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The strength of tungsten was determined under static high pressures to 69 GPa using x-ray diffraction
techniques in a diamond anvil cell. Analysis of x-ray diffraction peak broadening and measurement of peak
shifts associated with lattice strains are two different methods for strength determination of materials under
large nonhydrostatic compressions. Here these methods are directly compared under uniaxial compression in a
diamond anvil cell. Our results demonstrate the consistency of the two approaches, and show that the yield
strength of tungsten increases with compression, reaching a value of 5.3 GPa at the highest pressure. The
obtained yield strength of tungsten is also compared with previous experimental data involving shock wave
and static compression measurements, and with theoretical predictions. The high-pressure strength of tungsten
is comparable to that of other dense metals such as Re and Mo, and ratio of yield strength to shear modulus is
about 0.02 for all these materials between 20 and 70 GPa. The static strength of tungsten is much greater than
values observed for W under shock loading but is very similar to values observed under quasi-isentropic
loading.
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INTRODUCTION

Bcc transition metals such as tungsten are technologically
important materials. The mechanical behavior of these met-
als under high static pressures has been a subject of interest
since the pioneering work of Bridgman.1–3 The strength
properties of incompressible metals �e.g., W, Re� are of con-
siderable importance for optimizing the design and operation
of high-pressure apparatus.4,5 Pressure calibration in dia-
mond anvil cells is largely based on equations of state de-
rived from shock data for standard materials such as W, Mo,
Cu, etc.6–8 In the reduction of shock compression data,
strength differences between static data and Hugoniot states
have generally been neglected, but these could be a signifi-
cant source of error in diamond anvil cell experiments when
the pressure is not hydrostatic.6,8 The static strength in a
given experiment may depend on the pressure environment
which can range from hydrostatic �fluid pressure-
transmitting medium� to quasihydrostatic �soft medium� to
nonhydrostatic �no medium�. Here we use nonhydrostatic
compression to determine the maximum static strength of W
and directly compare static and shock strengths to high pres-
sures.

The gasketed diamond anvil pressure cell can generate a
uniaxial stress field at the center of the sample under nonhy-
drostatic compression. According to the lattice strain theory
developed by Singh et al.,9–12 the slope of the relation be-
tween measured lattice strain and the angle � between the
diffraction vector and the loading axis of the cell is directly
related to the ratio t /G, where t is the mean differential stress
and G is the shear modulus. If the macroscopic differential
stress t has reached its limiting value �the yield strength� at
high pressures, t /G will reflect the ratio of yield strength to
shear modulus. Combined with independent constraints on
the high-pressure shear modulus, the differential stress or
yield strength at high pressure can be determined. Radial
x-ray diffraction techniques together with the lattice strain
theory have been applied to strength determination of many
materials.5,13–20

Microscopic deviatoric stress also exists in a polycrystal-
line sample under nonhydrostatic compression caused by
grain-to-grain contact and/or strength of the pressure me-
dium. The magnitude and orientation of this stress field gen-
erally is distributed randomly, and leads to broadening of
diffraction peaks. The amount of broadening due to lattice
distortion yields a measure of the microscopic deviatoric
strain distribution � parallel to the diffraction vector. The
microscopic deviatoric stress � can be determined by multi-
plying � by the aggregate high-pressure Young’s modulus E.
If sufficient deviatoric stress is generated to deform the
sample plastically, then this stress also represents the yield
strength of the sample.21 Analysis of the diffraction peak
broadening also has been used to determine the yield
strength for many materials using multi-anvil apparatus.21–25

In fact, the above two methods are both frequently used to
investigate the strength of materials under large nonhydro-
static compression. In principle, they should give the same
result, as both the macroscopic differential stress t and mi-
croscopic deviatoric stress � that the sample can support
should be equal to the yield strength once the plastic defor-
mation is initialized.18 Therefore, it is of interest to critically
compare these two methods under the same stress conditions
and for the same material.

