

∣∣∣∣∣ ,

where we split the sum over non-zero terms, using the fact that,

{
(s1, s2) ∈ ZZ2 : gs1,s2(1− gs1+u1,s2+u2

) = 1
}
=

{
(s1, s2) ∈ ZZ2 : 0 ≤ s1 < n1

}
∩
{
(s1, s2) ∈ ZZ2 : 0 ≤ s2 < n2

}
∩

({
(s1, s2) ∈ ZZ2 : s1 ≥ n1 − u1

}
∪
{
(s1, s2) ∈ ZZ2 : s2 ≥ n2 − u2

})
,

and that ∑

A∪B

=
∑

A

+
∑

B

−
∑

A∩B

.

Then by applying the triangle inequality we obtain,

∣∣∣∣∣
∑

s

gsgs+ue
−iλ·s −∆n (λ)

∣∣∣∣∣

≤

∣∣∣∣∣

n1−1∑

s1=0

n2−1∑

s2=n2−u2

e−i(λ1s1+λ2s2)

∣∣∣∣∣+
∣∣∣∣∣

n2−1∑

s2=0

n1−1∑

s1=n1−u1

e−i(λ1s1+λ2s2)

∣∣∣∣∣+
∣∣∣∣∣

n2−1∑

s2=n2−u2

n1∑

s1=n1−u1

e−i(λ1s1+λ2s2)

∣∣∣∣∣

=

∣∣∣∣∣

n2−1∑

s2=n2−u2

e−iλ2s2

n1−1∑

s1=0

e−iλ1s1

∣∣∣∣∣+
∣∣∣∣∣

n1−1∑

s1=n1−u1

e−iλ1s1

n2−1∑

s2=0

e−iλ2s2

∣∣∣∣∣+
∣∣∣∣∣

n2−1∑

s2=n2−u2

n1∑

s1=n1−u1

e−i(λ1s1+λ2s2)

∣∣∣∣∣

=

∣∣∣∣∣∆n1
(λ1)

n2−1∑

s2=n2−u2

e−iλ2s2

∣∣∣∣∣+
∣∣∣∣∣∆n2

(λ2)

n1−1∑

s1=n1−u1

e−iλ1s1

∣∣∣∣∣+
∣∣∣∣∣

n2−1∑

s2=n2−u2

n1∑

s1=n1−u1

e−i(λ1s1+λ2s2)

∣∣∣∣∣

≤ |∆n1(λ1)|

n2−1∑

s2=n2−u2

∣∣e−iλ2s2
∣∣+ |∆n2

(λ2)|

n1−1∑

s1=n1−u1

∣∣e−iλ1s1
∣∣+

n2−1∑

s2=n2−u2

n1∑

s1=n1−u1

∣∣∣e−i(λ1s1+λ2s2)
∣∣∣

= u2 |∆n1 (λ1)|+ u1 |∆n2 (λ2)|+ u1u2 = u1

∣∣∣∆(1)
n

(λ)
∣∣∣+ u2

∣∣∣∆(2)
n

(λ)
∣∣∣+ u1u2.

We now prove the result for any dimensionality d ≥ 1 by induction on d.

• We already proved the result for the case d = 1.

• Assume the property holds up to a given d ≥ 1. Let u ∈ INd+1. Given any v ∈ ZZd+1,
we denote v(d+1) ∈ ZZd the vector with components v1, . . . , vd. We will make use of this
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notation for several vectors in the rest of the proof. We observe that,

{
s ∈ ZZd+1 : gs(1− gs+u) = 1

}
=

{
s ∈ ZZd+1 : gs = 1

}
∩
({

s ∈ ZZd+1 : gsd+1+ud+1
= 0
}
∪
{
s ∈ ZZd+1 : gs(d+1)+u(d+1) = 0

})
=

({
s ∈ ZZd+1 : gs = 1

}
∩
{
s ∈ ZZd+1 : gsd+1+ud+1

= 0
})

∪
({

s ∈ ZZd+1 : gs = 1
}
∩
{
s ∈ ZZd+1 : gs(d+1)+u(d+1) = 0

})
.

Let

A =
{
s ∈ ZZd+1 : gs(1− gs+u) = 1

}
,

B =
{
s ∈ ZZd+1 : gs = 1

}
∩
{
s ∈ ZZd+1 : gsd+1+ud+1

= 0
}
,

C =
{
s ∈ ZZd+1 : gs = 1

}
∩
{
s ∈ ZZd+1 : gs(d+1)+u(d+1) = 0

}
.

