

Correction to "Effects of hydration on the elastic properties of olivine"

Steven D. Jacobsen, Fuming Jiang, Zhu Mao, Thomas S. Duffy, Joseph R. Smyth, Christopher M. Holl, and Daniel J. Frost

Received 11 April 2009; published 16 June 2009.

Citation: Jacobsen, S. D., F. Jiang, Z. Mao, T. S. Duffy, J. R. Smyth, C. M. Holl, and D. J. Frost (2009), Correction to "Effects of hydration on the elastic properties of olivine," *Geophys. Res. Lett.*, *36*, L12302, doi:10.1029/2009GL038660.

[1] In the paper "Effects of hydration on the elastic properties of olivine" by S. D. Jacobsen et al. (Geophysical Research Letters, 35, L14303, doi:10.1029/2008GL034398, 2008), the sample of hydrous olivine labeled hy-Fo₉₇ with (001) orientation in the bottom plot of original Figure 1b has been subsequently identified by Raman spectroscopy as OH-chondrodite, (Mg,Fe)₅Si₂O₈(OH)₂ [e.g., Lin et al., 1999]. The OH-chondrodite co-existed with hydrous forsterite in the synthesis run, and all other samples in the study have been confirmed to be hydrous forsterite. Upon removing the OH-chondrodite platelet from the fit, we obtain a corrected set of elastic constants (C_{ii}) and crystallographic orientations for hy-Fo₉₇ using a two-plane fit, displayed in corrected Figure 1 and presented in corrected Table 1. The original Table 2 of anisotropy factors has been updated and presented here in corrected Table 2. Brillouin spectra from the two remaining orientations of hy-Fo97 determine eight of the nine C_{ij} , leaving C_{12} unconstrained. As a result, C_{12} was fixed to the value obtained for hy-Fo₁₀₀ and a large uncertainty of ± 5 GPa in this parameter was assumed in calculating the aggregate bulk (K_{S0}) and shear (G) moduli.

[2] In addition, a minor correction to the elastic constants of hydrous forsterite (hy-Fo₁₀₀) is presented in revised Table 1 because the original calculation used an earlier estimated density of 3.19 g/cm^3 , instead of the actual measured X-ray density of $3.180(3) \text{ g/cm}^3$. The measured X-ray density of $3.180(3) \text{ g/cm}^3$ was correctly reported in the original text, but not used in the calculation of C_{ij} . The revised C_{ij} of hydrous forsterite are affected by only 0.2-0.3% from the original calculation as a result of the error.

[3] The revised values of elastic properties for hy-Fo₁₀₀ and hy-Fo₉₇ presented in the corrected Table 1 apply to the following statements in the text:

[4] The last four sentences of paragraph [1] should read: The adiabatic bulk (K_{S0}) and shear (G_0) moduli of hy-Fo₁₀₀ are 125.4(±0.2) GPa and 79.6(±0.1) GPa, respectively. For hy-Fo₉₇, we obtain $K_{S0} = 125.2(\pm0.8)$ GPa and $G_0 = 77.7(\pm0.3)$ GPa. Compared with anhydrous forsterite, the combined effects of 3 mol% Fe and 0.8 wt% H₂O reduce bulk and shear moduli by 2.9(±0.6)% and 4.5(±0.4)% respectively, with greater reductions expected for more

Copyright 2009 by the American Geophysical Union. 0094-8276/09/2009GL038660\$05.00

iron-rich Fo₉₀ mantle compositions. Although lattice preferred orientation (LPO) studies have not been carried out under relevant conditions of water or pressure, analysis of idealized single-crystal anisotropy for various known LPO types predicts no more than 2% effect of hydration on Swave splitting anisotropy in olivine.

[5] The last sentence of paragraph [9] should read: We measured two platelets of hy-Fo₉₇ with fitted orientations of (100) and (010), shown in the corrected Figure 1b.

[6] The last two sentences of paragraph [10] should read: The addition of 0.89 wt% H₂O to forsterite in our hy-Fo₁₀₀ samples shows a reduction of all C_{ij} by 1.8–4.3%, except C_{33} , which is reduced by only 0.8%. For hy-Fo₁₀₀, we obtain $K_{S0} = 125.4(\pm 0.2)$ GPa and $G_0 = 79.6(\pm 0.1)$ GPa, which are about 2.7% and 2.2% lower than anhydrous forsterite, respectively.

