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Late Campanian through Maastrichtian sea-level changes are examined based on lithology, macrofossils and benthic
foraminifera at the Elles and El Kef sections in Twunisia. Six major sea-level regressions are identified during the late
Campanian (74.4-74.2 Ma, 74.0-72.5 Ma), the Campanian-Maastrichtian transition (72.2-70.3 Ma), early Maastrichtian
(69.6-69.3 Ma, 68.9-68.3 Ma), and late Maastrichtian (~65.5 Ma). Correlation of the Maastrichtian sea-level regressions
with the oxygen isotope record of DSDP Site 525 in the middle latitude South Atlantic reveals that they coincide with

episodes of high latitude cooling and appear to be of ecustatic origin.
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1. Introduction

Lithological variations are generally indicative of
environmental changes, with faunas providing more
specific information on the nature and tempo of these
changes. One of the most commonly used faunal
indicators for sea-level changes are benthic foraminif-
era and invertebrate faunas which live abundantly on
the ocean floor of shelf (0-200 m) and upper slope
(200-600 m) regions. Benthic foraminifera are gener-
ally used to infer palacodepths (shelf, slope or bathyal
depths) and consequently to infer relative sea-level
changes (Sliter & Baker, 1972; Aubert & Berggren,
1976; Haig, 1979; Ingle, 1980; Van Morkhoven ¢t al.,
1986; Keller, 1988, 1992; Widmark & Malmgren,
1988; Koutsoukos & Hart, 1990; Corliss & Emerson,
1990; Corliss, 1991; Kaiho, 1994; Speijer, 1994;
Widmark, 1995; Speijer & Van Der Zwaan, 1996;
Pardo et al., 1996). Such palaeodepth inferences,
based on upper depth limits of benthic foraminiferal
species, are generally based on the assumption that
foraminifera are only transported downslope and do
not migrate upslope. However, it is also well known
that benthic foraminiferal species change their upper
and/or lower depth ranges, as well as their depths of
maximum abundances, with changing bottom water
conditions, including organic matter influx, that
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accompany a rise or drop in sea-level (Douglas, 1979;
Ingle, 1980; Douglas & Woodruff, 1981; Tjalsma
& Lohmann, 1983; Miller & Katz, 1987; Kurihara
& Kennett, 1988; Thomas, 1990; Hermelin &
Shimmield, 1990; Corliss & Emerson, 1990; Corliss,
1991; Gooday, 1993; Kaiho, 1994; Speijer, 1994).
Consequently, benthic foraminiferal faunas provide
important clues to relative changes in sea-level,
oxygen, salinity and nutrient conditions.

A number of studies have examined benthic
foraminiferal turnovers in the Tethys region, including
Tunisia, during the Cretaceous-Tertiary (K-T)
boundary transition and into the Paleocene (e.g.,
Aubert & Berggren, 1976; Luger, 1985; Keller, 1988,
1992; Speijer, 1994; Coccioni & Galeotti, 1994,
1998; Pardo et al., 1996). Most of these studies have
attributed the K-T faunal turnover to a combination
of sea-level and climatic changes, oxygen depletion,
and possibly the effects of a bolide impact. Few
studies have examined palacoenvironmental con-
ditions preceding the K-T boundary event during the
late Campanian and Maastrichtian in the Tethys
region, though published studies on pollen, ostracods
and planktic foraminifera for this interval at El Kef all
indicate major faunal and floral turnovers well before
the K-T boundary event. For instance, Méon’s (1990)
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Figure 1. Late Cretaceous palaeogeography of Tunisia and
locations of the El Kef and Elles sections (modified
after Burollet, 1967, and Peypouquet ez al., 1986).

study of pollen at El Kef revealed a major floral
turnover through the middle and late Maastrichtian
with gradually decreasing diversity indicating climatic
cooling. Studies on ostracods for the same interval at
El Kef by Donze et al. (1985) and Peypouquet er al.
(1986) revealed a major faunal turnover in the
Gansserina gansseri Zone. A recent study on planktic
foraminifera parallels this pattern, suggesting that
major environmental changes occurred through the
Maastrichtian in the southwestern Tethys (Li &
Keller, 1998b).

In this study, we examine the late Campanian and
Maastrichtian sea-level fluctuations at Elles and El
Kef in northwestern Tunisia based on lithological
variations, macrofossils and benthic foraminiferal
assemblages. We then correlate the observed sea-level
changes with the §'®0 record of DSDP Site 525 in the
middle latitude South Atlantic in order to determine
the relationship, if any, between global cooling and
sea-level regressions in the southwestern Tethys.