In this study, the yield strength of a polycrystalline tung-
sten sample was investigated using radial x-ray diffraction
techniques under uniaxial compression up to 68.8 GPa. In
addition to its technological importance, tungsten was cho-
sen for study because of its strong x-ray diffraction signal
and high yield strength, and because its elastic properties and
strength have been widely examined in previous dynamic
and static compression experiments.1,5,8,26–36

EXPERIMENT

Tungsten powder �Alfa, 99.999%, 4–6 �m grain size�
was loaded into a 90-�m-diameter hole of a Be gasket in a
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diamond anvil cell. The gasket was preindented to 28 �m
thickness at 23 GPa. A piece of �40 �m Au foil was placed
on top of the sample and served as a pressure standard.37 We
used a symmetric diamond anvil cell with a culet size of
300 �m to exert uniaxial compression on both the W sample
and Au. No pressure-transmitting medium was used. Energy-
dispersive radial x-ray diffraction experiments18,38 were per-
formed at X17C beamline of the National Synchrotron Light
Source at Brookhaven National Laboratory. Two pairs of slits
are positioned in the diffracted beam path. One slit deter-
mines the angular resolution of the system and the other slit
defines the spatial region from which diffracted intensity is
collected. This spatial resolution is an advantage for radial
geometry experiments as diffracted intensity can be re-
stricted to regions near the loading axis where the lattice
strain equations strictly apply.18 The incident x-ray beam was
focused by a pair of Kirkpatrick-Baez mirrors to approxi-
mately 10�15 �m2 and directed through the Be gasket and
the sample. The diffracted intensity was recorded using a Ge
solid-state detector with a fixed angle at 2�=12.004�4�°
which was calibrated with a separate gold foil.

The diamond cell was mounted in a rotation stage whose
axis bisects 2�. Thus the angle � between the diffraction
plane normal and the cell-loading axis could vary from 0°
�diffraction normal parallel to the diamond cell loading axis�
to 90° �diffraction normal perpendicular to the loading axis�.
A detailed description of the experimental setup is provided
elsewhere.13,14,18 Before data collection, the cell was scanned
in the horizontal and vertical directions while recording
x-ray transmission with a photodiode to determine the appro-
priate sample position. Diffraction spectra were collected
only after sufficient time �more than 1 h� elapsed after each
compression step to allow for stress relaxation. A total of 12
pressure steps were investigated. For seven of the pressure
steps, diffraction patterns were taken at �=0°, 20°, 28°, 35°,
42°, 50°, 54.7°, 60°, 70°, and 90°, respectively. For the rest
of the pressure steps, patterns were collected only at �=0°,
54.7°, and 90°. The diffraction patterns obtained at ��60°
were excluded from data analysis to avoid the systematic
error due to the strong x-ray absorption of W,39 and position-
ing errors that were detected only after data collection was
completed. However, the d spacing vs angle trend is well
defined by data between 0°-60°.

For data taken at higher pressures, we always rotated the
stage back to �=0° and collected data again to compare with
the patterns taken at the beginning of the data collection step.
The variation in d spacing at �=0° was typically less than
0.2% over the measurement time interval and not
systematic.18 At four of the loading steps, diffraction patterns
were also collected along a linear transect across the sample
surface at 10 �m steps at �=0°. The variation in pressure
measured over the central 40 �m was approximately 5%.
With the diamond cell oriented at �=0°, we also carried out
a transect along the loading axis �at right angles to the dia-
mond surface� and found no detectable change in the diffrac-
tion peak positions for Au or W with distance from the dia-
mond surface.

Peak position and width �full width at half maximum�
were obtained by fitting background-subtracted Voigt line
shapes to the spectra. The lattice parameters of Au were de-

rived from the �111�, �200�, �220�, �311�, and �222� diffrac-
tion lines. Hydrostatic pressures were obtained from the
mean lattice parameter of gold at �=54.7°. As reported
previously,13,14 the �200� diffraction line of gold is anoma-
lous. This may be a consequence of plastic deformation.23,40

However, the effect of including or excluding �200� on pres-
sure determination was small �	1 GPa�.18 For tungsten, the
diffraction lines �110�, �200�, �211�, �220�, �310�, �222�, and
�321� could be detected through the entire range of our mea-
surements. The lattice parameters of W were generally de-
rived from diffraction lines of �110�, �200�, �211�, �220�, and
�310� using least-squares fitting to a cubic cell. There is no
peak overlap among the W, Au, and Be �gasket� diffraction
lines. Further experimental details can be found elsewhere.18

THEORY

The d spacing from radial x-ray diffraction data was ana-
lyzed using the lattice strain theory developed by Singh et
al.9–12 According to this theory, the stress state in a polycrys-
talline sample under uniaxial compression in the diamond
anvil cell can be described by a maximum stress along the
cell loading axis, 
3, and a minimum stress in the radial
direction, 
1. The difference between 
3 and 
1 is termed the
uniaxial stress component or the differential stress t,

t = 
3 − 
1 = 2� = Y , �1�

where � is the shear strength and Y the yield strength of the
sample. The equality in Eq. �1� holds for a Von Mises yield
condition and t could be less than the yield strength.

