
ORIGINAL PAPER

Deformation of lower-mantle ferropericlase (Mg,Fe)O across
the electronic spin transition

Jung-Fu Lin Æ Hans-Rudolf Wenk Æ Marco Voltolini Æ
Sergio Speziale Æ Jinfu Shu Æ Thomas S. Duffy

Received: 8 January 2009 / Accepted: 31 March 2009 / Published online: 21 April 2009

� Springer-Verlag 2009

Abstract Recent high-pressure studies have shown that

an electronic spin transition of iron in ferropericlase, an

expected major phase of Earth’s lower mantle, results in

changes in its properties, including density, incompress-

ibility, radiative thermal conductivity, electrical conduc-

tivity, and sound velocities. To understand the rheology of

ferropericlase across the spin transition, we have used in

situ radial X-ray diffraction techniques to examine ferro-

periclase, (Mg0.83,Fe0.17)O, deformed non-hydrostatically

in a diamond cell up to 81 GPa at room temperature.

Compared with recent quasi-hydrostatic studies, the range

of the spin transition is shifted by approximately 20 GPa as

a result of the presence of large differential stress in the

sample. We also observed a reduction in incompressibility

and in the unit cell volume of 3% across the spin transition.

Our radial X-ray diffraction results show that the {0 0 1}

texture is the dominant lattice preferred orientation in

ferropericlase across the spin transition and in the low-spin

state. Viscoplastic self-consistent polycrystal plasticity

simulations suggest that this preferred orientation pattern is

produced by {1 1 0}\1–10[ slip. Analyzing our radial

X-ray diffraction patterns using lattice strain theory, we

evaluated the lattice d-spacings of ferropericlase and Mo as

a function of the w angle between the compression direc-

tion and the diffracting plane normal. These analyses give

the ratio between the uniaxial stress component (t) and the

shear modulus (G) under constant stress condition, which

represents a proxy for the supported differential stress and

elastic strength. This ratio in the mixed-spin and low-spin

states is lower than what is expected from previous studies

of high-spin ferropericlase, indicating that the spin transi-

tion results in a reduced differential stress and elastic

strength along with the volume reduction. The influence of

the spin transition on the differential stress and strength of

ferropericlase is expected to be less dominant across the

wide spin transition zone at high pressure–temperature

conditions relevant to the lower mantle.
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Introduction

Earth’s lower mantle is believed to consist of approxi-

mately one-third ferropericlase [(Mg,Fe)O] and two-thirds

aluminous silicate perovskite [Al-(Mg,Fe)SiO3], together

with a few percent of calcium silicate perovskite (CaSiO3),

based on a pyrolytic compositional model (Ringwood

1982). The lattice preferred orientation and elastic
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anisotropy of this mineral assemblage are thus predomi-

nantly responsible for the development of the lower mantle

deformation and the origin of the seismic anisotropy (e.g.,

Karato 1998; Stretton et al. 2001; McNamara et al. 2002;

Merkel et al. 2002; Yamazaki and Karato 2002; Heidelbach

et al. 2003; Long et al. 2006; Tommaseo et al. 2006; Wenk

et al. 2006). Therefore, studying the lattice preferred

orientation, plastic flow and flow-induced fabrics in

ferropericlase, perovskite, and post-perovskite is of great

importance to understanding geophysics and geodynamics

of the lower mantle. Although ferropericlase constitutes

only approximately one-third of this region by volume, it

exhibits weaker creep strength and higher elastic anisotropy

than the more abundant perovskite and perhaps

post-perovskite, and likely plays important roles in the

deformation of the lower mantle. Recent texture studies of

pure MgO and high-spin ferropericlase at high pressures

indicate that the {1 1 0}\1–10[slip system (i.e., slip on the

planes {1 1 0} in the \110[ directions), dominates at

room temperature (Merkel et al. 2002; Tommaseo et al.

2006; Wenk et al. 2006), whereas at higher temperature

slip on {1 0 0} and {1 1 0} planes in the \1 1 0[ direc-

tion becomes equally active (e.g., Stretton et al. 2001).

These studies have all been performed on high-spin fer-

ropericlase or pure MgO and therefore may not reflect the

properties of ferropericlase in the mixed-spin and low-spin

states under lower mantle conditions.