The idea here is that we split the problem between the last dimension (set B) and the d
first dimensions taken altogether (set C). We then have, since A = B ∪ C,

∑

s∈A

eis·λ =
∑

s∈B

eis·λ +
∑

s∈C

eis·λ −
∑

s∈B∩C

eis·λ,

and by the triangle inequality,

∣∣∣∣∣
∑

s∈A

eis·λ

∣∣∣∣∣ ≤
∣∣∣∣∣
∑

s∈B

eis·λ

∣∣∣∣∣+
∣∣∣∣∣
∑

s∈C

eis·λ

∣∣∣∣∣+
∣∣∣∣∣
∑

s∈B∩C

eis·λ

∣∣∣∣∣ .

We consider each term separately. Firstly,

∣∣∣∣∣
∑

s∈B

eis·λ

∣∣∣∣∣ =

∣∣∣∣∣∣

n1−1∑

s1=0

. . .

nd−1∑

sd=0

nd+1−1∑

sd+1=nd+1−ud+1

ei
∑d+1

j=1 sjλj

∣∣∣∣∣∣

=

∣∣∣∣∣∣




nd+1−1∑

sd+1=nd+1−ud+1

eisd+1λd+1



(

n1−1∑

s1=0

. . .

nd−1∑

sd=0

ei
∑d

j=1 sjλj

)∣∣∣∣∣∣

=

∣∣∣∣∣∣

nd+1−1∑

sd+1=nd+1−ud+1

eisd+1λd+1

∣∣∣∣∣∣

∣∣∣∣∣

n1−1∑

s1=0

. . .

nd−1∑

sd=0

ei
∑d

j=1 sjλj

∣∣∣∣∣

≤ ud+1

∣∣∣∆(d+1)
n

(λ)
∣∣∣ .
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Secondly, using the fact that the property holds up to dimensionality d,

∣∣∣∣∣
∑

s∈C

eis·λ

∣∣∣∣∣ =

∣∣∣∣∣∣

∑

s∈ZZd+1

✶C(s)e
is·λ

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

s∈ZZd+1

gs(1− gs(d+1)+u(d+1))ei
∑d+1

j=1 sjλj

∣∣∣∣∣∣

=

∣∣∣∣∣∣




nd+1∑

sd+1=0

eisd+1λd+1





∑

s∈ZZd

gs(1− gs+u(d+1))ei
∑d

j=1 sjλj




∣∣∣∣∣∣

≤

∣∣∣∣∣∣

nd+1−1∑

sd+1=0

eisd+1λd+1

∣∣∣∣∣∣




d∑

j=1

uj

∣∣∣∆(j)

n(d+1)(λ)
∣∣∣+

d∑

j,k=1
k>j

ujuk

∣∣∣∆(j,k)

n(d+1)(λ)
∣∣∣+ . . .+ u1 · · ·ud




=

d∑

j=1

uj

∣∣∣∆(j)
n

(λ)
∣∣∣+

d∑

j,k=1
k>j

ujuk

∣∣∣∆(j,k)
n

(λ)
∣∣∣+ . . .+ u1 · · ·ud

∣∣∣∆(1,...,d)
n

(λ)
∣∣∣ ,

where in the last equality we used the fact that
∣∣∣
∑nd+1−1

sd+1=0 e
isd+1λd+1

∣∣∣
∣∣∣∆(j)

n(d+1)(λ)
∣∣∣ =

∣∣∣∆(j)
n (λ)

∣∣∣.
Thirdly, again using the fact that the property holds up to dimensionality d,

∣∣∣∣∣
∑

s∈B∩C

eis·λ

∣∣∣∣∣ ≤

∣∣∣∣∣∣

nd+1−1∑

sd+1=nd+1−ud+1

eisd+1λd+1

∣∣∣∣∣∣

×




d∑

j=1

uj

∣∣∣∆(j)
n

(λ)
∣∣∣+

d∑

j,k=1
k>j

ujuk

∣∣∣∆(j,k)

n(d+1)(λ)
∣∣∣+ . . .+ u1 · · ·ud




≤ ud+1




d∑

j=1

uj

∣∣∣∆(j)

n(d+1)(λ)
∣∣∣+

d∑

j,k=1
k>j

ujuk

∣∣∣∆(j,k)

n(d+1)(λ)
∣∣∣+ . . .+ u1 · · ·ud




= ud+1




d∑

j=1

uj

∣∣∣∆(j,d+1)
n

(λ)
∣∣∣+

d∑

j,k=1
k>j

ujuk

∣∣∣∆(j,k,d+1)
n

(λ)
∣∣∣+ . . .+ u1 · · ·ud




=

d∑

j=1

ujud+1

∣∣∣∆(j,d+1)
n

(λ)
∣∣∣+

d∑

j,k=1
k>j

ujukud+1

∣∣∣∆(j,k,d+1)
n

(λ)
∣∣∣+ . . .+ u1 · · ·ud+1.