The observed d spacing �dm� is a function of the angle �
between the diamond cell loading axis and diffraction plane
normal:

dm�hkl� = dp�hkl��1 + �1 − 3 cos2 ��Q�hkl�� , �2�

where dp�hkl� is the d spacing resulting from the hydrostatic
component of stress, and

Q�hkl� = �t/3����2GR�hkl��−1 + �1 − ���2GV�−1� . �3�

GR�hkl� is the aggregate shear modulus of grains contribut-
ing to the diffraction intensity under the condition of con-
stant stress across grain boundaries �Reuss limit�. GV is the
shear modulus under isostrain conditions �Voigt bound�.

According to Eq. �2�, dm�hkl� should vary linearly with
1−3 cos2 �. At �=54.7° �1−3 cos2 �=0�, the position of the
observed x-ray diffraction line reflects the d spacing due to
the hydrostatic component of stress, and there is no contri-
bution to the measured d spacing from the differential stress.

The aggregate polycrystalline sample in the diamond an-
vil cell is generally assumed to be under isostress conditions.
In this case, � equals 1 in Eq. �3� and the differential stress
can be expressed as:

t = 6G�Q�hkl�	 . �4�

where �Q�hkl�	 represents the average Q�hkl� value over all
observed reflections, and G is the aggregate shear modulus
of the polycrystalline sample. If the differential stress t has
reached its limiting value of yield strength at high pressures,
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6�Q�hkl�	= t /G will reflect the ratio of yield strength to shear
modulus.

Upon compression, local deviatoric stresses exist in an
aggregate polycrystalline sample due to grain-to-grain strain
differences that result in broadening of diffraction
lines.11,21,22 X-ray diffraction peak broadening �� can also
be caused by small grain size. Effects of lattice distortion and
grain size on x-ray diffraction peak broadening are well
documented elsewhere41–43 and briefly summarized below.

For angle-dispersive x-ray diffraction, the contributions of
small grain size to peak broadening can be expressed by the
equation

s = S�/�L cos �� , �5�

and peak broadening due to the lattice distortion is given by

d = 2� tan � , �6�

where s and d represent the grain size and lattice distortion
contributions, respectively, S is the Scherrer constant, � is
the x-ray wavelength, L is the average grain size, � is the
Bragg angle, and � is the microscopic deviatoric strain dis-
tribution parallel to the diffraction vector.43

In energy-dispersive x-ray diffraction, Bragg’s law is ex-
pressed by

Exd sin � = hc/2 �7�

where Ex is the x-ray photon energy, d is the interplanar
spacing, � is the Bragg angle, h is Planck’s constant, and c is
the velocity of light. The relation between the peak broaden-
ing measured in the angle-dispersive case and that measured
in the energy-dispersive case can be obtained through differ-
entiating with respect to 2� in Eq. �7� �Ref. 32�:

��Ex� = − �Ex��2��cot ��/2. �8�

From Eqs. �5�–�8�, we can express the broadening attrib-
uted to grain size and lattice distortion in energy dispersive
diffraction as

s = Shc/�2L sin �� �9�

and

d = �Ex. �10�

If the energy-dispersive x-ray diffraction peak has a
Gaussian profile, the total peak broadening due to grain size
and lattice distortion is24,43

��Ex��2 = �Shc/�2L sin ���2 + ��Ex�2. �11�

According to Eq. �11�, different diffraction peaks should
give a linear plot of ��Ex��2 vs Ex

2 with slope �2 and ordinate
intercept �Shc / �2L sin ���2. In this way, we can constrain the
microscopic deviatoric strain distribution � and the average
grain size L.24,43 Taking account of the instrumental broad-
ening i�Ex�, Eq. �11� can be modified as25,42

�o�Ex��2 − �i�Ex��2 = �Shc/�2L sin ���2 + ��Ex�2, �12�

where o�Ex� represents the observed peak broadening.
By using a diffraction pattern from a stress-free sample

with a known grain size at ambient conditions the instrumen-

tal broadening could be determined. Therefore the average
grain size and deviatoric strain distribution can be derived by
plotting �o�Ex��2− ���Ex��2 as a function of Ex