Electronic spin-pairing transitions of iron have been

recently reported to occur in lower-mantle ferropericlase,

perovskite, and post-perovskite at high pressures and/or

high temperatures (e.g., Badro et al. 2003; Sturhahn et al.

2005; Persson et al. 2006; Tsuchiya et al. 2006; Fei et al.

2007; Lin et al. 2005, 2007a, 2008; McCammon et al.

2008). These studies indicate that the high-spin to low-spin

transition of iron in ferropericlase occurs at approximately

40–50 GPa and room temperature (i.e., see Lin and

Tsuchiya 2008 for a recent review). At the lower mantle

pressure–temperature conditions, a wide spin transition

zone (STZ) in ferropericlase may occur from approximately

1,000 km in depth to 2,200 km, i.e., from the top to the

bottom of the lower mantle (Lin et al. 2007a). Furthermore,

the spin transition of iron results in increased density and

incompressibility, and reduced radiative thermal conduc-

tivity and electrical conductivity from the high-spin to the

low-spin ferropericlase (Goncharov et al. 2006; Fei et al.

2007; Keppler et al. 2007; Lin et al. 2005, 2006b, 2007b,

2008; Crowhurst et al. 2008). In addition, a reduction in

sound velocities and elastic moduli of ferropericlase with

6% FeO within the transition has been recently reported,

though its elastic anisotropy factor remains high through the

transition (Crowhurst et al. 2008). To understand the effects

of the spin transition on the deformation of ferropericlase

under lower mantle pressures, we have carried out in situ

radial X-ray diffraction (RXD) of ferropericlase deformed

non-hydrostatically across the spin transition in a diamond

anvil cell (DAC) up to 81 GPa. We analyze the texture,

differential stress, and strength of ferropericlase in the

high-spin, mixed-spin, and low-spin states, and discuss the

influence of the spin transition on the deformation of

ferropericlase.

Experimental method

A beryllium gasket was pre-indented to a thickness of

25 lm using a panoramic DAC with a pair of beveled

diamonds with 150-lm inner culets and 300-lm outer

culets. A hole of 40 lm was drilled in the pre-indented

gasket and used as the sample chamber (Fig. 1). A small

flake of polycrystalline Mo, approximately 15 lm in

diameter and 2 lm in thickness, was placed into the sample

chamber and used as the pressure calibrant and X-ray

marker. Polycrystalline ferropericlase [(Mg0.83,Fe0.17)O]

sample was then loaded into the sample chamber and

compressed under non-hydrostatic conditions. The poly-

crystalline (Mg0.83,Fe0.17)O sample was synthesized by

sintering stoichiometric mixtures of MgO and Fe powder

under a controlled CO2–CO atmosphere near the iron-

wüstite buffer (Lin et al. 2005). The ferric iron (Fe3?)

content of the samples was below the detection limit of

Mössbauer spectroscopy and magnetite (Fe3O4) was not

detected in the X-ray diffraction pattern.

High-pressure RXD experiments in a DAC were con-

ducted using energy-dispersive synchrotron X-ray diffrac-

tion at beamline X17C of the National Synchrotron Light

Source (NSLS) at Brookhaven National Laboratory (BNL).

Fig. 1 Image of the ferropericlase [(Mg0.83,Fe0.17)O] sample taken in

transmitted light in a DAC at *16 GPa. A small flake of polycrys-

talline Mo was used as the pressure calibrant and X-ray marker. Be

gasket was used to contain the sample and Mo at high pressures

586 Phys Chem Minerals (2009) 36:585–592

123



A polychromatic incident X-ray beam with energy range of

approximately 22–70 keV was focused to approximately

10 lm in diameter (full width at half maximum (FWHM))

at the sample position, and a set of cleanup slits was used to

reduce the tails of the focused X-ray beam. X-ray fluo-

rescence and absorption of Mo were used to align the

sample chamber with the incident X-rays. The incident

X-ray beam passed radially through the Be gasket perpen-

dicular to the compression axis of the DAC. RXD patterns

of ferropericlase [(Mg0.83,Fe0.17)O] and Mo were detected

between 16 GPa and 81 GPa by a Ge solid-state detector at

a 2h of 128 (Fig. 2) (Singh et al. 1998). At each pressure,

RXD patterns were collected as a function of the angle (w)

between the diffracting plane normal and the stress axis of

the DAC at angular intervals of approximately 10�–15� for

about 20–30 min each. The w angle is defined as 0� when

the diffracting plane normal is parallel to the stress axis of

the DAC, and 90� when the diffracting plane normal is

perpendicular to the stress axis.

