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Earth’s gravity field is highly variable... 3/57

[±1]×10−3



...and it changes over time 4/57
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� The mission will precisely measure the planet’s shifting water masses and

map their effects on Earth’s gravity field, yielding new information on the

effects of global climate change.

� The mission will use a microwave ranging system to accurately measure

changes in the speed and distance between two identical spacecraft flying in a

polar orbit about 220 km apart, 500 km above Earth.

� The ranging system is so sensitive that it can detect separation changes as

small as 10 microns — about one-tenth the width of a human hair over a dis-

tance of 220 km.

� The question is, of course:

with what spatial, temporal, and spectral resolution?



The hydrological signal is big and large 6/57

October 2009 – April 2009 L = 18; [±1]×10−7
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What lurks in the high-frequency “noise”? – 2 8/57

January 2005 L = 58; [±6]×10−4



Earthquakes are small (even large ones) 9/57

L = 60; [±1]×10−7



Difference Jan 2005 – Dec 2004 10/57

L = 58; [±6]× 10−7



Filtered difference Jan 2005 – Dec 2004 11/57

L = 50; [±6]× 10−7



Filtered difference Jan 2005 – Dec 2004 12/57

L = 40; [±3]× 10−7



Filtered difference Jan 2005 – Dec 2004 13/57

L = 30; [±1]× 10−7



Filtered difference Jan 2005 – Dec 2004 14/57

L = 20; [±6]× 10−8
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� Let’s forget about the hydrological signal for the moment.

It is (more-or-less) straightforward to extract from the background.

� Let’s forget about the earthquakes for the moment.

They appear hopeless: even the largest ones look too small.

� Let’s focus on the climate signal: longer-term, multi-annual trends.

How well does GRACE detect what may be going on with the world’s ice caps?

Aware of the huge challenges to beat elevated noise levels at small spatial

footprints, the community has developed a multitude of filtering methods to

enhance signal-to-noise ratios and, in particular, to eliminate the prominent

effect of the satellite orbits on the behavior of the solutions (destriping).



Greenland – 1 (Apr 2002 – Nov 2005) 16/57

Chen, Wilson & Tapley, Science (2006):

“Spatial leakage effects are also evident, because of filtering applied to suppress

the noise in high-degree and high- order spherical harmonics.”



Greenland – 2 (Apr 2002 – Apr 2006) 17/57

Velicogna & Wahr, Nature (2006):

“Interpreting the trend as due entirely to a change in ice, and subtracting the

leakage trend, we inferred an ice volume decrease of 240±12 km3yr−1.”



Greenland – 3 (Jul 2003 – Jul 2005) 18/57

Luthcke et al., Science (2006):

“Our overall Greenland mass trend of 101±16 km3yr−1 is a factor of 2 smaller

than the recent GRACE-based trend determined by Velicogna & Wahr (2006).”
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� What goes into the estimation?

� Authors more-or-less agree on the elastic effects (Love numbers etc).

� Authors more-or-less agree on the visco-elastic effects (PGR etc).

� Authors disagree on how to deal with leakage, how to smooth, filter

and average, and how to incorporate the statistical information

that is implicit in the GRACE solutions.

� Authors disagree on matters as fundamental as the choice of basis

to represent the solution. Pixels? Mascons? Spherical harmonics?

How do these choices influence the results?



The problem – 1 20/57

The data collected in or limited to R are signal plus noise:

d(r) =

 s(r) + n(r) if r ∈ R,

unknown/undesired if r ∈ Ω−R.

We may assume that n(r) is zero-mean and uncorrelated with the signal,

〈n(r)〉 = 0 and 〈n(r)s(r′)〉 = 0,

and consider the noise covariance:

〈n(r)n(r′)〉.

In other words: we’ve got noisy and incomplete data, on a sphere, Ω.
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The data collected in or limited to R are signal plus noise:

d(r) =

 s(r) + n(r) if r ∈ R,

unknown/undesired if r ∈ Ω−R.

We may assume that n(r) is zero-mean and uncorrelated with the signal,

〈n(r)〉 = 0 and 〈n(r)s(r′)〉 = 0,

and consider the noise covariance:

〈n(r)n(r′)〉.

In other words: we’ve got noisy and incomplete data, on a sphere, Ω.

To honor the spherical shape of the Earth,

we work in the spherical-harmonic basis.
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Spherical harmonics Ylm(r) form an orthonormal basis on Ω:∫
Ω

YlmYl′m′ dΩ = δll′δmm′ and s(r) =
∞∑
lm

slmYlm(r).
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The spherical harmonics Ylm are not orthogonal on R:∫
R

YlmYl′m′ dΩ = Dlm,l′m′ .

Orthogonality is a big deal, leakage is what happens when it’s lost.

So we construct a new basis from the eigenfunctions of D.

These new, doubly orthogonal, functions are called Slepian functions, g(r).
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We want to “explain the data”, by finding what causes them:∫
R

(s− d)2 dΩ = minimum.