2. Once the
deviatoric strain distribution � is known, the microscopic de-
viatoric stresses � can be determined by multiplying by the
aggregate Young’s modulus E.22 If the sample is deformed
plastically, then this stress also represents the yield strength
of the sample, i.e.,

� = �E = 2� = Y . �13�

Under uniaxial loading, both the macroscopic differential
stress t and microscopic deviatoric stress � that the aggregate
polycrystalline sample can support are equal to the yield
strength �t=�=Y� once plastic deformation is initialed. Thus
we have

�E = 6G�Q�hkl�	 = Y . �14�

The aggregate Young’s modulus E can be obtained from
the bulk modulus K and shear modulus G using

E = 9KG/�3K + G� . �15�

The bulk modulus can be derived from the hydrostatic
compression curve, which can be obtained at �=54.7° using
radial x-radial diffraction techniques. Therefore, the strength
as a function of pressure can be obtained in two ways from
the radial x-ray diffraction data. Equations �14� and �15� are
strictly true only for elastically isotropic materials and only if
both the microscopic deviatoric stress and macroscopic dif-
ferential stress reach their upper limit �yield strength� in an
aggregate polycrystalline sample under uniaxial loading.

RESULTS AND DISCUSSION

Diffraction spectra of the sample were measured to con-
ditions corresponding to a hydrostatic pressure up to
68.8 GPa at room temperature �Fig. 1�. Here the pressure is
determined using the Au scale37 from the diffraction data
obtained at �=54.7°. At room temperature, there are some
differences in reported equations of state �EOSs� for Au. The
recent EOS of Au by Shim et al.37 yields �3 GPa pressure
difference from Anderson et al.’s44 at 60 GPa and room tem-
perature. The shift of diffraction lines for W is larger than for
Au. This indicates that W is stronger than Au and can sup-
port a larger uniaxial stress.18 The change of the observed d
spacing with direction is caused by the differential stress
component t=
3−
1, which is limited by the yield strength
of the material. Gold has a low yield strength, and the
uniaxial stress it can support is less than 1 GPa under non-
hydrostatic compression to 50 GPa in a diamond cell.13,14,18

But strong metals like Mo and Re are found to support a
differential stress of up to 7 GPa at the same condition.13,14

Figure 2 shows plots of d spacing as a function of 1
−3 cos2 � for W �110� diffraction lines at seven pressures.
As expected from the theory, our measured d spacings vary
linearly with 1−3 cos2 �. The compression curves for tung-
sten at 54.7° and 0° are shown in Fig. 3. The unit-cell vol-
umes observed at different pressures were fitted to the third-
order Birch-Murnaghan equation of state. At �=54.7°, the
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derived K0 is 312±36 GPa with K0� fixed at 4.32, which is
the value previously determined from ultrasonic
measurements.27 The bulk moduli obtained from fits of the
diffraction data at 0° is 278±9 GPa. Table I summarizes the
bulk modulus and its pressure derivative of tungsten from
previous experiments and theoretical calculations. The com-
pression curve of tungsten obtained here under uniaxial com-
pression at �=54.7° �Fig. 3� is roughly consistent with the
reported results from hydrostatic and quasihydrostatic com-

pression data. Pressure-volume states at �=54.7° and other
main results from this work are summarized in Table II.

The ratio of differential stress to shear modulus �t /G
=6�Q	� is plotted as a function of pressure for tungsten in
Fig. 4. The t /G ranges from 0.014 to 0.024 at pressures of
12.8–68.8 GPa with an average value of 0.02. Theoretical
calculations indicate that the ideal strength of W corresponds
to about 11% of the shear modulus,31 and thus the high-
pressure strength of W remains well below the theoretical
limit. Our results for W are comparable to results from radial
diffraction studies of other incompressible metals at pres-
sures below 40 GPa: Re �t /G=0.02� �Ref. 13� and Mo
�t /G=0.02� �Ref. 14�. Platinum and gold are fcc metals with
considerably lower resistance to shear. The t /G values for
these materials were found to be 0.03 and 0.007, respec-
tively, at 20 GPa.13,16 Thus, metals with a wide range of
properties exhibit differential stresses that are �1–3 % of
the shear modulus at high pressures. This is much lower than
the t /G values ��0.05–0.09� found for oxides and silicates
at high pressures.15,17,18 It is likely that tungsten has already
yielded at these pressures, thus the t /G reflects the ratio of
yield strength to shear strength �Y /G�. The plastic strains are
not directly measured in our experiments. Based on finite-
element simulations for a similar experimental geometry, it
can be estimated that plastic strains are greater than 50% at
70 GPa.45 Thus, strain hardening is likely to be an important
contributor to the strengths.46