2. Material and methods
Samples

The El Kef section is located about 7 km west of the
town of El Kef in northwestern Tunisia (Figure 1).
Maastrichtian and Campanian sediments crop out

along valleys about 1 km from the road to Hamman
Mellégue. The Elles section is located about 75 km
southeast of El Kef near the hamlet of Elles, where a
continuous sequence of Campanian, Maastrichtian
and Palaeogene sediments is exposed along a valley.
During the late Campanian to Maastrichtian sediment
deposition at El Kef occurred in outer shelf to upper
slope environments, and at Elles in somewhat shal-
lower middle-outer shelf to outer slope environments
(Peypouquet er al., 1986; Figure 1). Sedimentary
sequences spanning the upper Campanian through
the Maastrichtian were sampled at both El Kef and
Elles. At El Kef, the Maastrichtian interval consists of
grey marly shales that are cut by two local faults at
10 m and 22 m below the K-T boundary where an
unknown interval is missing (Figure 2). The upper
Campanian consists of thick limestone beds followed
by marls interlayered with limestone layers. In one
interval, grey marly shales partly covered by vegetation
and a slump covers about five metres of the section
(53.4-48.5 m, Figure 2). A total of 47 samples were
collected from the upper Campanian-Maastrichtian
interval.

The discontinuous exposure at El Kef necessitated
collecting this interval at Elles. At this location the
sedimentary sequence is similar to that at El Kef and
continuously exposed. The upper Campanian interval
consists of thick limestone beds interlayered with thin
marls. This interval is overlain by 10 m of marly shales
followed by marls interlayered with limestones (Figure
2). A total of 21 samples were analyzed from this
interval.

Methods

In the field, the limestone and marl layers were
examined for macrofaunas and bioturbation and their
stratigraphic position noted. Limestone/marl contacts
were carefully examined for evidence of hardground,
bioturbation and erosion. In the laboratory, thin sec-
tions were made of all limestone and hard resistant
marl layers to search for further evidence of inverte-
brate fossils, and the sedimentological composition
was examined. For benthic and planktic foraminiferal
analyses, sediment samples were disaggregated by
soaking in water for several days and then washed
through a 63 um sieve with tap water. Sediment
infilling of foraminiferal tests was removed by
repeated sonic agitation of the residues for about
15 seconds.

Benthic foraminifera were quantitatively analyzed
for El Kef and qualitatively for Elles. Benthic
foraminiferal species at El Kef were picked from
representative sample splits of 300-500 specimens,
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Figure 2. Lithological variations, macrofaunas and inferred sea-level changes at El Kef and Elles during the late Campanian
through Maastrichtian. Planktic foraminiferal zonation from Li & Keller (1998a, b) with subdivision of Zone CF8 into

CF8a and CF8b.

identified and mounted on microslides for a perma-
nent record. For Elles, a representative split of 300—
500 specimens was examined and a census taken of
species present which were mounted on microslides
for identification and permanent record. The quali-
tative abundance of species was noted as abundant,
>10%; common, 5-10%; few, 2-5%; and rare, <2%.
For both Elles and El Kef samples, the remaining
residue from each sample was searched for rare
species and these were added to the picked slides.
Species identifications were primarily based on the
studies of Sliter (1968), Aubert & Berggren (1976),
Van Morkhoven et al. (1986), Keller (1988, 1992),
Bolli er al. (1994), and Speijer (1994). Over 128
benthic foraminiferal species were identified at
Elles and El Kef. The relative abundances and
occurrences of all species which are present in more
than two samples are listed in Table 1 for El Kef.
However, all species from the sample splits and the

rare species subsequently added from the residue
searches were included in calculating the species
richness.

3. Biostratigraphy

The biostratigraphy and correlation of the Elles and El
Kef sections is based on a refined high resolution
planktic foraminiferal zonation which was developed
based on DSDP Site 525 and its palaeomagnetic
timescale and applied to the Tunisian sections (Li &
Keller, 1998a, b) as shown in Figure 3. This biozona-
tion is similar to the zonations by Caron (1985) and
Nederbragt (1991), except that the interval encom-
passed by the two late Maastrichtian zones, Abathom-
phalus mayaroensis, or Racemiguembelina fructicosa
of Nederbragt (1991), and Gansserina gansseri is
subdivided into seven biozones (CF1-7), and the
Globotruncana aegypriaca Zone is subdivided into
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Figure 3. Integrated microfossil and ammonite zonation for the late Campanian and Maastrichtian intervals. The Tunisian
El Kef and Elles sections are correlated with DSDP Site 525 and its geomagnetic polarity time scale based on planktic
foraminiferal biostratigraphy (see Li & Keller, 1998a, b). Note the differences in the position of the Campanian-
Maastrichtian and early-late Maastrichtian boundaries in the various zonal schemes. In this study, we follow Gradstein
et al. (1995) in the placement of the Campanian-Maastrichtian boundary.

two subzones (CF8a and CF8b) to yield a higher
resolution time control.

Numeric ages are generally estimated based on the
geomagnetic time scale, or where this information is
not available, such as at El Kef and Elles, on biostrati-
graphic correlation. In this study, numeric ages of
Zones CF2 to CF10 for the Tunisian sections were
extrapolated based on correlation of planktic
foraminiferal datum events with DSDP Site 525 in
the South Atlantic which contains an excellent
palacomagnetic record (Li & Keller, 1998a) and the
revised time scale of Cande & Kent (1995). However,
Zone CF1 was not recognized at Site 525 because
of the absence of the low latitude index species
Plummerita hantkeninoides. For this reason, the age for
Zone CF1 was determined from magnetostratigraphy
at Agost, Spain (Groot er al., 1989; Pardo et al.,
1996).