Substituting these expressions into (18), we obtain,

∣∣∣∣∣∣

∑

s∈ZZd+1

gsgs+ue
is·λ −∆n(λ)

∣∣∣∣∣∣
≤

d+1∑

j=1

uj

∣∣∣∆(j)
n

(λ)
∣∣∣+

d+1∑

j,k=1
k>j

ujuk

∣∣∣∆(j,k)
n

(λ)
∣∣∣+ . . .+ u1 · · ·ud+1,
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which is exactly the desired property for dimensionality d+ 1.

By induction, we conclude that the property holds for any dimensionality d. ✷

As an example, in dimension d = 3, the inequality takes the following form,
∣∣∣∣∣∣

∑

s∈ZZ3

gsgs+ue
is·λ −∆n(λ)

∣∣∣∣∣∣
≤ u1

∣∣∣∆(1)
n

(λ)
∣∣∣+ u2

∣∣∣∆(2)
n

(λ)
∣∣∣+ u3

∣∣∣∆(3)
n

(λ)
∣∣∣

+ u2u3

∣∣∣∆(2,3)
n

(λ)
∣∣∣+ u1u3

∣∣∣∆(1,3)
n

(λ)
∣∣∣+ u1u2

∣∣∣∆(1,2)
n

(λ)
∣∣∣

+ u1u2u3.

We now use this result to approximate the L-th order cumulant of the multi-dimensional
DFT.

Lemma E (L-th order cumulants of the DFT). Suppose Assumption 3 holds. For an integer
L ≥ 2, and ω1, . . . ,ωL ∈ IRd, we have,

cumL

{
J̃n(ω1), . . . , J̃n(ωL)

}
= ∆n




L∑

j=1

ωj


 fL(ω1, . . . ,ωL−1) +O


Λ




L∑

j=1

ωj




 ,

where fL is the L-th cumulant spectral density and where we have defined,

Λ(λ) =

d∑

j=1

∣∣∣∆(j)
n

(λ)
∣∣∣+

d∑

j,k=1
k>j

∣∣∣∆(j,k)
n

(λ)
∣∣∣+ . . .+ 1, (24)

and where the O(·) does not depend on ω1, . . . ,ωL.

Proof. By properties of cumulants, see Lemma B, direct calculations give,

cumL

{
J̃n(ω1), . . . , J̃n(ωL)

}
=

∑

s1,...,sL∈ZZd

cum(Xs1
, . . . , XsL

)gs1 . . . gsLe
−i

∑L
j=1 ωj ·sj

=
∑

s1

∑

u1,...,uL−1

cL(u1, . . . ,uL−1)gs1gs1+u1
. . . gs1+uL−1

e−i
∑L−1

j=1 ωj ·uje−i
∑L

j=1 ωj ·s1

=
∑

u1,...,uL−1

cL(u1, . . . ,uL−1)e
−i

∑L−1
j=1 ωj ·uj

∑

s1

gs1gs1+u1 . . . gs1+uL−1
e−i

∑L
j=1 ωj ·s1 . (25)

Suppose for convenience that u1, . . . ,uL−1 all have non-negative components. The general case
can be treated similarly, please see our comment on this at the end of this proof. Additionally,
denote ũ ∈ INd as the vector defined by

ũj = max{uk · ej : k = 1, . . . , L− 1}, (26)

where ej , j = 1, . . . , d denotes the d-vector with all components set to zero except for the j-th
component which is set to 1, such that uk · ej is the j-th component of uk. The right-most term

of (25) can be approximated using the fact that, for λ ∈ IRd,
∣∣∣∣∣∣

∑

s1∈ZZ
d

gs1gs1+u1 . . . gs1+uL−1
e−iλ·s1 −∆n (λ)

∣∣∣∣∣∣
=

∣∣∣∣∣
∑

s1

gs1
(
gs1+u1 . . . gs1+uL−1

− 1
)
e−iλ·s1

∣∣∣∣∣

=

∣∣∣∣∣
∑

s1

gs1 (gs1+ũ − 1) e−iλ·s1

∣∣∣∣∣ ,
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due to assuming that the grid is fully observed and setting gs = 1 on the grid and 0 otherwise. For
instance, in the case L = 3, we have for s1 ∈ ZZd, gs1gs1+u1

gs1+u2
= 1 ⇐⇒ s1 ∈ Jn and s1+u1 ∈

Jn and s1 + u2 ∈ Jn ⇐⇒ s1 ∈ Jn and s1 + ũ ∈ Jn ⇐⇒ gs1gs1+ũ = 1.
According to Lemma D, we therefore have,
∣∣∣∣∣∣

∑

s∈ZZd

gsgs+ũe
is·λ −∆n(λ)

∣∣∣∣∣∣
≤

d∑

j=1

ũj

∣∣∣∆(j)
n

(λ)
∣∣∣+

d∑

j,k=1
k>j

ũj ũk

∣∣∣∆(j,k)
n

(λ)
∣∣∣+ . . .+ ũ1 · · · ũd.