[7] The first two sentences of paragraph [11] should read: Comparing the C_{ij} of hy-Fo₉₇ with anhydrous Fo₁₀₀ to ascertain the net effect of iron and hydration shows that there is a large reduction in C_{ij} by 2.4–6.4%, except for C_{23} , which increased by 2.1%. For hy-Fo₉₇, we obtain $K_{S0} =$ 125.2(±0.8) GPa and $G_0 = 77.7(\pm 0.3)$ GPa, which are 2.9% and 4.5% lower than anhydrous forsterite.

[8] The last sentence of paragraph [11] should read: The aggregate hy-Fo₉₇ velocities Vp and Vs (with only 3 mol% Fe) are 2.1% and 2.4% lower, respectively, than anhydrous forsterite, suggesting that hydrous Fo₉₀ olivine, closer to mantle composition, would exhibit even further reduced velocities.

Figure 1. Measured acoustic velocities (solid symbols) as a function of azimuthal angle in different platelets for each composition, (a) hy-Fo₁₀₀ and (b) hy-Fo₉₇. Fitted solutions to the Christoffel equations are shown by solid lines.

Table 1. Elastic Properties of Olivine With Varying Iron and Water Content^a

		San Carlos	Effect of	Effect of			Effect of Fe
	Forsterite ^b	Olivine ^c	Fe (%) ^d	Hy-Fo100 ^e	H ₂ O (%) ^d	Hy-Fo97 ^e	and H ₂ O (%) ^d
Mg#	1.00	0.90		1.00		0.97	
H ₂ O (wt%) ^f	0	0		0.89		0.80	
C_{ii} (GPa)							
C_{11}	328.6 (5)	320.2 (4)	-2.6	314.4 (6)	-4.3	311.2 (11)	-5.3
C_{22}	200.1 (3)	195.9 (3)	-2.1	194.6 (5)	-2.7	193.5 (10)	-3.3
C_{33}	235.7 (5)	233.8 (3)	-0.8	233.7 (7)	-0.8	230.1 (6)	-2.4
C_{12}	66.8 (3)	67.9 (3)	+1.6	64.7 (6)	-3.1	64.7 ^g	-3.1
C_{13}	68.4 (4)	70.5 (3)	+3.1	67.0 (6)	-2.0	64.7 (7)	-5.4
C_{23}	72.7 (3)	78.5 (4)	+8.0	70.0 (6)	-3.7	74.2 (6)	+2.1
C_{44}	67.0 (1)	63.5 (2)	-5.2	65.8 (3)	-1.8	62.7 (1)	-6.4
C_{55}	81.2 (2)	76.9 (2)	-5.3	79.9 (2)	-1.6	78.5 (3)	-3.3
C_{66}	80.9 (1)	78.1 (1)	-3.5	78.4 (4)	-3.1	77.8 (8)	-3.8
ρ (kg/m ³)	3225	3350	+3.9	3180 (3)	-1.4	3240 (3)	+0.5
K_{s0} (GPa)	128.9	129.5	+0.5	125.4 (2)	-2.7	125.2 (8)	-2.9
G_0 (GPa)	81.4	77.5	-4.8	79.6 (1)	-2.2	77.7 (3)	-4.5
V_P (km/s)	8.58	8.34	-2.8	8.53 (1)	-0.6	8.40 (1)	-2.1
V_S (km/s)	5.02	4.81	-4.2	5.00(1)	-0.4	4.90 (1)	-2.4
V_P/V_S	1.709	1.734	+1.5	1.706 (5)	-0.2	1.714 (6)	+0.3
Poisson, ν	0.240	0.251	+4.6	0.238 (7)	-0.8	0.242 (7)	+0.8

^aValues in parentheses are standard deviations in the last place. ^bSuzuki et al. [1983]. ^cWebb [1989]. ^dPercent change compared with anhydrous forsterite. ^eThis starts

^aThis study. ^fWater contents estimated using the calibration of *Bell et al.* [2003].