Note that these biozone age estimates are for the
duration of each biozone. We were unable to estimate
the missing intervals at two fault zones within CF3
and near the CF5-CF4 transition, and at two hiatuses
at the CF8a/b boundary and within Zone CF10

(Figure 2). In addition, extrapolating ages based on
biostratigraphic correlation may result in age un-
certainties because of potentially diachronous datum
events in different ecosystems. Thus, our age assign-
ments for the Tunisian sections are best estimates
which need to be further evaluated for potential
diachroneity of the datum events in different geo-
graphic regions. However, despite these uncertainties,
the extrapolated age estimates provide a reasonable
time control for the Maastrichtian to late Campanian
interval in this region until palacomagnetic studies are
forthcoming.

The Campanian-Maastrichtian boundary

The Campanian-Maastrichtian boundary has not
been formally defined, though various proposals have
been made. For example, at the IGCP meeting on this
Cretaceous Stage Boundary in Brussels (August,
1995), a section at Tercis near Dax in Aquitaine,
southwestern France, was proposed as a possible new
boundary stratotype (Odin, 1996) with the first
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appearance (FA) of the ammonite Pachydiscus neuber-
gicus as the boundary marker. However, Gradstein
et al. (1995) proposed that the Campanian-
Maastrichtian boundary be placed at the top of the
Baculites jenseni ammonite Zone, or possibly the over-
lying B. eliasi Zone based on macrofossil and stron-
tium isotope correlations between the Kronsmoor
section of Germany, the English Chalk and the United
States Western Interior (see Kennedy er al., 1992;
MacArthur er al., 1993). Based on linear interpolation
between K/Ar ages of two bentonites at 70.1 £ 0.7 Ma
and 73.2+0.7 Ma, Gradstein e al. (1995,
p. 102) estimated an age of 71.6 + 0.7 Ma for the
Campanian-Maastrichtian Stage boundary.

No studies are known to us that correlate either the
P. neubergicus FA or the B. jenseni Zone to the planktic
foraminiferal datum events and biozonation within the
same section, though informal reports suggest that the
FA of P. neubergicus and the B. jenseni Zone predate
the FA of Gansserina gansseri and postdate the LA
of Globotruncanita calcarata. Microfossil workers,
however, have generally placed the Campanian-
Maastrichtian boundary at the top of the G. calcarata
Zone (e.g., Robaszynski ez al., 1983—1984; Bralower
et al., 1995; Li & Keller, 1998a, b). However, an
informal correlation can be made between the age for
the Campanian-Maastrichtian boundary estimated
at 71.6 £ 0.7 Ma and at the base of C32N.ln
(71.3 £ 0.7 Ma) by Gradstein er al. (1995, pp. 102,
110). This interval corresponds to within the upper
G. aegypriaca Zone and near the first appearance of
the planktic foraminifera Rugoglobigerina hexacamerata
and Planoglobulina carseyae which subdivide this zone
into two Subzones CF8a and CF8b. In this study
we informally use the planktic foraminiferal datum of
R. hexacamerata at 71 Ma for the Campanian-
Maastrichtian boundary based on biostratigraphic
correlation with the geomagnetic time scale at DSDP
Site 525. This datum event is within the range of
Gradstein et al.’s estimate of 71.6 £ 0.7 Ma for this
boundary (Figure 3).

The Early-Late Maastrichtian boundary

At the Brussels meeting it was recommended that
the Maastrichtian stage be formally divided into two
substages (early and late), although there was no
agreement on the boundary-criterion for the base of
the late Maastrichtian (Odin, 1996, p. 115). Planktic
foraminiferal workers have generally placed the early-
late Maastrichtian boundary at the FA of G. gansser:
(Robaszynski er al., 1983-84; Caron, 1985; Li &
Keller, 1998a, b), or at the FA of A. mayaroensis or
R. fructicosa (Boersma, 1984; Nederbragt, 1991).

However, A. mayaroensis is a poor biostratigraphic
marker because this species, which is known to be
diachronous (Keller, 1989; Huber, 1990; Pardo er al.,
1996), appears much earlier in high latitudes and is
rare or absent in neritic environments. Gradstein
et al. (1995, p.110) proposed that the early-late
Maastrichtian boundary be placed at 69.5 Ma within
the upper part of C31R. This interval corresponds to
the first appearance of Rosita contusa at DSDP Site
525 which marks the base of Zone CF6 (Figure 3; Li
& Keller, 1998a). In contrast, Bralower ez al. (1995)
proposed that this boundary be placed at the base of
C30N, which corresponds to within the middle of
Zone CF4 (R. fructicosa Zone) at about 67.6 Ma
(Figure 3). In this study we informally use the first
appearance of R. fructicosa to approximate the early-
late Maastrichtian boundary at 68.3 Ma based on
biostratigraphic correlation with the geomagnetic time
scale at DSDP Site 525.