We use the inequality ũ1 . . . ũd ≤ (maxi=1,...,d ũi)
d
≤ ũd1 + . . .+ ũdd (by definition of ũ its compo-

nents are non-negative) and obtain,

∣∣∣∣∣∣

∑

s∈ZZd

gsgs+ũe
is·λ −∆n(λ)

∣∣∣∣∣∣
≤
(
ũd1 + . . .+ ũdd

)



d∑

j=1

∣∣∣∆(j)
n

(λ)
∣∣∣+

d∑

j,k=1
k>j

∣∣∣∆(j,k)
n

(λ)
∣∣∣+ . . .+ 1


 .

Now given our definition of ũ =
(
ũ1 . . . ũd

)T
, see (26), we have ũd1 + . . .+ ũdd ≤ ‖u1‖

d
1 + . . .+

‖uL−1‖
d
1, and therefore,

∣∣∣∣∣
∑

s

gsgs+ũe
−iλ·s −∆n (λ)

∣∣∣∣∣ ≤
(
‖u1‖

d
1 + . . .+ ‖uL−1‖

d
1

)



d∑

j=1

∣∣∣∆(j)
n

(λ)
∣∣∣+

d∑

j,k=1
k>j

∣∣∣∆(j,k)
n

(λ)
∣∣∣+ . . .+ 1




(27)
Finally, going back to (25), we write

∑

s1

gs1gs1+u1 . . . gs1+uL−1
e−i

∑L
j=1 ωj ·s1 = ∆n




L∑

j=1

ωj · s1


+ E




L∑

j=1

ωj · s1


 ,

with
E (λ) =

∑

s1

gs1gs1+u1
. . . gs1+uL−1

e−iλ −∆n (λ) ,

where for simplicity we do not denote explicitly the dependence of E(·) on u1, . . . ,uL−1. We
then use the upper-bound (27) we derived for |E(λ)|, and Assumption 3 on the summability of
cumulants to obtain,

∣∣∣∣∣∣

∑

u1,...,uL−1

cL(u1, . . . ,uL−1)e
−iλ·ujE (λ)

∣∣∣∣∣∣
= O




d∑

j=1

∣∣∣∆(j)
n

(λ)
∣∣∣+

d∑

j,k=1
k>j

∣∣∣∆(j,k)
n

(λ)
∣∣∣+ . . .+ 1


 .

This concludes the proof. We now comment on how to adapt the proof to the case where
u1, . . . ,uL−1 are not restricted to having non-negative components. This is achieved by replac-
ing (26) with,

ũ+j = max{0,max{uk · ej : k = 1, . . . , L− 1}}

ũ−j = max{0,max{−uk · ej : k = 1, . . . , L− 1}}.

This is because when allowing for negative components, we have to treat both boundaries of the
domain along each dimension j = 1, · · · , d. This is accounted for in the final formula in the O(·).

✷
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Fig. 7. Example of an indecomposable partition of a 4 × 2 table that is used in expressing the 4-th order

cumulants of the periodogram at frequencies ω1,ω2,ω3,ω4 in terms of cumulants of the DFT at frequen-

cies ω1,−ω1,ω2,−ω2,ω3,−ω3,ω4,−ω4. The chosen indecomposable partition has 3 sets, indicated by

the colors red, green and blue.

In the proof of Proposition A of this Supplementary Material, when expressing the cumulant
of order L of the periodogram evaluated at Fourier frequencies ω1 . . . ,ωL ∈ Ωn in terms of
cumulants of the DFT (which we studied in Lemma E of this Supplementary Material), we will
need to understand the order of terms of the form

∑

ω1,...,ωL∈Ωn

∏

νr∈ν

∆n



∑

j∈νr

ωj


 , (28)

where ν is an indecomposable partition of the L × 2 table given in (22) and where we set
ωk+L = −ωk, k = 1, . . . , L (see Figure 7 and compare to the L × 2 table (22)). While the
∆n(·) function can take value |n|, this only occurs under linear constraints on the ω1, . . . ,ωL.
For example, in the case L = 4 and for the partition of the L× 2 table represented in Figure 7,
we get the following set of linear constraints on the Fourier frequencies,





ω1 − ω1 + ω2 + ω3 ≡ 0 [2π]

ω4 − ω2 ≡ 0 [2π]

−ω4 − ω3 ≡ 0 [2π]

, (29)

two of which are linearly independent. The following lemma makes this property explicit.

Lemma F. Let ν = (ν1, . . . , νp) be an indecomposable partition of the L × 2 table, where L
is a positive integer. The following system of linear equations in (ω1, . . . ,ωL)

(Sν)





∑
j∈ν1

ωj ≡ 0 [2π]
...∑

j∈νp
ωj ≡ 0 [2π]

(30)

imposes p− 1 linear constraints on the (ω1, . . . ,ωL).

