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G. D. Clow

Central Greenland ice cores provide evidence of abrupt changes in climate over
the past 100,000 years. Many of these changes have also been identified in
sedimentary and geochemical signatures in deep-sea sediment cores from the
North Atlantic, confirming the link between millennial-scale climate variability
and ocean thermohaline circulation. It is shown here that two of the most
prominent North Atlantic events—the rapid warming that marks the end of the
last glacial period and the Bølling/Allerød–Younger Dryas oscillation—are also
recorded in an ice core from Taylor Dome, in the western Ross Sea sector of
Antarctica. This result contrasts with evidence from ice cores in other regions
of Antarctica, which show an asynchronous response between the Northern and
Southern Hemispheres.

Objective correlation of isotope paleotem-
perature records from polar ice cores has
shown that some climate variations once
thought to be synchronous in both hemi-
spheres are in fact out of phase. For example,

the Antarctic Cold Reversal (ACR), a period
of cooling that appears in many Antarctic
stable isotope records (1), has been compared
with the Younger Dryas (YD), a prominent
feature in Northern Hemisphere records (2).
Time series for the cores from Vostok and
Byrd Station, Antarctica, correlated to the
layer-counted records in central Greenland by
measurements of atmospheric trace gas con-
centrations in trapped air bubbles, show that
the ACR occurred at least 1000 years before
the YD (3, 4).

Geochemical climate proxies (5, 6) from
an ice core at Taylor Dome (77°489S,
158°439E, 2374 m above sea level), a near
coastal East Antarctic site at the western edge
of the Ross Sea (Fig. 1), exhibit large fluctu-
ations during the last glacial-interglacial tran-
sition and Holocene that are reminiscent of
those in central Greenland. Published records
from Taylor Dome, however, use a prelimi-
nary time scale (6) that precludes definitive
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conclusions regarding the timing of rapid cli-
mate change events. Here we present a new
stable isotope (dD) record (Fig. 2) and a new
chronology for the last glacial-interglacial
transition in the Taylor Dome core. We use
both atmospheric methane (CH4) and the iso-
topic ratio of molecular oxygen (d18Oatm) to
tie Taylor Dome to the layer-counted chro-
nology of the Greenland Ice Sheet Project 2
(GISP2) (Summit, Greenland) ice core (7).
This approach requires calculation of the age
difference (Dage) between the ice and the
younger gas it encloses. For GISP2, we use
the gas-age time scale and Dage values of
Brook et al. (8). For Taylor Dome, we obtain
a gas chronology by visually matching
changes in CH4 and d18Oatm concentrations
with those at GISP2 (Fig. 3). The rapid in-
creases in CH4 before and after the YD pro-
vide precise correlation points at 14.6 and
11.6 thousand years before the present (kyr
B.P.) (9). The precision of the correlation
between 20 and 15 kyr B.P., during which
both CH4 and d18Oatm change relatively
slowly, is between 500 and 1500 years.

We calculate Dage for Taylor Dome as a
function of the effective bubble close-off
depth (COD), surface temperature (T) and
accumulation rate (ḃ), using the empirical
Herron-Langway model to describe the firn
densification process (10). We assume that
the COD occurs at a density rCOD 5 800 6
10 kg m23, as determined from nitrogen iso-
tope (d15N) measurements in firn air (11).
Measured d15N in Taylor Dome ice samples
independently constrains Dage by giving a
measure of the thickness of the diffusive zone
through which gravitational fractionation is
manifested. Diffusive layer thicknesses cal-
culated from measured d15N provide a mini-
mum estimate of the COD and therefore of
Dage for given T and ḃ (12).