4. Lithology, macrofauna and inferred sea-level
changes

During the late Campanian and early Maastrichtian,
sediment deposition at Elles and El Kef varied
between upper slope (>250 m) and middle to outer
shelf depths (~100-250m), as indicated by
limestone/marl deposition with limestones rich in
macrofaunas and marls rich in benthic foraminifera
(Figure 4A). In the upper Campanian interval (0—
5 m), sediments consist of alternating 20—60-cm-thick
layers of white marls and white marly limestones
which are fissile near the base. At El Kef a thick
limestone bed marks the top of this interval, and the
overlying marl is covered by vegetation. Macrofossils
are common, particularly in the limestone layers.
Inoceramids were commonly observed in the field, as
well as two species of irregular echinoids (Stegaster
altus and S. chalmest) and a fragment of Diplomoceras,
an ammonite known worldwide to range from the
Campanian to Maastrichtian. Trace fossils, such as
large Cancellophycos (up to 1 m), are abundant.

The surface of the limestone layer at 5 m at Elles is
a hardground (foreground surface in Figure 4A) as
suggested by the presence of abundant inoceramids,
Stegaster and wood fragments as well as an ichnofauna
that consists of horizontal Ophiomorpha with large
(~3 cm diameter) branching tubes, some Rhizocoral-
lium, and unspecified small vertical tubes filled with
dark marl from the overlying sediments. Although
Ophiomorpha is most commonly observed in inner
shelf environments, these taxa are also present in
middle shelf to slope and deep basin environments
(Ekdale, 1988; Bottjer & Droser, 1992). Ophiomorpha
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are common in late Cretaceous shelf and slope
environments of northeastern Mexico and Tunisia
(Stinnesbeck er al., 1996; Keller ez al., 1997).

In the Tunisian sections, the hardground, wood
fragments, invertebrate abundance and trace fossils
(including Ophiomorpha) all suggest that the sea floor
was consolidated, or even semi-lithified, prior to
deposition of the overlying sediments and hence indi-
cates a period of non-deposition and/or erosion during
a sea-level lowstand (Figures 3, 4A). Based on plank-
tic foraminifera, this hardground surface occurs within
the G. calcarata Zone.

The hardground surface marks a major sedimento-
logical change from the white marls and marly lime-
stones below to the blue-grey fissile marly shale above
which contains several resistant layers of yellow marly
limestones, which suggests a higher, though fluctuat-
ing sea-level (Figure 4A). Macrofaunas are scarce in
the marly shales, except for irregular echinoids. We
collected several well preserved specimens of Stegaster
cf. guilleri, Micraster, spatangoids and holectypoids,
and noted impressions of Inoceramus near the base of
the unit. The last inoceramids were observed in a
couplet of marly limestone layers at 9.7 m. These
resistant limestone layers suggest a sea-level lowstand
near the top of Zone CF10.

Up-section (between 10 and 20 m in biozone CF9-
CF8, Figure 4B), sediments grade into grey marly
shales which are increasingly fissile towards the top
and suggest deeper waters, as also indicated by the
presence of rare macrofossils. Trace fossils are also
rare, possibly because the shales do not allow good
preservation. Between 21 and 25.5 m in Zone CF8a
(G. aegypriaca), five individual limestone layers are
present, each about 20 cm thick (Figure 4B). Micro-
facies studies of these limestone layers indicate that
they are wackestones, similar to those in the lower part
of the section, with abundant planktic and rare ben-
thic foraminifers, echinoids and fragments of molluscs
(e.g., small gastropods). We observed several speci-
mens of Zoophycos in the marls, and Zoophycos and
Ophiomorpha in the uppermost marly limestone layer
(25.5 m). Truncation of Ophiomorpha burrows sug-
gests the presence of a hiatus between the last marly
limestone and overlying marly shales. We interpret
this interval as a sea-level lowstand accompanied by
erosion.

Between 25.5 and 36 m at Elles, sediments consist
of grey shales and two resistant marly limestones near
the top. Trace fossils are rare and no macrofossils
were observed other than rare echinoids. Planktic
foraminiferal correlations between Elles and El Kef
indicate that the upper part of this interval corre-
sponds to the base of Zone CF8a (R. hexacamerata).

At El Kef, the base of Zone CF8a (R. hexacamerata)
is in a grey marl layer at 50.7 m immediately below a
thin marly limestone layer. Above this interval are
three limestone layers separated by thin grey marls.
Note that the absence of these marly limestone layers
in CF8a at Elles suggests erosion, whereas the absence
of the marly limestone layers in CF8b at El Kef may
be due to erosion and/or lack of sediment exposure
(interval covered by slump, Figure 2). Alternatively,
the first appearance of R. hexacamerata may be dia-
chronous. We interpret the marly limestone layers
within CF8a at El Kef to correlate to a sea-level
lowstand and the hiatus surface at Elles (Figure 2).

A slump covers the interval between 43 and 47 m
and the exposed sediments overlying the slump (38—
43 m) consist of alternating grey marls and marly
limestones. Macrofossils are generally rare and
restricted to the limestone layers, which contain rare
inoceramids, very rare Diplomoceras, mollusks and
common trace fossils (e.g., Zoophycos). The last am-
monite (Diplomoceras) and inoceramids were observed
in this interval at El Kef (Figure 2). The earlier
disappearance of inoceramids and ammonites at Elles
(at 9.7 m Zone CF9/10), as compared with El Kef
(CF7), is probably owing to preservation, rarity of
fossils, or the shallower depth of the Elles section.
Above the last limestone layer at El Kef, five
new planktic foraminiferal species suddenly appear
(Abathomphalus intermedius, Globigerinelloides volutus,
G. yaucoensis, Rosita plicata and R. walfischensis; Li &
Keller, 1998b) and suggest the presence of a con-
densed interval or short hiatus. Based on the presence
of the macrofossils and microfossils, we interpret this
sequence of limestone/marl layers as representing a
lower sea-level followed by a hiatus at the top of the
last limestone layer (first appearance of five species).