Proof. We remind the reader that we have defined ωk+L ≡ −ωk for k = 1, . . . , L. The proof
is done by induction on the number of sets p in the partition.
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• In the case p = 1, the partition consists of a unique set, and each ωj in the summation is
cancelled out by ωL+j . Hence

∑
j∈ν1

ωj ≡ 0 [2π] ⇐⇒ 0 ≡ 0 [2π], so that there are no
linear constraints and the property holds for p = 1.

• Suppose the property holds up to a given positive integer p. We want to show that it
also holds for any partition with p + 1 sets. Therefore, let ν = (ν1, . . . , νp+1) be an
indecomposable partition of the L×2 table with cardinality p+1. Without loss of generality,
we assume that the ordering of the sets is such that ν1 communicates with ν2, i.e. there
exists k ∈ {1, . . . , L} such that k ∈ ν1 and L + k ∈ ν2 (or the reverse case, but again we
can treat either of these two cases without loss of generality), i.e. the k-th row has one
element that belongs to ν1 and the other one to ν2, since in the L × 2 table k and L + k
are on the same row.

We then observe that we can rewrite the system

(Sν)





∑
j∈ν1

ωj ≡ 0 [2π]
...∑

j∈νp+1 ωj ≡ 0 [2π]

, (31)

as

(Sν)





∑
j∈ν1

ωj ≡ 0 [2π]∑
j∈ν1∪ν2

ωj ≡ 0 [2π]∑
j∈ν3

ωj ≡ 0 [2π]
...∑

j∈νp
ωj ≡ 0 [2π]

, (32)

where the second equation in (32) is obtained by summing the first two equations in (31),
using the fact that ν1 ∩ ν2 = 0, by definition of a partition. Based on this partition ν, we
define a new partition ν̃ = (ν1 ∪ ν2, ν3, . . . , νp+1). The set ν̃ is clearly a partition of the
L × 2 table, and it has p sets. Additionally, one can verify that this new partition ν̃ is
also indecomposable. The solution space to Sν is therefore the intersection between the
solution spaces to Sν̃ and

∑
j∈ν1

ωj ≡ 0 [2π].

By assumption, Sν̃ enforces p−1 linear constraints on (ω1, . . . ,ωL). It therefore suffices to
show that

∑
j∈ν1

ωj ≡ 0 [2π] and the system Sν̃ are linearly independent. Or, equivalently,
that there exists a set of values of (ω1, . . . ,ωL) that is a solution of Sν̃ but such that∑

j∈ν1
ωj 6≡ 0 [2π]. Such a set of values is obtained by setting all components equal to

zero modulo 2π, except for the k-th and L+ k-th components, where k was defined earlier
in this proof as the row on which the sets ν1 and ν2 communicate. More precisely we set
ωk = a and ωL+k = −a where a is chosen such that a 6≡ 0 [2π]. Hence the number of
linear constraints enforced by Sν on (ω1, . . . ,ωL) is p − 1 + 1 = (p + 1) − 1, so that the
property also holds for any partition with p+ 1 sets.

By induction, since we proved the result for the partition of cardinality p = 1, we can conclude
that the property holds for any indecomposable partition. ✷

We can now proceed to determine an upper-bound for the higher-order cumulants of linear
functionals of the periodogram, following the proof of Brillinger (2001, Theorem 5.10.1).
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Proposition A. Let L be a positive integer. We have,

cumL

{
|n|−1

∑

ω∈Ωn

w(ω)In(ω)

}
= O

(
|n|1−L

)
. (33)

Proof. Using the properties of cumulants given in Lemma B from this Supplementary Mate-
rial, we have

cumL

{
|n|−1

∑

ω∈Ωn

w(ω)In(ω)

}
=

|nk|
−L

∑

ω1,...,ωL∈Ωnk

wk(ω1) . . . wk(ωL)cum [Ink
(ω1), . . . , Ink

(ωL)].

According to Lemma C of this Supplementary material, we obtain,

cum [Ink
(ω1), . . . , Ink

(ωL)] = cum [Jnk
(ω1)Jnk

(−ω1), . . . , Jnk
(ωL)Jnk

(−ωL)]

=
∑

ν

cum [Jnk
(ωj) : j ∈ ν1] . . . cum [Jnk

(ωj) : j ∈ νp], (34)

where the summation is over indecomposable partitions ν = (ν1, . . . , νp) of the L× 2 table (22),
and where we define ωj+L ≡ −ωj , j = 1, . . . , L. Hence, reminding the reader that we write

J̃n(ω) = |n|
1
2 Jn(ω),

cumL

{
|n|−1

∑

ω∈Ωn

w(ω)In(ω)

}
=

|nk|
−L

∑

ω1,...,ωL∈Ωnk

wk(ω1) . . . wk(ωL)
∑

ν

cum [Jnk
(ωj) : j ∈ ν1] . . . cum [Jnk

(ωj) : j ∈ νp]

= |nk|
−2L

∑

ω1,...,ωL∈Ωnk

wk(ω1) . . . wk(ωL)
∑

ν

cum
[
J̃nk

(ωj) : j ∈ ν1

]
. . . cum

[
J̃nk

(ωj) : j ∈ νp

]
.

