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SUMMARY

We discuss an algorithm to regularize elastic waveform inver-

sions using wavelet-based constructive approximations of the

data, synthetic and observed, in models that evolve as part of a

gradient-based iterative scheme relying on forward and adjoint

modeling carried out with a spectral-element method. For an

elastic Marmousi model we show how our wavelet-based mul-

tiscale waveform inversion proceeds successively from large to

small scales in the seismograms, with a progressive increase of

the complexity of the resulting model. We explore the sensitiv-

ity of surface waves in imaging shallow structure. To circum-

vent cycle skipping we designed an envelope-misfit function

within a wavelet-multiscale framework. We test our approach

in a toy model in preparation for inversions at full complexity.

INTRODUCTION

In seismic tomography, the distance between observed and syn-

thetic seismograms can be measured as picked or crosscor-

related travel times, amplitude anomalies, or via waveform

subtraction (Tarantola, 1984; Nolet, 1987; Luo and Schuster,

1991; Dahlen and Baig, 2002). If they converge (Gauthier

et al., 1986; Mora, 1987; Bunks et al., 1995), full waveform-

difference inversions yield higher-resolution images. Nonlin-

earity leads to local minima in the objective function (Alkhal-

ifah and Choi, 2012), especially when the starting model is far

from the target, or when it contains details of great complexity.

Yuan and Simons (2014) developed a wavelet-based multi-

scale approach to waveform inversion. Wavelet decomposi-

tion has advantages over Fourier filtering: flexibility in basis

selection, efficiency of signal representation, convergence and

misfit reduction. Yuan and Simons (2014) applied wavelet-

scale decomposition of data generated in an elastic Marmousi

model, to implement a multiscale scheme that works succes-

sively from coarse to finer scales, retrieving smooth background

structure before heterogeneities of great complexity. They did

not consider surface waves but removed them before inversion.

Surface waves are important to constrain shallow structure,

and provide corrections for deep imaging. The challenge in the

inversion of surface-wave waveforms lies in cycle skipping. To

alleviate this problem, we developed an envelope-based objec-

tive function (Bozdağ et al., 2011) to measure oscillatory sur-

face waves as part of a multiscale strategy.

Multiscale Waveform Adjoint Tomography

Adjoint methods (e.g. Tarantola, 1984, 1986) allow much choice

to measure the distance between predicted and observed data.

The expression of the misfit gradient or kernel is unchanged

— only the adjoint source function has to be adjusted.

Waveform adjoint method: Waveform-difference tomography

solves the full elastic wave-propagation problem in heteroge-

neous media, explaining all the available recorded information.

Upon convergence, waveform tomography reveals more struc-

tural information than traveltimes (Luo and Schuster, 1991).

The waveform-difference misfit function χ(m) in a model m is

the sum of the residuals between synthetics s(xr,xs, t;m) and

observations d(xr,xs, t), over all sources s at xs and receivers r

at xr, over some time window T (Tromp et al., 2005):

χ(m) =
1

2

X

s,r

Z T

0

‖s(xr,xs, t;m)−d(xr,xs, t)‖
2

dt. (1)

Gradient-based methods require the derivative of the misfit,

conveniently expressed in the form of a volume integral of a

sensitivity kernel against model perturbations. The misfit ker-

nels relate to data misfit via the zero-lag crosscorrelations of

the adjoint and forward wavefields. The adjoint wavefield can

be calculated numerically by running the forward model with

adjoint sources at the receivers instead of earthquake sources.

The waveform adjoint source can be written as:

f†(x, t) =
X

r

[s(x, t;m)−d(x, t)] δ (x−xr). (2)

The adjoint wavefield is obtained by back-projecting the time-

reversed residuals between predicted and observed waveforms

at receiver xr. The gradient of the misfit function is the oppo-

site update direction in steepest-descent optimization.

Wavelet-based multiscale approach: We combat nonlinearity

in waveform inversion via wavelet transformation. Working

successively from long to short wavelengths is a powerful strat-

egy to approach the global minimum (Nolet et al., 1986). For

long-wavelength measurements, the number of local minima

is reduced, and the inversion problem faster to converge to the

global solution (de Hoop et al., 2012), or to a local minimum

in its neighborhood (Bunks et al., 1995; Brossier et al., 2009).

Instead of using full-resolution seismograms, we apply a wave-

let transform to break down the seismograms to different multi-

resolution levels j, which yields the subbands s j(xr,xs, t;m)
and d j(xr,xs, t). The multiscale waveform-difference misfit

function χ j at a resolution level j is defined as

χ j(m) =
1

2

X

s,r

T
Z

0

‚

‚s j(xr,xs, t;m)−d j(xr,xs, t)
‚

‚

2
dt. (3)

The multiscale waveform adjoint source can be expressed as:

f
†
j(x, t) =

X

r

ˆ

s j(x, t;m)−d j(x, t)
˜

δ (x−xr). (4)

We start from a certain maximum decomposition level, and

the updated solution from the quasi-linear problem at the large

scale serves as a starting point, closer to the global target, for

subsequent inversions at smaller scales.
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Multiscale Full-Waveform Adjoint Tomography
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Figure 1: (Left:) Wavelet-subspace representations of pro-

cessed shot gathers, at different levels. (Right:) Corresponding

waveform-adjoint kernels showing increased complexity.