Up-section, El Kef consists of monotonous grey
shales with rare trace fossils. Two local faults are
present at 22 m and 11 m, and several metres may be
missing at these fault zones. Though these shales

Figure 4. A, Late Campanian at Elles. Note the flat surface in foreground is a hardground with abundant inoceramids,
Stegaster, wood fragments, Ophiomorpha with large (3 cm diameter) branching tubes and Rhizocorallium. This
hardground surface marks a period of non-deposition and/or erosion during a sea-level low. B, Campanian-
Maastrichtian transition at Elles. This boundary is placed at the top of a series of five thin limestone layers. It is marked
by a hiatus, as indicated by the truncation of Ophiomorpha burrows.
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suggest a higher sea-level than in the underlying
marl/limestone layers, the near absence of macrofossil,
prevents a more detailed interpretation.

5. Benthic foraminifera and inferred sea-level
changes

Benthic foraminifera are commonly used as palaeo-
depth indicators though there is little agreement
among workers as to the depth ranges of many
species. The disagreement is partly due to the fact that
species are not limited by depth per se, but probably by
characteristics of particular water masses. In addition,
downslope transport artificially extends the range of
shell species into bathyal depths. Despite these prob-
lems, various species and species associations can be
reliably used to infer the relative palaeodepth of
deposition, especially within shelf-slope depositional
environments where sedimentological parameters
and macrofossils provide additional palaeodepth
indicators for erosion and sea-level fluctuations.

In this study we have used the upper depth limits of
benthic foraminiferal species as employed by many
workers (e.g., Sliter, 1968; Sliter & Baker, 1972;
Aubert & Berggren, 1976; Douglas, 1979; Ingle,
1980; Van Morkhoven ez al., 1986; Berggren & Miller,
1989; Bolli er al., 1994) including application to
sequence stratigraphy (Armentrout ez al., 1991, 1993,
1997). Based on these studies, we have grouped the
species into middle neritic, outer neritic and outer
neritic-bathyal depths (Figures 5, 6). Most species
interpreted as middle and outer neritic dwellers are
common to abundant and mostly continuously
present in the studied sections. In contrast, species
grouped as outer neritic-bathyal have low abundances
and decrease in species richness up-section (Figures 5,
6), which indicates a strong environmental signal. We
therefore use this subset of the benthic assemblage to
infer sea-level changes.

Although by using this small and relatively well
constrained subset of the benthic assemblage we
decrease the uncertainties introduced by erroneous
depth limit assignments, this problem is by no means
eliminated. For example, species known from upper
bathyal depths are frequently present in deeper
bathyal as well as shallower outer neritic depths. For
this reason, we have labeled this group ““outer neritic-
bathyal”. Among this group are Angulogavelinella
avmimelechi, Coryphostorma ncrassata (C. incrassata
gigantea?), and Srensioimna excolata which Van
Morkhoven ez al. (1986) list as ““primarily bathyal, but
ranges into outer neritic depths’. Predominantly
bathyal species include Nurtallides truempyi, Berthe-
linella delicatulus, Gyroidina cretacea, Praebulimina

cushmani, P. lajollaensis, Pullenia sp., Spiroplectammina
spectabillis, and Stensioina beccariiformis (e.g., Van
Morkhoven er al. 1986). In order to use this predomi-
nantly bathyal species group as palacodepth indicator,
we assume that they are either absent or rare during
periods of low sea-levels and common or present
during periods of high sea-levels. These assumptions
are supported by the Maastrichtian and Campanian
data from El Kef and Elles.

Maastrichtian at El Kef

Benthic foraminifera from the Maastrichtian at El Kef
were quantitatively analyzed with common and abun-
dant species shown in Figure 5 and the relative
abundances of all species tabulated in Table 1. The
outer neritic species group dominates through the
entire Maastrichtian, both in species richness (17-20
species) and relative abundances, whereas common
middle neritic taxa are relatively few (4-6 species).
Most middle and outer neritic taxa range through the
Maastrichtian. In contrast, the species group labeled
“outer neritic-bathyal”” has relatively low species
abundances (generally <10%) and few species range
through the Maastrichtian (Figure 5).

The most diverse assemblages in the outer neritic-
bathyal species group are present in the late
Campanian-early Maastrichtian (maximum of 20
species in Zones CF8-CF6, Figure 5). Up-section,
species richness decreases to 11 species near the
Cretaceous-Tertiary boundary. This overall decrease
in the number of species from 20 to 11 suggests
increasingly less favourable environmental conditions
for this group or generally upward shallowing, as also
suggested by the increased abundance of outer neritic
species. However, this decrease in the outer neritic-
bathyal species group is not linear, but shows alternat-
ing intervals of high and low species richness (Figure
6). Moreover, the combined relative percent abun-
dance of these species consistently covaries with
intervals of low species richness (Figure 6).