As discussed above, the deviatoric strain distribution of
the polycrystalline W sample can be derived from the
energy-dependent peak broadening. Figure 5 shows the
square of observed peak broadening �full width at half maxi-
mum� against square of energy for five tungsten diffraction

FIG. 1. X-ray diffraction patterns of the sample taken at differ-
ent � under the same loading. The positions of W and Au diffrac-
tion peaks are marked by solid circles and arrows, respectively. The
pressure is determined from the mean lattice parameter of gold
obtained at �=54.7°.

FIG. 2. Dependence of observed d spacing on 1−3 cos2 � for
the tungsten �110� diffraction line at different pressures. The two
data points at each pressure step at �=0° were obtained at the
beginning and completion of the measurements. The solid lines are
least-squares fits to the data. The pressures �in GPa� are listed to the
right of each line.

FIG. 3. Compression curves of tungsten from lattice parameters
measured at 0° and 54.7°. The pressure is also calculated from the
measured diffraction data of gold at 0° and 54.7°. The solid lines
are Birch-Murnaghan equation fits to the data at each angle. The
open diamonds are the static compression data obtained by Ming
and Manghnani from Ref. 29. The open circles are the static com-
pression data of Ref. 7. The open squares and dashed line are the
isotherm derived from shock compression data by Ref. 28 and
Ref. 8.
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lines at the lowest and highest pressures in our experiments.
Straight lines with almost the same intercept fit the data very
well at two pressures. This indicates that Eq. �12� can be
applied to our data and there was no significant change in
grain size over our experimental pressure range. We did not
observe any systematic difference in peak broadening at dif-
ferent � under the same loading.

Figure 6 shows the microscopic deviatoric strain distribu-
tion � of tungsten at different pressures, which was derived
from the slope of the lines in Fig. 5. Except for the first
pressure step at P=2.7 GPa ��=0.0052�, the microscopic de-
viatoric strain distribution of tungsten is similar ��
0.008�
above �5 GPa. It appears that the microscopic deviatoric
strain distribution of tungsten reached the highest value at
P=7.3 GPa ��=0.0086�, then fell back upon further com-
pression. This may indicate that the tungsten starts to yield at
around 7 GPa under nonhydrostatic compression and local
deviatoric stresses relaxed due to the plastic flow.

The macroscopic differential stress t can be calculated at
each pressure step from Eq. �4� if the shear modulus of tung-
sten at high pressure is known. By multiplying � by the
aggregate Young’s modulus, the microscopic deviatoric
stress can also be determined under compression. The single-
crystal elastic moduli Cij and their pressure derivatives

�Cij /�P have been measured ultrasonically at 25 °C up to
5 kbar for W.27 Using these data, the Cij at high pressure
were calculated using third-order Eulerian finite-strain equa-
tions. The aggregate shear modulus and Young’s modulus are
derived from the Cij at high pressure. With G and E known,
we can calculate both the macroscopic differential stress and
microscopic deviatoric stress of tungsten at each pressure
step. The results are shown in Fig. 7 and Table II. Also
shown in the figure are data obtained from other static com-
pression measurements1,5 and shock compression.35,36 It can
be seen that the microscopic deviatoric stresses obtained by
the analysis of the peak broadening have similar values as
the differential stress calculated using the lattice strain
theory. It is likely that yield has been achieved for tungsten at
high pressures �P� �7 GPa�, so both the differential
stresses and microscopic deviatoric stress are equivalent to
yield strength.

Hemley et al. investigated the differential stress of tung-
sten and iron under uniaxial compression using a similar

TABLE I. A summary of the bulk modulus �K0� of tungsten and its pressure derivative �K0�� obtained
from various methods.