Values for T and ḃ are taken as averages
over an interval approximating the original
thickness of the firn column (13). We assume
that T is a linear function of dD, where the
slope a 5 4.0 6 1.5‰ °C21 (14). We cal-
culate ḃ from the 10Be concentration (Fig. 2),
where we assume that the dry deposition flux
is constant and include a term for wet depo-
sition (15). The 10Be method is supported by
several observations. First, 10Be concentra-
tion and ḃ show a strong spatial inverse cor-
relation both locally at Taylor Dome and
broadly across the Antarctic continent (16).
Second, both empirical and theoretical con-
siderations indicate that the dry deposition
flux of 10Be at polar latitudes varied little
over the last glacial cycle, for averages over
time intervals greater than a few decades
(17). Third, comparison of 10Be with major
ion concentrations in the Taylor Dome core
shows a high degree of correlation; variation
in accumulation rate produces strong covari-
ance among chemical species, including 10Be

and sulfate, which have very different source
functions (18). Finally, flow model calcula-
tions, based on high-resolution radar profiles
and vertical and surface velocity data, pro-
vide independent validation of 10Be-based
estimates of accumulation rates (19). For
comparison, we also determine ḃ using cal-
culated values for T (from measured dD) by
assuming that ḃ varies as a linear function of
the saturation vapor pressure of water over
ice (20). This more commonly used ap-
proach, although probably valid for continen-
tal sites such as Vostok, is difficult to justify
at Taylor Dome, where precipitation is
strongly influenced by cyclonic activity (21);
relative to the 10Be method, it generally over-
estimates accumulation rates (and therefore
underestimates Dage) during cold periods.
Values of Dage calculated by the different
methods vary by up to 6750 years (Fig. 3).
The variance in Dage is greatest in the oldest
part of the record (20 to 15 kyr B.P.) but is
,300 years during the crucial YD time peri-
od and early Holocene and ,600 years at
14.6 kyr B.P., at the time of the rapid degla-
cial warming in the Northern Hemisphere.

We obtain a time scale for Taylor Dome
by adding Dage to the gas ages from corre-
lation with GISP2, using the maximum of the
estimates shown in Fig. 3. As will become
apparent, this approach is the most conserva-
tive for comparing Taylor Dome with other
ice core records, because it gives the oldest
age for a given depth. We estimate the pre-
cision of this time scale by propagating un-
certainties in rCOD, T, and ḃ (11, 14, 15) and
adding estimated uncertainties arising from
the GISP2 age calculation and the curve-
matching technique (22). The resulting dD
time series, from 20 to 10 kyr B.P., is com-
pared in Fig. 4 with dD at GISP2. Also shown
are d18O at Byrd and dD at Vostok, both on
the Sowers and Bender (3) time scales tied to
GISP2 through d18Oatm. For Byrd, where un-
certainties in Dage are small, the time scales
of both Sowers and Bender (3) and Blunier et
al. (4) are in excellent agreement. For Vos-

tok, uncertainties in Dage are considerably
larger; ages from (3) are up to 1200 years
greater than those from (4) over the interval
from 20 to 10 kyr B.P.

Figure 4 illustrates three particularly im-
portant findings. First, prominent features of
the GISP2 record that are absent at Byrd and
Vostok appear at Taylor Dome, including

Fig. 1. Map of Antarctica showing locations of
Antarctic ice cores.

Fig. 2. dD and 10Be concentrations in the Taylor
Dome ice core from 0 to 400 m depth (total
depth 5 554 m), covering the Holocene and
last glacial-interglacial transition.