Since the preservation of foraminiferal species is
generally very good and these variations are restricted
to the deeper water assemblages, they are not artifacts
of preservation, but reflect environmental changes.
We interpret these variations in the outer neritic-
bathyal species group as reflecting sea-level fluctu-
ations. During periods of lower sea levels, we assume
that the predominantly bathyal species disappear or
temporarily disappear, thus reducing the number of
outer neritic-bathyal species (low species richness and
the combined percent abundance of these species).
During subsequent rises in sea level, these species may
reappear. However, if the long-term trend is that of a
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Figure 6. Variations in the distribution of outer neritic-bathyal species, species richness and the combined relative abundance of this assemblage through the

Maastrichtian at El Kef. Sea level interpretations are based on relative abundances and species richness; reduced presence of deeper dwelling benthic foraminifera

indicate lower sea-levels (stippled intervals).
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generally decreasing (though fluctuating) sea-level,
the deeper dwelling taxa will continue to decrease.
Figure 6 (shaded intervals) illustrates a consistent
pattern of periods of low species richness and low
combined relative percent abundance marked by the
absence of predominantly bathyal species that suggest
lower sea-levels. These periods alternate with high
species richness and high combined percent relative
abundances marked by the presence of predominantly
bathyal species that suggest higher sea-levels.

Thus, the first Maastrichtian sea-level lowstand
coincides with the change from marl to alternating
marl/limestone deposition at the base of the
Maastrichtian. At this lithological change predomi-
nantly bathyal species (N. zruempyi, P. cushmani, G.
cretacea, P. cretacea, and S. spectabillis) temporarily
disappeared. Species richness decreased from 17 to a
low of 7 species and the combined relative abundance
decreased from 20% to 9% (CF8b/CF7, Figure 6).
Planktic foraminifera in this interval also show a
major faunal turnover and probably a hiatus at El
Kef, as indicated by the simultaneous appearance of
several species (Globotruncanita angulata, G. gansseri,
P. carseyae, R. hexacamerata and R. pennyi; Li &
Keller, 1998b). This sea-level lowstand is well docu-
mented globally and correlates with a major global
cooling (e.g., Barrera er al., 1997; Li & Keller,
1998a).

The second Maastrichtian sea-level lowstand also
coincides with an interval of limestone/marl depo-
sition that spans the CF7/CF6 transition (69.6—
69.3 Ma). Benthic foraminifera in this interval are
marked by intermittent and sporadic occurrences of
outer neritic-bathyal species as well as variably fluctu-
ating abundances between 12% and 18% (Figure 6).
A low sea-level and hiatus are also indicated by the
simultaneous appearances of seven planktic foraminif-
eral species (Gansserina wiedenmayeri, Globigerinelloides
volutus, G. yaucoensis, Heterohelix globocarinata, Pseudo-
textularia deformis, Rugoglobigerina rotundata, and R.
scorrty Li & Keller, 1998b). In Zone CF6, a relatively
high sea-level is indicated by the more diverse benthic
foraminiferal assemblage, sporadic high abundance
(18-28%) and abundance of predominantly bathyal
species (G. mitidus, P. cretacea, C. incrassata, and
N. truempyi; Figure 6).

The third Maastrichtian sea-level lowstand is indi-
cated in Zone CF5 between 68.9-68.3 Ma. Outer
neritic-bathyal benthic foraminifera in this interval
drop from 15 to a low of 4-5 species (all predomi-
nantly bathyal taxa are absent) and from 16% to 4%
of the total foraminiferal assemblage. Planktic for-
aminiferal assemblages within this interval show little
change. The presence of a local fault above this

interval at El Kef prevents determination of the
transition to a higher sea-level up-section (Figure 6).

A relatively high sea-level marks Zones CF4-CF3
up to a second fault zone. Benthic species richness
in this interval ranges from 7 to 13 species and the
combined relative abundance is high, reaching a maxi-
mum of 30% of the total benthic assemblage (Figure
6). Predominantly bathyal species are common in this
interval (G. cretacea, B. delicatulus, G. mnitidus, P.
cretacea, C. incrassata, N. truempyi, P. cushmani, and
S. spectabillis).

The fourth Maastrichtian sea-level lowstand occurs
at or above the local fault zone in Zones CF3-CF2. At
this interval, the outer neritic-bathyal species are
reduced to 7 species and their combined relative
abundance is less than 10% (Figure 6). All predomi-
nantly bathyal species are absent in this interval. This
sea-level lowstand is well documented in marine
sequences worldwide (Keller & Stinnesbeck, 1996)
and corresponds to the 67 Ma sea-level low of Haq
et al. (1987). No major planktic foraminiferal species
changes are associated with this sea-level lowstand.
During the last 300 Kyr of the Maastrichtian in Zone
CF1, a rising sea-level is indicated by the increasing
number of deeper dwelling benthic species (from 7 to
11) including five predominantly bathyal species
and their increasing combined relative abundance
(Figure 6).