We stick to our guns. Instead of regularizing, we form a truncated expansion:

ŝ(r) =
J∑
α=1

ŝαgα(r).

The statistics of the unknown signal and the noise dictate what J should be.



Slepian functions 26/57

Eigenvectors of D expand to bandlimited Slepian functions:

g =
L∑
lm

glmYlm,

that satisfy Slepian’s concentration problem to the region R of area A:

λ =

∫
R

g2 dΩ

/∫
Ω

g2 dΩ = maximum.

The Shannon number, or sum of the eigenvalues,

K = (L+ 1)2 A

4π
,

is the effective dimension of the space for which the bandlimited g are a basis.

Voilà! We have concentrated a poorly localized basis of (L+ 1)2 functions, Ylm,both spatially and spectrally, to a new basis with only about N functions, g.
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Eigenvectors of D expand to bandlimited Slepian functions:

g =
L∑
lm

glmYlm,

that satisfy Slepian’s concentration problem to the region R of area A:

λ =

∫
R

g2 dΩ

/∫
Ω

g2 dΩ = maximum.

The Shannon number, or sum of the eigenvalues,

K = (L+ 1)2 A

4π
,

is the effective dimension of the space for which the bandlimited g are a basis.

Voilà! We have concentrated a poorly localized basis of (L+ 1)2 functions, Ylm,

both spatially and spectrally, to a new basis with only about K functions, g.



Slepian functions for Greenland, L = 60 28/57
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1. Learn as much as possible about the noise and the structure of the signal.

More than likely, this is an iterative procedure.

2. Design basis functions appropriate for the region of interest.

Slepian functions are optimal for this type of problem in multiple respects.

3. Experiment with the bandwidth L of the signal as considered, allow

for small buffers outside the region of interest. Monitor the statistics.

4. In this philosophy, the signal is projected onto the basis in which signal-to-

noise ratios are maximized, and all subsequent estimates take the full spatial

and spectral noise covariance into account.

5. This is very different from most other approaches, though in spirit, it is identical

to the stuff Slepian, Shannon and Wiener figured out in the 1950s.



I. Look at the noise (in the pixel basis) 30/57

Spatial Covariance
Full Spectral Covariance

a)

Only Spectral Variance

b)

c) d)
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−0.25 0.00 0.25 0.50 0.75 1.00
Noise Covariance

Harig & Simons, PNAS 2012



II. Project the signal onto the Slepian basis 31/57

240˚

260˚
28

0˚

α=11 Int=−72.98 α=3 Int=−46.56 α=1 Int=−45.32

60˚

70
˚

α=15 Int=−21.89

240˚

260˚

28
0˚

α=7 Int=−16.53 α=6 Int=−10.70 α=9 Int=−9.20

60˚

70
˚

α=20 Int=−5.11

240˚

260˚

28
0˚

30
0˚

320˚

340˚

α=14 Int=−4.98 α=2 Int=3.57

−10 −5 0 5 10
surface density change (cm/yr water equivalent)

α=10 Int=−3.18

60˚

70
˚

30
0˚

320˚

340˚

α=22 Int=−3.07

Harig & Simons, PNAS 2012



III. Solve for the time-dependence 32/57
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IV. Temporal variations of the spatial pattern 33/57

Harig & Simons, PNAS 2012



V. Spatial pattern 2003–2013 34/57

Harig & Simons, PNAS 2012



V. Invert for the total budget (if you must) 35/57

Harig & Simons, PNAS 2012
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� The early estimates were not so much at odds with one another as

lacking a complete understanding of the modeling uncertainty.

� Greenland’s mass loss appears to be on a pretty steady trend,

with acceleration robustly observed only in recent years.

� The average yearly mass loss is about 241±8 km3yr−1, corrected for

elastic effects. The 95% interval halves with each additional observation year.

� Modeling by Slepian functions requires very few ad hoc assumptions.

Moreover, in addition to regional mass-average estimates, we get maps.

� Maps of the time-averaged mass loss show a marked concentration

at the outlet glaciers. Observed rates compare well with GPS surveys.
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Conclusions — I 37/57

� The battle to detect the slight secular mass changes from melting ice caps

using GRACE has been about estimating the signal with realistic uncertainties,

both in terms of overall mass loss and as a function of position and time.

� The latest tools in signal analysis and inverse theory come in the form of

spatiospectrally concentrated Slepian functions.

� Never intended to be a geophysical mission, GRACE contains information about

the very small temporal changes in terrestrial gravity due to earthquakes.

� On balance, the Greenland ice loss accounts for only a minor fraction of the

Earth’s sea level rise rate.

� Let us turn to the geological record to study sea level change on a global and

regional scale.