The d-spacings of the X-ray diffraction peaks were

obtained by fitting Voigt line shapes to the diffraction

spectra after background subtraction. For Mo, five dif-

fraction lines (110, 200, 211, 220, and 310) were used for

the analyses, while six diffraction lines of ferropericlase

(111, 200, 220, 311, 222, and 400) were used. The corre-

sponding equivalent hydrostatic pressures were determined

from the lattice parameters of Mo obtained from the

measured d-spacings at w of 54.7� (Singh et al. 1998;

Duffy et al. 1999), using the equation of state (EoS) of Mo

by Hixson and Fritz (1992). Errors on pressures were cal-

culated from the standard variation of the d-spacings of

Mo.

Results

Seven sets of the RXD patterns of polycrystalline ferro-

periclase [(Mg0.83,Fe0.17)O] and Mo have been collected at

16.5, 45.2, 51.6, 56.6, 62.5, 68.4, and 81.3 GPa as a

function of the w angle. The unit cell volumes of ferro-

periclase were calculated using the radial X-ray diffraction

patterns at the w angle of 54.7� where the compression

condition was equivalent to hydrostatic based on the lattice

strain theory (Fig. 3) (Singh et al. 1998). The unit cell

volumes of ferropericlase at the w angle of 54.7� are sys-

tematically higher than those under quasi-hydrostatic con-

ditions between 45 and 68 GPa, but become consistent

with those of low-spin ferropericlase and pure MgO at

81 GPa (Fig. 3, 4) (Speziale et al. 2001; Lin et al. 2005; Fei

et al. 2007), indicating the occurrence of the mixed-spin

states between 45 and 68 GPa and the low-spin state at

81 GPa.

We used the Rietveld method that relies on the full

diffraction spectrum and applied the E-WIMV texture

algorithm in the Rietveld code MAUD to calculate orien-

tation distributions (Lutterotti et al. 1997). The orientation

distributions were then exported, smoothed, and used in the

Beartex code (Wenk et al. 1998) to calculate inverse pole

figures that represent the probability of finding crystal

directions parallel to the compression direction in ferro-

periclase (Fig. 5). A moderate texture develops at 16 GPa

and strengthens with increasing pressure. All inverse pole

figures above 45 GPa show a main maximum at 0 0 1, with

a subsidiary 0 1 1 maximum developing. These texture

patterns are consistent with predominantly {1 1 0}\1–10[
slip (e.g., Stretton et al. 2001; Merkel et al. 2002; Tommaseo

et al. 2006), and the slip systems do not change across the

spin transition in ferropericlase (Fig. 5).

Fig. 2 Representative RXD patterns of ferropericlase [(Mg0.83,

Fe0.17)O] at 81.3 (±2.0) GPa as a function of the w angle. fp
ferropericlase; Mo molybdenum pressure marker. Errors on pressures

are calculated from the standard deviation of the d-spacings of Mo.

Ferropericlase remains in the cubic rock-salt structure under non-

hydrostatic condition up to 81 GPa. The strong intensity variations in

ferropericlase with w immediately indicate preferred orientation. For

example, the intensity of the 1 1 1 diffraction line of ferropericlase is

almost zero at w = 08 and has a maximum at w = 54.78. Also Mo is

strongly textured. These spectra, over a d-spacing range from 1.0 to

2.5 Å that includes six diffraction lines of ferropericlase, were used

for analyzing the texture, EoS, differential stress, and strength of

ferropericlase across the spin transition

Phys Chem Minerals (2009) 36:585–592 587
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Discussion

Volume reduction and equation of state (EoS) across

the spin transition

Compared with the quasi-hydrostatic compression (Lin

et al. 2005), the range of the spin transition is shifted by

approximately 20 GPa under non-hydrostatic compression

likely as a result of the presence of large differential stress

in the sample (Fig. 3). Recent reports of the width of the

spin transition in ferropericlase vary significantly from a

narrow width in a synchrotron Mössbauer study (Lin et al.