Late Campanian at Elles

Benthic foraminifera from the late Campanian to early
Maastrichtian indicate similarly strong environmental
changes at Elles. Compared with El Kef, sediment
deposition at Elles occurred in a shallower outer
neritic to upper bathyal environment, as suggested by
the lower species richness in the outer neritic-bathyal
group (2—12 species, Figures 7, 8) and the absence of
the predominantly bathyal species (e.g., N. truempyi,
C. 1incrassata, and G. creracea). Although benthic
foraminiferal abundances for the Elles section were
only qualitatively analyzed, the alternating low-high
species richness patterns for the outer neritic-bathyal
group is pronounced and identifies the sea-level
fluctuations.

A hardground and low sea-level mark the top of the
last thick late Campanian limestone (CF10, G. cal-
carata Zone) at Elles as noted on the basis of macro-
fossils and trace fossils (Figure 2). In this interval, the
outer neritic-bathyal benthic foraminifera decreases
from 9 to 5 species. Species richness is higher in the
marly interval above this hardground (upper CF10)
and decreases again to 3 species in the limestone layer
at 9.7-10 m (Figure 8). Another interval with low
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Figure 7. Relative abundances of common benthic foraminifera at Elles grouped into middle and outer neritic and outer neritic-bathyal assemblages based on

upper depth limits of species. Stippled intervals indicate sea-level lowstands as suggested by changes in benthic foraminifera.
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Figure 8. Variations in the distribution of outer neritic-bathyal species and species richness during the late Campanian

through the early Maastrichtian at Elles. Sea-level interpretations are based on variations in species richness with reduced
presence of deeper dwelling benthic foraminifera indicating lower sea levels (stippled intervals).

species richness in the outer neritic-bathyal group
occurs in the upper part of CF9. This sea-level
lowstand may also be associated with a hiatus, as
suggested by the nearly simultaneous first appearance
of five planktic foraminiferal species at the CF9/CF8b
boundary (e.g., Globotruncana aegypriaca, G. rosetra,
Guembelitria cretacea, Gublerina acuta, and Rugoglo-
bigerina rugosa; Li & Keller, 1998b).

Above this sea-level lowstand is an interval with
increased outer neritic-bathyal species richness (base
of CF8a) followed by low species richness (middle of
CF8a). There are no major planktic changes associ-
ated with this interval. The limestone/marl layers in
the upper CF8a interval, however, have relatively high
species richness and suggest a rising sea level, contrary
to the low sea level interpreted from lithology and
macrofossils. The top of this interval is marked by a
hiatus and erosion surface, as also suggested by the
simultaneous first appearance of several planktic

foraminifera (e.g., Globotrucanita angulata, G. stuarti-
formis, Planoglobulina brazoensis, R. hexacamerata, and
R. scort; Li & Keller, 1998b). This suggests that the
high benthic species richness may be due to erosion
and the influx of reworked specimens when the sea-
level was low. Benthic species richness fluctuations
thus must be interpreted with caution, particularly in
intervals of low sea levels when erosion and reworking
of species was likely.

6. Comparison of sea-level changes based on
microfaunas, macrofaunas and lithology

Comparison of sea-level changes inferred from ben-
thic foraminifera with those inferred from macro-
faunas and lithology (Figures 3, 6, 9) reveals a
generally good agreement. Both faunal groups mark
changing sea levels coincident with major lithological
transitions from limestone to marl, which may be
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abrupt and coincide with a hardground or erosion
surface. In the field, an abundance of shells, shell
fragments (sometimes wood fragments) and burrows,
which are often truncated, mark these surfaces. In
microfaunas, the presence of fewer, predominantly
bathyal, species and increased abundance of shallower
water species mark lower sea levels. There may also be
an influx of reworked species which, if not recognized,
may obscure the true benthic foraminiferal changes.

There are, however, also significant differences. For
example, sea-level changes in relatively deep waters
are not easily identified based on macrofaunas or
lithology, because the former are rare or absent and
major lithological changes are generally absent. This
appears to be the case for most of the upper
Maastrichtian at El Kef, which was deposited at
depths ranging from 200-500 m (Peypouquet ez al.,
1986). The absence of lithological changes and near
absence of macrofaunas in Zones CF6 to CF1 do not
permit any evaluation of sea-level changes based on
these indices. However, the outer neritic-bathyal ben-
thic foraminiferal group reveals major fluctuations
(Figures 6, 9). Similarly at Elles, benthic foraminifera
indicate sea-level variations within the grey marly
shales of Zones CF9—CF8 (Figure 8). The combined
results from micro- and macrofaunas, and lithology
may thus provide the best results for the inter-
pretation of sea-level fluctuations during the Late
Cretaceous.

7. Discussion

In this study we set out to evaluate late Campanian-
Maastrichtian sea-level variations in the southwestern
Tethys region of El Kef and Elles based on lithology,
and macro- and microfaunas. These data suggest at
least eight intervals of significantly lower sea levels as
shown in the sea-level curves of Elles and El Kef
(Figure 9), though there may be more, yet unrecog-
nized, sea-level changes within the incomplete (two
fault zones) upper Maastrichtian interval at El Kef. In
order to evaluate whether these sea-level fluctuations
were the result of regional tectonic activity, eustatic
sea-level changes, or both, we compare this record
with the Haq ez al. (1988) coastal onlap curve and the
oxygen isotope record from the middle latitude South

Atlantic DSDP Site 525, which spans 73 Ma to 65 Ma
(Figure 9).