Method K0 �GPa� K0� Reference

Radial XRD �static� 312±36 4.32 �fixed� This work

Ultrasonic 308.6 4.32 Ref. 27

Ultrasonic 309 Ref. 32

Hydrostatic compression 307±11 4.32 �fixed� Ref. 29

Quasi-hydrostatic compression 295.2±3.9 4.32±0.11 Ref. 7

Shock compression 280±9 4.32 �fixed� Ref. 28

Theory 305 3.96 Ref. 30

Theory 331 Ref. 31

Theory 306.5 Ref. 33

TABLE II. A list of cell volume �V�, differential stress �t�, mi-
croscopic deviatoric stress ���, and shear modulus �G� of tungsten
at seven pressure steps. The pressure is determined from the mean
lattice parameter of gold obtained at �=54.7°. Cell volume of tung-
sten is also obtained at �=54.7°. Shear modulus of tungsten at high
pressure are derived using third-order Eulerian finite-strain equa-
tions from the data in Ref. 27.

P �GPa� V �Å3� t �GPa� � �GPa� G �GPa�

12.8�0.3� 30.80�0.04� 2.8�0.6� 3.6�0.6� 179

21.9�0.5� 30.11�0.05� 2.6�0.5� 3.7�0.9� 191

38.8�0.3� 28.98�0.05� 5.0�1.4� 4.6�0.6� 214

43.6�0.7� 28.65�0.03� 4.8�0.9� 4.5�0.5� 220

49.7�0.4� 28.27�0.04� 5.2�1.1� 4.9�0.4� 228

65.8�0.8� 27.48�0.06� 4.3�0.7� 5.2�0.3� 248

68.8�0.5� 27.21�0.07� 5.2�1.0� 5.3�0.3� 251

FIG. 4. Ratio of differential stress to shear modulus �t /G� as a
function of pressure for tungsten. The pressure is determined from
the mean lattice parameter of gold obtained at �=54.7°. The esti-
mated errors are obtained from the scatter of d�hkl� vs 1
−3 cos2 �.
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method as ours.5 It was found that t increases with increas-
ing pressure, reaching values of �20 GPa for W
at 200–300 GPa. At P=34 and 74 GPa, the differential
stresses they obtained are 4.3 and 4.8 GPa. These results are
very consistent with our experiments where both t and �
range from 4.3 to 5.3 GPa under pressure between 29.9 and
68.8 GPa. At ultrahigh pressures, the t /G values for W from
the data of Ref. 5 are �0.03±0.01, which are consistent with
the lower-pressure values obtained here. Bridgman quantita-
tively measured the shearing stress of various materials at the
plastic flow point as a function of pressure up to 5 GPa.1 The
yield strength of W was estimated to be 2.5 GPa at mean

hydrostatic pressures of 5 GPa. The microscopic deviatoric
stresses of tungsten from the analysis of peak broadening in
our experiments give �=2.2 GPa at 2.7 GPa and 3.2 GPa at
5.4 GPa, which are also consistent with Bridgman’s data.
However, those values may not represent the yield strength
of tungsten as the nonhydrostatic pressure below �7 GPa
may not be high enough to deform the sample plastically.
Figure 7�a� shows the yield strength of tungsten obtained in
this work together with the reported static compression
data.1,5 Also shown in the figure are fitting lines of strength
vs pressures for two other incompressible metals: Rhenium,
t=2.5+0.09P �P=14–37 GPa� �Ref. 13�; molybdenum, t

FIG. 5. Energy-dependent peak broadening for tungsten at 2.7
and 68.8 GPa. The solid lines are linear fits to the experimental
data. The slope of the straight line reflects the microscopic devia-
toric strain distribution of tungsten due to the grain-to-grain contact
under compression, and the intercept reflects the grain size and
instrumental broadening.

FIG. 6. The microscopic deviatoric strain distribution of tung-
sten vs pressure.

FIG. 7. Differential stress and microscopic deviatoric stress of
tungsten as a function of pressure. Other reported yield strength
values of tungsten from static compression measurements �a� and
shock wave measurements �b� are also shown for comparison. Solid
symbols, data from this work �� microscopic deviatoric stress and
� differential stress�; open symbols, reported data �� differential
stress from Ref. 5; � yield strength from Ref. 1; � isentropic
loading from Refs. 35 and 36; � shock loading from Refs. 35 and
36�. The solid lines in �a� are the strength vs pressure fitting lines
for Re in Ref. 13 and Mo in Ref. 14.
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=0.46+0.13P �P=5–24 GPa� �Ref. 14�. It can be seen that
the yield strengths of tungsten determined under static com-
pression are quite consistent, and it has a similar strength as
rhenium and molybdenum under uniaxial compression.