2006a) to a very wide range in a conventional Mössbauer

study (Kantor et al. 2006). Our observation of the extension

of the spin transition width under non-hydrostatic com-

pression may help explain this discrepancy (Lin et al. 2005,

2006a; Gavriliuk et al. 2006; Kantor et al. 2006; Speziale

et al. 2007). Using the EoS of the high-spin ferropericlase

from the quasi-hydrostatic study as a reference, the density

variation of ferropericlase across the spin transition shows

a 3% increase (Fig. 3b).

On the basis of the thermodynamic definition and the

finite-strain theory using the third-order Birch–Murnaghan

EoS (Birch 1986), we have calculated isothermal bulk

modulus (KT) and bulk sound velocity (VU) of ferroperi-

clase [(Mg0.83,Fe0.17)O] across the spin transition under

quasi-hydrostatic condition (in Ne medium; Lin et al. 2005)

and non-hydrostatic condition, respectively (Fig. 4). The

bulk modulus (KT) is defined thermodynamically as:

KT ¼ �V
dP

dV
¼ � dP

d ln V
ð1Þ

where P is pressure and V is volume. The bulk sound

velocity (VU) is defined as:

VU ¼
ffiffiffiffiffiffi

KS

q

s

ð2Þ

where q is the density and Ks is the adiabatic bulk modulus.

The difference between the isothermal and adiabatic bulk

moduli was neglected for simplicity. Here the K0T for the

high-spin state in the Ne medium alone is 149.7

(±3.7) GPa with a K0T’ of 4.55 (±0.21), when fitted to the

Fig. 3 Unit cell volume (a) and volume difference (b) of

(Mg0.83,Fe0.17)O across the spin transition. Our non-hydrostatic

results (blue solid symbols) are compared with a previous study

under quasi-hydrostatic condition using Ne pressure medium (red
open symbols) (Lin et al. 2005)

Fig. 4 Isothermal bulk modulus (KT) (a) and bulk sound velocity

(VU) (b) of ferropericlase [(Mg0.83,Fe0.17)O] across the spin transition

under high pressures. Red lines, KT and VU derived from data in the

Ne pressure medium (Lin et al. 2005); blue lines, KT and VU derived

from this study (non-hydrostatic conditions); open circles: VU of

(Mg0.94,Fe0.06)O by Crowhurst et al. (2008). Blue and red dashed

lines represent the average of the separate KT and VU of the high-spin

and low-spin states. Variation in KT and VU within the transition

under non-hydrostatic conditions cannot be as well constrained as that

in the Ne medium because of the limited available data
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experimental data up to 40 GPa based on our current

understanding of the spin transition range (Lin et al. 2005;

Speziale et al. 2007). The K0T for the low-spin ferroperi-

clase is 205 (±16) GPa with V0LS/V0HS of 0.936 (±0.067)

and an assumed K0T’ of 4, which is derived from fitting the

experimental data above 61 GPa (Lin et al. 2005). Because

of the limited data under non-hydrostatic condition, the KT

of the low-spin state is assumed the same as that in the Ne

medium, and variation in KT within the transition cannot be

as well constrained as that in the Ne medium. A significant

reduction in the KT and VU occurs within the spin transition

(Fig. 4), consistent with a recent high-pressure elasticity

study of ferropericlase with 6% FeO (Crowhurst et al.

2008).

Analyses of the stress and elastic strength

of ferropericlase

Using our RXD data and lattice strain theory (Singh et al.