Oxygen isotope studies in southern middle and high
latitudes (Sites 525 and 690) have indicated the onset
of a major climatic cooling at about 73 Ma and
maximum cooling by 71 Ma, possibly associated with
continental ice accumulation on Antarctica (Barrera &
Huber, 1990; Barrera, 1994; Barrera et al., 1997; Li &
Keller, 1998a). High latitude climatic cooling con-
tinued through the late Maastrichtian reaching maxi-
mum low temperatures about 500 Kyr before the
K-T boundary. During the last 200-400 Kyr of the
Maastrichtian, the climate warmed with temperatures
rising 3°C in surface and 4°C in deep waters of Sites
525 and 690, but cooling again before the K-T
boundary (Stott & Kennett, 1990; Barrera, 1994;
Li & Keller, 1998a, c). These climatic changes suggest
a Maastrichtian marked by major eustatic sea-level
fluctuations as documented by Haq ez al. (1987,
1988).

How do sea-level changes inferred from benthic
faunas and lithology compare with climatic changes?
We would expect a good correlation because low
eustatic sea levels are generally associated with cool
climates and high sea levels with warm climates.
Figure 9 shows that there is excellent agreement
between low sea levels and cool climates in Zones
CF8a, CF8b, CF7, CF6 and CF5. However, in some
intervals sea-level changes at El Kef and Elles do not
correlate with climate changes. For example, relatively
cool conditions in CF4-CF3 coincide with relatively
high sea levels at El Kef, and precede the sea-level
lowstand in Zone CF3-CF2. In addition, the end-
Maastrichtian cooling indicated in the oxygen isotopes
in the upper part of CF1 is not apparent in the current
benthic foraminiferal analysis by a sea-level regres-
sion, probably because of low sample resolution. For
the late Campanian no good oxygen isotope data is
available at this time. Despite these shortcomings, the
overall cool climates of the Maastrichtian generally
correlate with low sea levels, and frequently with
erosion and hiatuses.

Are the observed sea-level fluctuations in the south-
western Tethys due to eustatic variations or local
tectonic controls? The Exxon sea-level curve (Haq
et al., 1987, 1988) identified four major sea-level

Figure 9. Composite sea-level curve for the late Campanian through Maastrichtian based on the Elles and El Kef sections
and sea-level interpretations based on lithology, macrofossils and benthic foraminifera. Stippled intervals indicate
sea-level lowstands as suggested by changes in benthic foraminifera. The Haq ez al. (1987, 1988) sea-level curve is shown
for comparison. The oxygen isotope record is from DSDP Site 525 in the middle latitude South Atlantic (Li & Keller,
1998a) and shows a close correlation between episodes of climatic cooling and sea-level regressions in the southwestern

Tethys.



250 Liangquan Li ez al.

regressions during the studied interval (e.g., 75 Ma,
71 Ma, 68 Ma, 67 Ma, Figure 9). These four regres-
sions correspond with low sea levels at 74.4-74.2 Ma,
72.2-70.3 Ma, 68.9-68.3 Ma, and ~65.5 Ma in our
Tethys record. This suggests that these regressions are
of eustatic origin. The latest Maastrichtian sea-level
low at ~65.5 Ma is also of eustatic origin, as indicated
by its presence in sedimentological sequences
worldwide (Keller & Stinnesbeck, 1996). The sea-
level lowstand at 69.6—-69.3 Ma coincides with a cold
deep-water temperature at Site 525. We have no
records from other regions to date of low sea level at
74.0-72.5 Ma.

We conclude that within the constraints of correlat-
ing the Tethys sea-level record to the oxygen isotope
record of Site 525 (accomplished on the basis of high
resolution biostratigraphic correlation by Li & Keller,
1998a, b), periods of high latitude cooling coincide
with episodes of sea-level regressions as inferred from
benthic micro- and macrofaunal assemblages and
lithological changes, including hardgrounds, erosion
surfaces and hiatuses.

8. Conclusions

An integrated approach to interpreting sea-level
changes during the late Campanian through
Maastrichtian based on benthic macro- and micro-
faunas and lithological field observations suggests a
history of sea-level regressions that correlate with
major episodes of middle and high latitude cooling.
Six major sea-level regressions are identified during
the late Campanian (74.4-74.2 Ma, 74.0-72.5 Ma),
the Campanian-Maastrichtian transition (72.2—
70.3 Ma), early Maastrichtian (69.6-69.3 Ma, 68.9—
68.3 Ma), and late Maastrichtian (~65.5 Ma). Five
of these Campanian-Maastrichtian sea-level regres-
sions correlate with global cooling episodes observed
in the oxygen isotope record of Site 525 in the middle
latitude South Atlantic. For the late Campanian
sea-level regression between 74.4-74.2 Ma, no stable
isotope data are available.
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