^gValue of C_{12} for hy-Fo₉₇ was unconstrained by our data and fixed to the hy-Fo₁₀₀ value of 64.7 GPa. We assume a large uncertainty of ±5 GPa in C_{12} for the purpose of calculating aggregate moduli, K_{S0} and G.

Table 2. Anisotropy of Single-Crystal Olivine With Varying Iron and Water Content

	Forsterite ^a	San Carlos Olivine ^b	Hy-Fo100 This study	Hy-Fo ₉₇ This study
		P-Wave Anisotropy		
Vp[100] ^c	10.09	9.78	9.94	9.80
Vp[010]	7.88	7.65	7.82	7.73
Vp[001]	8.55	8.35	8.57	8.43
%Anisotropy ^d	25.0 (±0.4)	24.8 (±0.1)	24.1 (±0.5)	23.9 (±0.4)
		S-Wave Anisotropy		
Vs//a-axis		**		
Polarized [010]	5.01	4.83	4.97	4.90
Polarized [001]	5.02	4.79	5.01	4.92
% anisotropy ^d	0.2 (±0.3)	0.8 (±0.1)	0.8 (±0.5)	0.4 (±0.7)
Vs//b-axis				
Polarized [100]	5.01	4.83	4.97	4.90
Polarized [001]	4.56	4.35	4.55	4.40
% anisotropy ^d	9.4 (±0.2)	10.5 (±0.2)	8.8 (±0.6)	10.8 (±0.6)
Vs//c-axis				
Polarized [100]	5.02	4.79	5.01	4.92
Polarized [010]	4.56	4.35	4.55	4.40
% anisotropy ^d	9.6 (±0.3)	9.6 (±0.2)	9.6 (±0.6)	11.2 (±0.3)
		LPO Analysis		
A-type fabric ^e				
V _{SH}	5.02	4.79	5.01	4.92
V _{SV}	5.01	4.83	4.97	4.90
V_{SH}/V_{SV}	1.002	0.992	1.008	1.004
B-type fabric ^e				
V _{SH}	5.02	4.79	5.01	4.92
V _{SV}	4.56	4.35	4.55	4.40
V_{SH}/V_{SV}	1.101	1.101	1.101	1.118
C-type fabric ^e				
V _{SH}	4.56	4.35	4.55	4.40
V _{SV}	5.02	4.79	5.01	4.92
V_{SH}/V_{SV}	0.908	0.908	0.908	0.894
E-type fabric ^e				
V_{SH}	5.01	4.83	4.97	4.90
V_{SV}	5.02	4.79	5.01	4.92
V _{SH} /V _{SV}	0.998	1.008	0.992	0.996

^aSuzuki et al. [1983]. ^bWebb [1989]. ^cUncertainties in velocities are 0.01-0.02 km/s, propagated from uncertainties in C_{ij} . ^dAnisotropy (%) is calculated as (Vmax – Vmin)/Vmean. ^eAssumes horizontal flow, S-wave propagating in the shear plane, parallel to shear direction, with V_{SH} polarized in the shear plane, and V_{SV} polarized perpendicular to the shear plane. The crystal orientation for each fabric type is idealized using observed lattice preferred orientation (LPO) fabric types priver by three et al. [2006] given by Jung et al. [2006].

[9] The last sentence of paragraph [13] should read: Hydration of forsterite only slightly reduces the maximum P-wave anisotropy, expressed as [(Vmax – Vmin)/Vmean] \times 100, from 25.0(±0.4)% to 24.1(±0.5)% for hy-Fo₁₀₀, with moderate further reduction to 23.9(±0.4)% for hy-Fo₉₇.

[10] The third sentence of paragraph [15] should read: Under horizontal shear (used to reference V_{SH} and V_{SV}), the hy-Fo₉₇ olivine shows no change in shear-wave splitting anisotropy for idealized LPO type-A and type-E compared with dry forsterite.

[11] The fifth sentence of paragraph [15] should read: In both cases (type-B and type-C) there is moderate 1-2% change in S-wave splitting anisotropy with hydration (corrected Table 2).

References

Lin, C. C., L. G. Liu, and T. Irifune (1999), High-pressure Raman spectroscopic study of chondrodite, *Phys. Chem. Miner.*, 26, 226–233.