1998; Mao et al. 2008), we have evaluated the 6\Q(hkl)[
(=t/G) value, the ratio between the differential stress (t) and

the shear modulus(G) under constant stress conditions,

which represents a proxy for the elastic strength of

ferropericlase (Fig. 6) (Singh et al. 1998). The lattice strain

theory described above considers the elastic deformation of

the sample but does not account for texture and plastic

anisotropy (Weidner et al. 2004; Chen et al. 2006). The

analysis here assumes that the sample is predominantly

subjected to differential stress conditions. The d-spacings

of the ferropericlase and Mo were obtained from the RXD

peaks and plotted a function of the w angle between the

compression direction and the diffracting plane normal

according to the relation (e.g., Singh et al. 1998; Duffy

et al. 1999; Shieh et al. 2004; Mao et al. 2008):

dm hklð Þ ¼ dP hklð Þ 1þ 1� 3 cos2 w
� �

Q hklð Þ
�

; ð3Þ

where dm(hkl) is the measured d-spacing and dP(hkl) is the

d-spacing under the corresponding hydrostatic stress at w
of 54.7�. Q(hkl) is given by:

QðhklÞ ¼ t

3

a
2GRðhklÞ þ

1� a
2GV

� �

ð4Þ

where GR(hkl) and GV are the aggregate shear modulus for

the crystallites contributing the diffracted intensity under

the approximations of constant stress (Reuss bound, GR)

and constant strain (Voigt bound, GV), respectively, and t is

Fig. 5 Inverse pole figures of

the compression direction for

(Mg0.83,Fe0.17)O at high

pressures in equal area

projection. Pole densities are

given in multiples of random

distribution (m.r.d.). The

experimental inverse pole

figures with maximum pole

density indicated are followed

by a plasticity simulation. In the

simulation, 2,000 grains were

compressed to 100% equivalent

strain in 100 increments.

Critical shear stresses were

assigned to slip systems

corresponding to low

temperature deformation, i.e.,

{1 1 0}\1–10[ with 1.0,

{1 1 1}\1–10[ with 2.5 and

{1 0 0}\1–10[ with 3.0 and a

stress exponent n = 9. On the

average 5 slip systems were

active in each grain. Most

deformation occurred on {110}

systems ([90%) and much less

on {1 1 1} and {1 0 0} systems

(\5% each)
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the differential stress, the stress difference between the

principle components of the stress field, maximum stress

(r3) and minimum stress (r1). The parameter a, which

varies between 0 and 1, determines the degree of stress and

strain continuity across grains in the sample. When constant

stress is assumed (a = 1), equation (4) is simplified to:

6\QðhklÞ[ ¼ t

GRðhklÞ ð5Þ

where \Q(hkl)[ represents the average Q(hkl) value over

all observed reflections as determined from equation (3).

Previous studies showed that the plastic anisotropy can

have an influence on the interpretation of the RXD data

using the lattice strain theory (Li et al. 2004; Weidner et al.

2004; Chen et al. 2006; Merkel 2006). That is, the plastic

deformation of ferropericlase under uniaxial compression

across the spin transition remains to be further investigated

and the absolute values of the stress and strength of

ferropericlase should be further studied by taking the tex-

ture, plasticity, grain size, and total stress/strain into

consideration.

The general trend of the derived 6\Q(hkl)[ values is

lower in the mixed-spin states between 51 and 68 GPa and

in the low-spin state at 81 GPa than that of the extrapolated

high-spin state, although the values exhibit relatively large

uncertainties. The high-spin to low-spin transition causes a

density increase of about 3% as shown in Fig. 3b which

would allow the sample to relax and accommodate to the

extrinsic stress field, resulting in a reduced differential

stress and 6\Q(hkl)[ (=t/G) value. This phenomenon of

the reduced differential stress has been observed across

structural transformations from olivine to ringwoodite,

ringwoodite to perovskite and periclase, and stishovite to

CaCl2-typed structure in SiO2 (Uchida et al. 1995; Shieh

et al. 2004).

Examination of the 6\Q(hkl)[of Mo shows a reduction

at similar pressures, indicating that the reduced differential

stress propagated through both Mo and ferropericlase in the

sample chamber (Fig. 6b). Knowing that Mo does not

undergo any phase transition at such pressures (Hixson and

Fritz 1992; Duffy et al. 1999) and that the shear modulus of

ferropericlase is reduced within the spin transition pressure

range (Crowhurst et al. 2008), the decrease in the

6\Q(hkl)[can thus be attributed to the reduced differential

stress field through the volume reduction across the spin

transition in ferropericlase (Fig. 6). The drastic reduction

of the differential stress supported by ferropericlase in the

mixed-spin and the low-spin states indicates that the

strength of this mineral decreases across the spin transition.