Choice of wavelets and decomposition parameters: The basis

best suited depends on the data under consideration. Wavelet

expansions under which synthetics and observations have a

high degree of similarity are preferred. Computational cost

of wavelet analysis and synthesis should be considered, espe-

cially for massive data processing. The “best” decomposition

depth should provide a good starting point at which the syn-

thetic seismograms are close to the corresponding observations

in the subspace defined by the wavelet basis at the maximum

scale. Successive reconstructions are terminated when they re-

semble the input according to a misfit convergence criterion.

Numerical experiments: We illustrate the performance of our

method on data generated in the Marmousi model (Versteeg,

1993), converted to an elastic model as a Poisson solid. The

maximum frequency modeled is 25 Hz, using a Ricker-wavelet

source. We applied free-surface conditions at the top and Per-

fectly Matching Layer absorbing boundary conditions (Festa

and Nielsen, 2003) on the remaining three sides of the model

domain. Band-pass and dip-filtering in Seismic Un∗x (Stock-

well, 1999) removed surface waves .

We apply the Daubechies (1988) D12 wavelet transform (with

six vanishing moments) to seismic data in the time domain.

Subspace decompositions of one shot gather are shown in the

left column of Figure 1. The right column shows the corre-

sponding shear-wave speed misfit kernels, for all shots and

all stations. They capture the discrepancy between the current

model and the target at each of the wavelet scales in the seis-

mograms. With decreasing scale in data space, there is an in-

crease in complexity in structure and an increase in the number

of local minima in the associated misfit contours. Our stable

multiscale scheme for waveform inversion works successively

from large-scale data fitting to small-scale explaining, progres-

sively revealing coarse, then detailed heterogeneities.

Figure 2 shows the sequence of normalized data residual and

model norms as the algorithm progresses. The left panel shows

the overall rms misfit within the scale levels of the approxi-

mation for the iterations, on a log scale. This residual norm

is decreased by the adjoint modeling within each scale until

convergence. When switching to the seismograms at the next

level, there is an uptick in the residual norm due to the in-

clusion of extra detail in the seismogram. The black line in

the middle panel shows the evolution of the rms misfit for all

scales without (black line) and with (red line) surface waves.

Since surface waves were not considered in our inversions, the

behavior of the latter curve is much more erratic throughout

the iterations. The model-norm evolution is in the rightmost

panel, separately for the compressional (α = VP), shear wave-

speed (β = VS), and their combination.

The Marmousi P-wave speed model is in Figure 3 (top left).

To get an initial model far from the target, we smoothed the

target model with an isotropic Gaussian kernel, see Figure 3

(bottom left). The final P- and S-wave speed models are shown

in Figure 3 (right column) after 301 iterations of the multiscale

waveform-difference adjoint modeling. The upper part of the

Marmousi model has been very well recovered. The lower part

suffers from lower resolution, due to insufficient ray coverage.

Multiscale Envelope Inversion of Surface Waves

We use a toy model (Figure 4, left) to illustrate the challenges

of surface waves in waveform inversion. The 400 × 100 m

model has constant VP = 2000 m/s and density ρ = 1000 kg/m3.

The shear-wave model consists of a homogeneous background

(VS0=800 m/s) and an anomaly in a curved 10 m-thick layer

(VS1
= 1000 m/s). We use a 40 Hz Ricker vertical source at

x = 50 m, 0.5 m below the surface, and a receiver at x = 350 m,

the same depth as the source. The modeled surface waves

(Figure 5, top left) are strongly dispersive, while the synthetic

surface waves (Figure 5, bottom left) in the uniform model of

VS = 900 m/s are not.

Cycle skipping of surface waves: This may occur when an ad-

equate initial model is not available. Figure 5 (left column)

shows a clear discrepancy between the predicted and target

surface-wave waveforms. Figure 6 (top) shows the waveform-

difference misfit contour (Solano, 2013) with respect to the

two shear-wave speeds Vs0
and Vs1

. Cycle skips cause wave-

form inversions to converge to secondary minima. To combat

this, we work with the waveform envelopes, which in Figure 5

are shown together with their associated waveforms.