Fig. 3. (A) CH4 (E), d18Oatm (h), and d15N (F)
from trapped air bubbles in the Taylor Dome
and GISP2 (1 and 3) cores. (B) Lines show
Dage calculated using ḃ from 10Be (solid line)
and dD (dashed line). Diamonds (}) show min-
imum 10Be Dage constrained by d15N, assum-
ing a 10-m-thick advective layer at the top of
the firn column.
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generally declining isotope values between
20 and 15 kyr B.P. and near-Holocene iso-
tope values during the Bølling/Allerød (B/A)
warm period (14.6 to 12.9 kyr B.P.). Second,
the late-glacial cold interval (low dD values)
at Taylor Dome, although more subdued than
at GISP2, is at least approximately contem-
poraneous with the Northern Hemisphere YD
and definitely lags the ACR. This interval
ends with a rapid warming that is synchro-
nous with post-YD warming at GISP2 within
a few hundred years. Third, the dramatic
warming that marks the end of the last glacial
maximum at Taylor Dome lags the onset of
gradual warming at Vostok and Byrd by more
than 3000 years. In the latter cores, deglacial
warming begins before 18 kyr B.P. and con-
tinues uninterrupted until the ACR cooling.
At GISP2 there is evidence for an initiation of
warming as early as 24 kyr B.P., but isotope
values generally indicate cold conditions un-
til nearly 14.6 kyr B.P., when rapid deglacial
warming occurred. At Taylor Dome, the
magnitude of the dD increase during degla-
cial warming is as large as at GISP2. Uncer-
tainties in both time scales over this interval
are considerably larger than for the B/A and
YD, but the precision is sufficient to con-
clude that deglacial warming was synchro-
nous in both cores within 1000 years.

Evidently, climate changes at Taylor

Dome during the last glacial-interglacial tran-
sition were synchronous or near synchronous
with changes in the North Atlantic region.
This result has important implications for our
understanding of the mechanisms linking cli-
mate between the hemispheres. It is generally
accepted that abrupt deglacial warming in the
Northern Hemisphere was accompanied by
the onset of North Atlantic deep water
(NADW) formation, promoting northward
flow of warm surface waters from the tropics,
whereas a circulation pattern marked by re-
duced NADW formation accounts for cold
conditions during the YD interval (23). The
Byrd and Vostok records, showing an an-
tiphase relationship between Antarctica and
Greenland, have drawn attention to numerical
model results in which changes in NADW
promote opposing temperature responses in
the high latitudes of the Northern and South-
ern Hemispheres, a consequence of an alter-
nation in the amount of convection or ocean
heat convergence (or both) in the two areas
(24). The Taylor Dome results, on the other
hand, are consistent with earlier arguments
that the flow of relatively warm NADW into
the Southern Ocean warms circumpolar deep
water (CPDW), thereby promoting sea ice
melting and atmospheric warming as CPDW
upwells along the Antarctic coastal margin
(25).

Differences between the isotope-tempera-
ture history from Taylor Dome and those
from other Antarctic sites are too large to be
attributed to dating errors. Rather, the results
indicate that the circum-Antarctic climate re-
sponse to changes in NADW formation and
export may not be uniform. We propose that
the North Atlantic character of the isotopic
record at Taylor Dome, in particular, reflects
the relative proximity of this site to the west-
ern Ross Sea, an area of active wind-driven
convection and ocean-atmosphere heat ex-
change in today’s climate (26). We note that
a similarly heterogeneous response to tran-
sient reduction of NADW formation and ex-
port has been observed in some numerical
models (27). For example, in the coupled
atmosphere-ocean general circulation model
simulations of Schiller et al. (28), near-Ant-
arctic waters of the Southern Ocean (areas of
vigorous oceanic convection in control sim-
ulations) cool in response to reduced forma-
tion and export of NADW, whereas other
areas of the Southern Ocean warm as a result
of changing patterns of atmospheric circula-
tion and increased ocean heat convergence.
Taylor Dome may thus record the direct but
localized influence of NADW-borne heat on
Antarctic climate (29). Given the substantial
difficulty of realistically simulating ocean-
atmosphere interactions in general, and the
dynamics of the Southern Ocean in particu-
lar, it may be some time before the role of
NADW in shaping Antarctic climate can be
rigorously evaluated. In the meantime, our
observations can and should be tested by
collection and analysis of additional Antarc-
tic ice cores, especially from near-coastal
sites.
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altered [D. L. Morse, E. D. Waddington, E. J. Steig,
Geophys. Res. Lett. 25, 3383 (1998)]. We do not
therefore expect a simple linear relation between
proxies of ocean circulation and Taylor Dome dD
even if, as we suggest, changes in ocean circulation
are the primary forcing mechanism.

