Acoustic Noise Recorded by MERMAID Floats and Its Relation to Ocean Wave Climate in the Mediterranean

Frederik J Simons | Thomas A. Lee Lucia Gualtieri

Princeton University | CMCC

Five years of autonomy. One year of data buffer.

Easily deployed. Data delivered in near-real time.

Surfacing about every week

Seven years and counting

A most unusual recovery

An environmental sensor

All ears on the Mediterranean

One trajectory

One spectral density

The complete record

Seasonal variability

1–5 s secondary microseism

5–10 s secondary microseism

Match to wave models: 5–10 s

5 10

Match to wave models: 1–5 s

- Land-based seismic arrays need **oceanic** counterparts
- Floating MERMAID hydrophones record earthquakes

- Floating MERMAID hydrophones record **noise**
- Time-resolved infrasonic noise reveals oceanic surface forcing
- The **secondary microseismic** peak is well explained by a regional ocean model, especially between 1.5–5 s