= |nk|
−2L

∑

ν

∑

ω1,...,ωL∈Ωnk

wk(ω1) . . . wk(ωL)

p∏

r=1

cum
[
J̃nk

(ωj) : j ∈ νp

]
. (35)

We now make use of Lemma E in which we obtained an expression for the terms

cum
[
J̃nk

(ωj) : j ∈ νp

]
, r = 1, . . . , p,

which appear in the product in (35). This leads us to,

cumL

{
|n|−1

∑

ω∈Ωn

w(ω)In(ω)

}
=

|nk|
−2L

∑

ν

∑

ω1,...,ωL∈Ωnk

wk(ω1) . . . wk(ωL)

×

p∏

r=1

{
fmr+1(ωl : l ∈ νr)∆n

(
∑

l∈νr

ωj

)
+ O




d∑

j=1

∣∣∣∣∣∆
(j)
n

(
∑

l∈νr

ωj

)∣∣∣∣∣+
d∑

j,k=1
k>j

∣∣∣∣∣∆
(j,k)
n

(
∑

l∈νr

ωj

)∣∣∣∣∣+ . . .+ 1







,
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where p is the cardinality of the partition ν, and for each set νr, r = 1, · · · , p, of the partition,
mr is the the cardinality of the set νr. Additionally, fk(· · · ) is the k-th order cumulant spectral
density. Note that the slight abuse of notation fmr+1(ωl : l ∈ νr) makes sense since the cumulant
spectral densities are symmetric, due to the symmetry of the cumulants themselves.

Now to determine the order of this term for a given indecomposable partition ν, we introduce
some additional notation, and follow the reasoning found in Brillinger (2001) for the analysis of

time series. For r = 1, . . . , p, let qr ∈ {0, . . . , d} and l(r) = l
(r)
1 , . . . , l

(r)
qr ∈ {1, . . . , d}. Expanding

the previous expression for that given partition ν will lead to a sum of terms of the form,





d∏

j=1

n−2L
j





∑

ω1,...,ωL∈Ωn





p∏

r=1

∣∣∣∣∣∣
∆

(l
(r)
1 ,...,l(r)qr

)
n



∑

j∈νr

ωj




∣∣∣∣∣∣



 , (36)

ignoring multiplicative constants and the wk(·) terms for simplicity, as the latter are upper-
bounded in absolute value by assumption.

Now for a given r = 1, . . . , p, ∆
(l

(r)
1 ,...,l(r)qr

)
n

(∑
j∈νr

ωj

)
will be zero (since the ωj ’s are Fourier

frequencies) unless
∑

j∈νr
ωj,k ≡ 0 [2π], ∀k ∈ l(r), where l(r) denotes the complementary of l(r)

within the set {1, . . . , d}. In the latter case, ∆
(l

(r)
1 ,...,l(r)qr

)
n

(∑
j∈νr

ωj

)
will take value

∏
j∈l(r)

nj .

For each dimension j = 1, . . . , d, denote Sj the system of linear equations expressing the con-

straints on the j-th dimension between (ω1, . . . ,ωL) due to
∏p

r=1 ∆
(l

(r)
1 ,...,l(r)qr

)
n

(∑
j∈νr

ωj

)
. We

also define κj =
∑p

r=1 ✶j∈l(r)
for each dimension j = 1, · · · , d, and note that Sj is a system of

κj linear equations, 0 ≤ κj ≤ p. Then (36) becomes,





d∏

j=1

n−2L
j





∑

ω1,...,ωL∈Ωn





d∏

j=1

n
κj

j









d∏

j=1

✶(ω1,j ,...,ωL,j)∈Sj





=





d∏

j=1

n−2L
j n

κj

j





∑

ω1,...,ωL∈Ωn

d∏

j=1

✶(ω1,j ,...,ωL,j)∈Sj
(37)

where we make a slight abuse of notation by confounding Sj and its solution set. Finally, (37)
becomes, with #Sj the cardinality of Sj ∩ Ωnj

,

d∏

j=1

n−2L
j n

κj

j #Sj .