Figure 5 (right column) shows the surface-wave waveforms

and envelopes projected onto scale 8 using D12 wavelets. The

envelopes are very consistent with each other, and the cor-

responding 2-D misfit contours (Figure 6, bottom) display a

wide convergence basin devoid of the numerous local min-

ima present in the original waveform misfit contour plot. The

white circles in Figure 6 track the update path after one itera-

tion starting from a uniform model denoted by the red circles.
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Multiscale Full-Waveform Adjoint Tomography
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Figure 2: Residual norm evolution, with the scales within which the adjoint optimization is being conducted noted. At the marked

points, additional (lower) scales of the seismograms are introduced. Data norms are normalized to the initial-model residual norm,

within the scale of the approximation (left), considering the full-resolution seismograms with and without surface waves (middle),

and in the model space (right), for the compressional and shear wavespeed portions of the Marmousi model, separately and together.
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Figure 3: (Left:) The compressional-wavespeed Marmousi model (top), and its isotropic Gaussian smoothed version (bottom) which

is our starting model. Sources are marked by stars and receivers by triangles. (Right:) Final VP and VS models obtained after 301

multiscale waveform-difference adjoint inversion steps, using all the available multiscale information in the seismograms.

Envelopes: The analytic signal of a real-valued signal x(t) can

be expressed as (Claerbout, 1992):

xa(t) = x(t)+ iH {x(t)} = E(t)eiφ(t)
, (5)

where H {x(t)} is the Hilbert transform of the real signal x(t);
φ(t) and E(t) stand for the instantaneous phase and the instan-

taneous amplitude (or envelope) of the analytic signal:

φ(t) = arctan
H {x(t)}

x(t)
,

E(t) =
q

x2(t)+H 2{x(t)}. (6)

Instead of focusing on oscillatory phases, inversions based on

envelopes are able to reduce the nonlinearity of waveforms.

Envelope-based adjoint method: Our least-squares envelope-

difference misfit function of observed d(xr,xs, t) and synthetic

s(xr,xs, t;m) data is inspired by Bozdağ et al. (2011):

χ(m) =
1

2

X

s,r

Z T

0

‚

‚

‚

Esyn(xr,xs, t;m)−Eobs(xr,xs, t)
‚

‚

‚

2
dt.

(7)

The associated adjoint source can be expressed as:

f†(x, t) =
X

r

h

Eratio s−H {Eratio
H s}

i

δ (x−xr), (8)

where Eratio captures the difference of current predicted and

target envelopes:

Eratio(x, t;m) =
Esyn(x, t;m)−Eobs(x, t)

Esyn(x, t;m)
. (9)

The adjoint source will be re-transmitted from all stations xr

simultaneously to generate the adjoint wavefield, which illumi-

nates the discrepancy of the observed and predicted envelopes.

Synthetic experiment: We carry out multiscale envelope-based

inversions using the toy model shown in Figure 4 starting from

a homogeneous model of VS = 900 m/s. We use 39 vertical

sources with a 40 Hz Ricker wavelet located at 0.5 m below

the surface with 10 m horizontal spacing between 10 m and

390 m, and 400 receivers spaced 1 m apart at the source depth.

The final estimated model after 44 iterations is shown in the

right panel of Figure 4.
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Multiscale Full-Waveform Adjoint Tomography
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Figure 4: (Left:) Shear-wave speed model of a homogeneous background of 800 m/s and an anomalous layer of 1000 m/s. The

circle denotes a source and the triangle marks a receiver. (Right:) Estimated VS model using the multiscale envelope approach.
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Figure 5: (Top:) Modeled surface-wave waveforms and envelopes with the shear-wave speed model using the source-receiver pair

marked in Figure 4 left, at full-resolution (left) and scale 8 using D12 (right). (Bottom:) Predicted surface-wave waveforms and

envelopes at full-resolution (left) and scale 8 (right), with a homogeneous shear-wave speed model of 900 m/s.

CONCLUSIONS

We have formalized a multiscale approach for full-waveform

adjoint tomography based on the wavelet transform. We work

progressively from large-scale data fitting to finer-scale more

detailed explanations. Progressive refinements in data space

result in increasing complexity in the tomographic model up-

dates. The use of surface waves brings its own challenges

in the form of cycle skipping, which we combat with a spe-

cial treatment using multiscale envelopes. Based on our suc-

cessful numerical experiments of waveform inversions of body

and surface waves, we have now designed a complete scheme

for true “full-waveform inversion”, without prior separation of

body and surface waves, making the explanation of all avail-

able information in the seismogram possible to great detail.

Figure 6: Misfit contours with respect to the shear-wave speeds

VS0
and VS1

using waveform-difference (WD) (top) and multi-

scale envelope-difference (ED) (bottom) measurements. The

intersecting white lines represent the toy model and the red

circle denotes a uniform model of VS = 900 m/s. The red cir-

cle denotes the estimated model after one iteration using the

respective measurements, and the line connecting the red and

white circles shows the first update direction.
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