Thus the low-spin ferropericlase should exhibit lower

strength than what is expected by extrapolation of the high-

spin state. The effect of the spin transition on the differ-

ential stress of ferropericlase should be less dominant

across the wide spin transition zone in the lower mantle

(Sturhahn et al. 2005; Tsuchiya et al. 2006; Lin et al.

2007a), making this phenomenon less important in geo-

physical implications.

Texture across the spin transition in ferropericlase

Our RXD results show that the {0 0 1} texture is the

dominant lattice preferred orientation across the spin

transition in ferropericlase at high pressures and room

temperature (Fig. 5). Our viscoplastic self-consistent

polycrystal plasticity simulations (Lebensohn and Tomé

1993) produce texture patterns with dominant {1 1 0}\1–

10[ slip that are similar to the experimental observations

(Fig. 5) and we infer that this is the main active slip system

in the mixed-spin and low-spin states at lower mantle

pressures and room temperature. Since the slip system does

not change across the spin transition, it is likely that the

spin transition would not effect the lattice preferred ori-

entation in ferropericlase over a wide range of pressure–

temperature conditions of the lower mantle. Deformation

Fig. 6 Averaged 6\Q(hkl)[of (a) (Mg0.83,Fe0.17)O and (b) Mo as a

function of pressure. The errors on 6\Q(hkl)[are calculated from the

standard deviation of all Q(hkl) values, which are derived from the

d(hkl) and 1–3cos2w relation (Singh et al. 1998). The value of

6\Q(hkl)[ is reduced significantly in the mixed-spin and low-spin

ferropericlase (Fig. 3, 4). The relatively smaller error bar at 55 GPa is

likely a result of the volume reduction associated with the spin

transition, which results in a relatively more hydrostatic condition
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mechanisms at relevant high temperatures and low stresses

of the lower mantle, however, may be different and dif-

fusive mechanisms may play an important role in the

deformation (Karato 2008).

Conclusions

We have carried out in situ radial X-ray diffraction of

ferropericlase deformed non-hydrostatically in a diamond

cell up to 81 GPa at room temperature in order to under-

stand the texture and deformation of ferropericlase across

the spin transition. Compared with recent quasi-hydrostatic

studies, an increase in the density of 3% and a decrease in

incompressibility has been observed within the spin tran-

sition, while the spin transition range is shifted by

approximately 20 GPa as a result of the difference in dif-

ferential stress in the sample. Analyses of our XRD results

show that the {0 0 1} texture is the dominant lattice

preferred orientation in ferropericlase across the spin

transition and in the low-spin state. Our viscoplastic self-

consistent polycrystal plasticity simulations indicate that

{1 1 0}\1–10[ is the dominant slip system across the spin

transition in ferropericlase. The 6\Q(hkl)[ (=t/G) values

of ferropericlase in the mixed-spin and low-spin states are

lower than what is expected by studying high-spin ferro-

periclase, indicating that the spin transition results in a

reduced differential stress as a result of the volume

reduction.

Earlier measurements on the rheological properties of

ferropericlase under high pressures and/or high tempera-

tures have been used to constrain the deformation and

fabric development of ferropericlase in the lower mantle;

however, these studies were limited to the high-spin fer-

ropericlase at pressure–temperature conditions lower than

that of the lower mantle (e.g., Stretton et al. 2001; Yamazaki

and Karato 2002; Heidelbach et al. 2003; Long et al. 2006;

Tommaseo et al. 2006). Our results extend the pressure

range across the spin transition, and show that the differ-

ential stress and elastic strength of ferropericlase are

significantly reduced within the spin transition and in the

low-spin ferropericlase. The influence of the spin transition

on the relaxation of the differential stress in ferropericlase

is expected to be less dominant across the spin transition

zone in the lower mantle. Future studies on the deformation

mechanisms across the spin transition under relevant

lower-mantle pressure–temperature-stress conditions are

needed to further enhance our understanding of the lower

mantle rheology.
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