Data Example I
San Salvador, Bahamas

http://www.mnstate.edu/leonard/G390BPHOTOS.html Chen et al. 
(1991)

Reef terrace dominated by Acropora palmata
Altitude:1.5 ± 1.0 m
Age (U/Th):128.4 ± 8.0 ka
Depositional range: 0-5 m below mean low tide level
Subsidence rate: 1-2 cm/ky



Data Example II
Rio Grande do Sol, Brazil

Tomazelli et al. (2007)

Most outcrops of this facies in other exposures of the
Last Interglacial Barrier along the RS coastal plain
exhibit the same kind of sedimentary structures. The

photography of Fig. 7, for example, was taken in a
natural outcrop of the barrier near Chui, in the extreme
south of the coastal plain.

Fig. 6. Sedimentary structures of Facies B (upper shoreface–foreshore). (a, b) Tabular cross-stratified sand with abundant Ophiomorpha burrows.
(c) Ophiomorpha burrow shaft (1.20 m-length) with several horizontal branches and a wide bulbous turnaround chamber at the base.

Fig. 7. Photograph of Facies B taken from a natural outcrop of the Last Interglacial Barrier near the town of Chuí, in the south of the coastal plain.
Low-angle parallel-laminated sand (Ls) intercalates with undulating, wave-rippled dominated sets (Ws). Note the high degree of bioturbation, mainly
by Ophiomorpha burrows (Op). Lamination is enhanced by heavy minerals concentrations.

40 L.J. Tomazelli, S.R. Dillenburg / Marine Geology 244 (2007) 33–45

Coastal barrier with Ophiomorpha burrows
Altitude: 6.4 ± 1.5 m
Age (TL):125 ± 17 ka (generic LIG)
Depositional range: low-tide



Data Example III
Portland East, England

Westaway et al. (2006)

Raised beach
Altitude:11 ± 1 m
Age:125 ± 17 ka (generic LIG)
Depositional range: between mean low and high tides 
Uplift rate: 7-14 cm/ky (!)



Geological Sea Level Indicators 41/57

120−116 ka 124−120 ka

128−124 ka 132−128 ka

 

 

<−15 −10 0 10 >15

sea level (m)

100% 50% 25%

indicative

lower/upper limiting

±20 ky ±10 merror bars:

A very sparse and noisy sample of local sea level indicators

Kopp, Simons et al., Nature, 2009
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� The data are very noisy and definitely incomplete,

both in spatial and temporal coverage

� We have a four-dimensional spherical data interpolation problem

� Given how sparse the data are we need to know very well

how they are connected

� We need to learn about the full physics of sea level change

in order to build the model covariance structure

� We need to build acceptable prior solutions, which we do from a variety of data

sources (e.g. global 18δO curves, perturbed ice melting histories, ...)

And then we sample thousands and thousands of models to come up with

a global sea level curve for the Last InterGlacial
Kopp, Simons et al., Nature, 2009
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constraints, Jerry Mitrovica built a series of sea level curves for us, which we turned

it our posterior:



Using the physics to derive the statistics: 43/57

Any dynamic sea level modelling must include gravitational, elastic, rotational,

isostatic, shoreline migrations, isostasy and tectonics! From our prior solutions and

constraints, Jerry Mitrovica built a series of sea level curves for us, which we turned

it our posterior:

p(s)︸︷︷︸
prior

→ p(d|s)︸ ︷︷ ︸
“model”

→ p(s|d)︸ ︷︷ ︸
posterior

Kopp, Simons et al., Nature, 2009
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WAIS
~1.1x

Mitrovica et al. (2001)

Greenland

Example: “Fingerprints” of Greenland and West Antarctic 
Ice Sheet melting, per meter global sea level rise

West Antarctica

Mitrovica et al. (2009)

Effects included:
Gravitational, elastic, rotational, isostatic, shoreline migrations

Our Sea Level Model



Markov Chain Monte Carlo analysis 46/57

altitudes
(z)
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Algorithmic steps

1: measurement correction
2: Gauss. proc. regression
3: Markov ch. Monte Carlo

Kopp, Simons et al., Nature, 2009



Sea level during the Last InterGlacial... 47/57
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...a clue to future sea level? 48/57
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Kopp, Simons et al., GJI, 2013



...a clue to future sea level rise rates? 50/57

Kopp, Simons et al., Nature, 2009
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Using spatiospectral localization techniques and basis projection we recover

subtle changes in Earth’s gravitational and magnetic fields from noisy and incom-

plete satellite data.



Conclusions — II 51/57

Using spatiospectral localization techniques and basis projection we recover

subtle changes in Earth’s gravitational and magnetic fields from noisy and incom-

plete satellite data.

Using adaptive sampling techniques and Gaussian process modelling we can

turn messy geological data into a coherent statistical model of the history of geo-

physical processes such as sea level change through time.
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Harig & Simons, EPSL, 2015
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Harig & Simons, EPSL, 2015
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Harig & Simons, EPSL, 2015
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Harig & Simons, EPSL, 2015
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Harig & Simons, EPSL, 2015
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Harig & Simons, EPSL, 2015