30. We thank G. Denton and M. Stuiver for suggesting an
ice core at Taylor Dome, P. Grootes for directing the
field program, the Polar Ice Coring Office and Ant-
arctic Program of NSF for logistical and financial
support, and R. Alley and M. Kaplan for helpful com-
ments on the manuscript.

15 July 1998; accepted 28 August 1998

Solution Properties of
Single-Walled Carbon

Nanotubes
Jian Chen, Mark A. Hamon, Hui Hu, Yongsheng Chen,
Apparao M. Rao, Peter C. Eklund, Robert C. Haddon*

Naked metallic and semiconducting single-walled carbon nanotubes (SWNTs)
were dissolved in organic solutions by derivatization with thionychloride and
octadecylamine. Both ionic (charge transfer) and covalent solution-phase
chemistry with concomitant modulation of the SWNT band structure were
demonstrated. Solution-phase near-infrared spectroscopy was used to study
the effects of chemical modifications on the band gaps of the SWNTs. Reaction
of soluble SWNTs with dichlorocarbene led to functionalization of the nanotube
walls.

With novel structural, electronic, and me-
chanical properties, SWNTs constitute an im-
portant new form of carbon that may find
applications in many fields (1). The function-
alization chemistry of the open ends, the ex-
terior walls (convex face), and the interior
cavity (concave face) of the SWNTs is ex-
pected to play a vital role in tailoring the
properties of these materials and the engi-
neering of nanotube devices. However, all of
the currently known forms of SWNT material
are insoluble in organic solvents (2, 3), mak-
ing it difficult to explore and understand the
chemistry of SWNTs (4) at the molecular
level. We report here an approach to the
dissolution of shortened SWNTs (5) in com-
mon organic solvents. Various solution spec-
troscopies were applied to characterize the
dissolved SWNTs. We found that the band
gaps of some types of SWNTs can be mea-
sured directly by solution-phase near-infrared
(IR) spectroscopy, which allows the study of
the effects of chemical modifications on the
band gaps of SWNTs, the key to the molec-
ular design of new SWNT-based materials.

Solution-phase wall chemistry was demon-
strated by reaction of the soluble SWNTs
(s-SWNTs) with dichlorocarbene. The s-
SWNTs will have a rich solution chemistry,
perhaps rivaling that of the fullerenes. They
are versatile precursors to nanotube-based co-
polymers, composites, and metal ligands.

The SWNT-containing raw soot (40 to
60% purity, obtained from CarboLex Inc.)
was prepared by the modified electric-arc
technique (3). Purified SWNTs (.90%) and
shortened SWNTs (100 to 300 nm in length)
were obtained by the method of Smalley and
co-workers (5). In the final step of purifica-
tion, we added HCl to the aqueous suspen-
sion of SWNTs before collecting the sample,
so that the opened ends of the purified
SWNTs were terminated with carboxylic acid
groups (–COOH, IR frequency nC5O 5 1719
cm–1) rather than carboxylate groups
(–COO–, nC5O 5 1620 cm–1) (Fig. 1). The
shortened SWNTs have similar IR features.
The Raman spectrum of the shortened
SWNTs collected with 1064-nm excitation
(vr 5 161 cm–1, vt 5 1595 cm–1, where vr

and vt are the Raman-active radial mode and
tangential mode frequencies of SWNTs, re-
spectively) is close to that of raw soot (vr 5
162 cm–1, vt 5 1592 cm–1). The Raman
radial mode of the SWNTs is sensitive to the
diameter d but not to the symmetry of the
nanotube (6, 7); hence, if vr (cm–1) 5 223.75
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