However, we have #Sj ≤ n
L−κj+1
j , by generalization of Lemma F of this Supplementary Material,

according to which Sj imposes at least κj −1 independent constraints. Thus the term of interest
is at most of order

d∏

j=1

n−2L
j n

κj

j n
L−κj+1
j =

d∏

j=1

n1−L
j =




d∏

j=1

nj




1−L

= |n|1−L,

which concludes the proof. ✷
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Proof of Proposition 3

Proof. (a) Asymptotic normality. We first consider the case of a grid growing to infinity in

all directions, i.e. Ωn = Ω
(1)
n . Under the considered set of assumptions, i.e. Assumption 3,

the variance of

|n|−1
∑

ω∈Ωn

wk(ω)In(ω),

is Θ
(
|n|−1

)
. In order to establish asymptotic normality we therefore wish to show that

the rescaled quantity |n|−1/2
∑

ω∈Ωn
wk(ω)In(ω) has cumulants of order 3 or greater that

all converge to zero. According to Proposition A, the L-th order cumulant of

|n|−1/2
∑

ω∈Ωn
wk(ω)In(ω) is O

(
|n|−

L
2 +1

)
, which indeed converges to zero for L ≥ 3.

Thus we conclude that |n|−1
∑

ω∈Ωn
wk(ω)In(ω) is asymptotically normally distributed.

The proof readily extends to vector-valued functions wk(·). In the case where one or more

dimensions of the domain are bounded, Ωn = Ω
(2)
n , and we prove the result by splitting the

summation into the summation over Ω
(1)
n and Ω

(2)
n \ Ω

(1)
n . Each term is treated as above,

and we obtain a sum of two asymptotically normal random variables.
(b) Asymptotic form of the variance. For this part, it is assumed that the grid grows to infinity

in all directions, which is a constraint on the observation domain. We remind the reader

that in that case we choose Ωn = Ω
(1)
n . We treat the case of scalar-valued wk(·), but again

the proof readily extends to vector-valued functions. We have,

var

{
1

|n|

∑

ω∈Ωn

wk(ω)In(ω)

}
=

1

|n|2

∑

ω1,ω2∈Ωn

wk(ω1)wk(ω2)cov {In(ω1), In(ω2)}

=
1

|n|2

∑

ω1,ω2∈Ωn

wk(ω1)wk(ω2)cov {Jn(ω1)Jn(−ω1), Jn(ω2)Jn(−ω2)}

=
1

|n|4

∑

ω1,ω2∈Ωn

wk(ω1)wk(ω2)cov
{
J̃n(ω1)J̃n(−ω1), J̃n(ω2)J̃n(−ω2)

}
,

where we remind the reader that we defined J̃n(ω) = |n|
1
2 Jn(ω). Making use of Lemma C

from this Supplementary Material, we have,

cov
{
J̃n(ω1)J̃n(−ω1), J̃n(ω2)J̃n(−ω2)

}
=cov

{
J̃n(ω1), J̃n(ω2)

}
cov

{
J̃n(−ω1), J̃n(−ω2)

}

+ cov
{
J̃n(ω1), J̃n(−ω2)

}
cov

{
J̃n(−ω1), J̃n(ω2)

}

+ cum4{J̃n(ω1), J̃n(ω2), J̃n(−ω1), J̃n(−ω2)},
(38)

the remaining terms being zero since E{J̃n(ω1)} = E{J̃n(ω2)} = 0 as the random field is
zero-mean. With Lemma E ,

cov
{
J̃n(ω1), J̃n(ω2)

}
= cov

{
J̃n(−ω1), J̃n(−ω2)

}
=

fX,δ(ω1)∆n (ω1 + ω2) +O




d∑

j=1

∣∣∣∆(j)
n

(ω1 + ω2)
∣∣∣+

d∑

j,k=1
k>j

∣∣∣∆(j,k)
n

(ω1 + ω2)
∣∣∣+ . . .+ 1


 ,
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as well as,

cov
{
J̃n(ω1), J̃n(−ω2)

}
= cov

{
J̃n(−ω1), J̃n(ω2)

}
=

fX,δ(ω1)∆n (ω1 − ω2) +O




d∑

j=1

∣∣∣∆(j)
n

(ω1 − ω2)
∣∣∣+

d∑

j,k=1
k>j

∣∣∣∆(j,k)
n

(ω1 − ω2)
∣∣∣+ . . .+ 1


 ,

and,

cum4{J̃n(ω1),J̃n(ω2), J̃n(−ω1), J̃n(−ω2)}

= f4(ω1,ω2,−ω1)∆n (0) +O




d∑

j=1

∣∣∣∆(j)
n

(0)
∣∣∣+

d∑

j,k=1
k>j

∣∣∣∆(j,k)
n

(0)
∣∣∣+ . . .+ 1


 .