Like tungsten, tantalum is an incompressible transition
metal with a body centered cubic crystal structure. The yield
strength of tantalum has also been reported from static com-
pression studies using either measurements of pressure
gradients45 or diffraction from single crystals.47 The latter
study reported yield strengths of 1.1–3.6 GPa at
36–71 GPa, which are lower than those found here for W.
This may in part reflect the lower plastic strains ��20% �
achieved in the Ta experiments. In contrast, the pressure gra-
dient measurements yielded values of 4.8–10.3 GPa for rela-
tively low-strain experiments ��40% � at 31–86 GPa with
softening at higher compression. For relatively high-strain
experiments ��100% �, the yield strength values were
3–4 GPa at 35–69 GPa. The latter are more consistent with
our measurements for W. Measurements of strength based on
pressure gradients suffer from significant uncertainties �e.g.,
sample thickness� and are valid only under restricted experi-
mental conditions that may be violated due to anvil deforma-
tion at higher pressures.

The shear strength of W and W alloys has been measured
under shock loading in numerous studies.26,34–36,48–50 Figure
7�b� shows the yield strengths determined in a study35,36 us-
ing nearly pure W and covering a wide range of shock pres-
sures �to 250 GPa�. The yield strengths were constrained
from wave profile measurements of shock loading and re-
lease paths. The same study also reported yield strengths
under quasi-isentropic loading through the use of graded
density impactors �Fig. 7�b��. Quasi-isentropic compression
involves slower loading rates and lower temperatures com-
pared with shock loading. As shown in Fig. 7�b�, the static
yield strength of W determined here from radial x-ray dif-
fraction has roughly the same value as the yield strength
under quasi-isentropic loading but considerably higher than
those found under shock loading. The constitutive response
of materials under static, quasi-isentropic, and shock loading
will in general differ due to a variety of factors including
strain rate, total strain, temperature, and the details of micro-
structure development. It is not possible to assess the relative
importance of these factors based on the present data. Shock
temperatures in W up to 70 GPa are expected to be relatively
modest51 �	515 K� and so it is unlikely that thermal soften-
ing alone can explain the low shock strengths compared to
static and quasi-isentropic loading. It should also be noted
that higher values of yield strength under shock loading have
been reported for some W alloys, but the presence of alloy-
ing components may have a significant strengthening effect34

rendering these data incomparable to ours.

Microscopic deviatoric stress exists in a polycrystalline
sample under nonhydrostatic compression due to the grain-
to-grain contact, especially in a packed powder sample with-
out sintering. Microscopic deviatoric stress will lead to
broadening of the diffraction peaks, and measurements of the
peak broadening above the yield point, are frequently applied
to determining the strength of materials.21–25 On the other
hand, a uniaxial loading system also generates a statistically
uniform �macroscopic� differential stress field throughout the
sample.21 In this case, change in d spacing with � reflects the
response of the shear modulus to the uniaxial stress field.
Radial x-ray diffraction techniques together with lattice
strain theory have also been used for strength determination
for many materials.13–18 In fact, both of the above two meth-
ods are used to determine materials’ strength, and should
give the same result as both the macroscopic differential
stress and microscopic deviatoric stress that the sample can
support are equal to the yield strength once the plastic defor-
mation is initialized. Our results as shown in Fig. 7 demon-
strate the consistency of these two methods.

CONCLUSION

The yield strength of tungsten under uniaxial compression
has been determined to 68.8 GPa from the radial x-ray dif-
fraction data. Results obtained using lattice strain theory and
the analysis of the peak broadening are consistent: both t
�differential stress� and � �microscopic deviatoric stress�
range from 4.3 to 5.3 GPa under pressure between 29.9 and
68.8 GPa. The consistency of the two methods provides con-
fidence in the robustness of strength determination. The
strength of tungsten obtained in this work is also compared
with the reported data from the static compression and shock
wave �quasi-isentropic loading� experiments. The static
strength of tungsten is considerably larger than previous val-
ues reported under shock compression at these pressures, but
comparable to values inferred from quasi-isentropic com-
pression experiments.
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