With the assumption of a grid that grows to infinity in all directions, one can verify that

the contribution of any term involving ∆
(j)
n , ∆

(j,k)
n and so on, will become negligible w.r.t

that of the terms involving ∆n. We therefore limit our study to the latter terms that
appear in (38).

(i) We have, reminding the reader that the function w(·) defined on T d is extended to
IRd by 2π-periodic extension,

1

|n|4

∑

ω1,ω2∈Ωn

wk(ω1)wk(ω2) [fX,δ(ω1)∆n (ω1 + ω2)] [fX,δ(ω1)∆n (−ω1 − ω2)]

=
1

|n|4

∑

ω1,ω2∈Ωn

wk(ω1)wk(ω2) (fX,δ(ω1)∆n (ω1 + ω2))
2

=
1

|n|4

∑

ω1∈Ωn

wk(ω1)wk(2π − ω1)fX,δ(ω1)
2|n|2

=
1

|n|2

∑

ω1∈Ωn

wk(ω1)wk(−ω1)fX,δ(ω1)
2,

which is asymptotically equivalent to (2π)d

|n|

∫
T d w(ω)w(−ω)fX,δ(ω)2dω by application

of the Dominated Convergence Theorem.
(ii) We have,

1

|n|4

∑

ω1,ω2∈Ωn

wk(ω1)wk(ω2) [fX,δ(ω1)∆n (ω1 − ω2)] [fX,δ(ω1)∆n (−ω1 + ω2)]

=
1

|n|4

∑

ω1,ω2∈Ωn

wk(ω1)wk(ω2) (fX,δ(ω1)∆n (ω1 − ω2))
2

=
1

|n|4

∑

ω1∈Ωn

wk(ω1)
2fX,δ(ω1)

2|n|2

=
1

|n|2

∑

ω1∈Ωn

wk(ω1)
2fX,δ(ω1)

2,
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which is asymptotically equivalent to (2π)d

|n|

∫
T d w(ω)2fX,δ(ω)2dω again by application

of the Dominated Convergence Theorem.
(iii) As for the third term,

1

|n|4

∑

ω1,ω2∈Ωn

wk(ω1)wk(ω2)f4(ω1,ω2,−ω1)∆n (0)

is asymptotically equivalent to

(2π)d

|n|

∫

T d

∫

T d

w(ω1)w(ω2)fX,4,δ(ω1,ω2,−ω1)dω1dω2,

again by application of the Dominated Convergence Theorem, and having noted that
∆n(0) = |n|.

By adding the three terms from (i), (ii) and (iii), we obtain the stated expression. This concludes
the proof. ✷
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Grenander, U. and Szegö, G. (1958) Toeplitz Forms and Their Applications. Berkeley, Calif.:
Univ. Calif. Press.

Guillaumin, A. P., Sykulski, A. M., Olhede, S. C., Early, J. J. and Lilly, J. M. (2017) Analy-
sis of non-stationary modulated time series with applications to oceanographic surface flow
measurements. J. Time Ser. Anal., 38, 668–710.

Horn, R. A. and Johnson, C. R. (1985) Matrix analysis. Cambridge, UK: Cambridge Univ. Press.

Hosoya, Y. and Taniguchi, M. (1982) A central limit theorem for stationary processes and the
parameter estimation of linear processes. Ann. Stat., 132–153.

Körner, T. W. (1988) Fourier Analysis. Cambridge, UK: Cambridge Univ. Press.

Sykulski, A. M., Olhede, S. C., Guillaumin, A. P., Lilly, J. M. and Early, J. J. (2019) The
debiased Whittle likelihood. Biometrika, 106, 251–266.


	The Debiased Spatial Whittle likelihood 
	1 INTRODUCTION
	2 NOTATION AND ASSUMPTIONS
	3 METHODOLOGY
	3.1 Estimation procedure
	3.2 Computation of the expected periodogram

	4 PROPERTIES OF SAMPLING PATTERNS
	4.1 Basic properties of [[math]] and [[math]]
	4.2 Definitions
	4.3 General sampling cases and sampling example
	4.3.1 General sampling cases
	4.3.2 Examples
	4.3.3 Application to randomly missing data
	4.3.4 Extension to multivariate random fields


	5 THEORY
	5.1 Additional notation
	5.2 Distributional properties of the periodogram
	5.3 Lemmata required for Theorem 1
	5.4 Convergence rate and asymptotic normality
	5.5 Estimating standard errors

	6 SIMULATION STUDIES AND APPLICATION TO THE STUDY OF PLANETARY TOPOGRAPHY
	6.1 Estimation from a fully observed rectangular grid of data
	6.2 Estimation from a circular set of observations
	6.3 Application to a realistic sampling scheme of ocean-floor topography
	6.4 Application to the study of Venus' topography

	7 DISCUSSION

	ACKNOWLEDGEMENTS
	ORCID
	REFERENCES
	Supporting Information

