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1
Prelude

Geophysics is the physics of the Earth, the terrestrial planets, and moons.
Physics is the science that studies relations between matter and energy, force
fields and their observable effects, interactions between motion and momen-
tum, action and reaction, transformations of measurable quantities, numbers,
geometric objects. Physics deals with materials, their behaviors, and the con-
stitutive laws that govern them. All the mathematical tools of classical physics
(primarily mechanics and electromagnetism, and some thermodynamics), and,
yes, even some borrowed from modern (quantum, statistical, computational)
physics, are necessary to observe, describe, explain (and numerically repro-
duce) geophysical processes at work in and on the Earth. Hence this chapter.

You will benefit from reading sections out of any of the many excellent text-
books aimed at budding geophysicists, e.g., Chapter 4 of [1], Chapter 1 of [2],
but really, any introductory text on the mathematics of physics, especially [3],
should be able to serve as a refresher. More advanced texts on mathematical
(geo)physics that are on my bookshelf are, e.g., [4] and [5]. For an applied
mathematics book that literally, has it all, I recommend [6]. Warning: you may
just have to go to the library at some point. I know you’ve been postponing it.

Starting with some generality will simplify things greatly down the line.
Many textbooks, none cited here, make a different choice, and they end up
being often more confusing than enlightening. Hence, in this chapter, you will
learn nothing about the Earth. Of course we know that the Earth is a sphere
(a ball, if you will)—or just about; more about that later. When we do specify
a coordinate system—and we will avoid this where we can—spherical polars
will be handier than Cartesian coordinates. (Try finding the volume of the unit
sphere by triple integration over x, y, and z! Call me when you have 4/3π.)

8
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1.1 Scalars, vectors, tensors, and their products

A scalar is a number. Negative six, 1−
√

3
4
√

2
, zero, one, two and three-quarters,

one divided by 137.8, 1729, four-and-a-half billion, 2.718281828459046...,
(−1)1/2, π,∞, you name it. Not NaN. Enough said.

Avector is an entity endowed with both magnitude and direction, which are
u

v

both scalar. For this reason, vectors are most often represented geometrically
by arrows (harpoons), with lengths proportional to their magnitude, and with
arrowheads indicating their direction. You have, presumably, known this for
longer than you can remember. A unit vector will have a hat on: û = u/||u||.

The dot product of vectors u and v is the scalar quantity given by u · v

u · v = ‖u‖‖v‖ cos ∆, (1.1)

where ∆ is the acute angle between the vectors u and v, and ‖u‖ and ‖v‖
u

v

(u·v̂)v̂
are their lengths. A formal definition of this notation is to come. It follows,
however, immediately, that if u is perpendicular (orthogonal) to v, their dot
product vanishes.

Vectors living in geometrical space have components, which are scalars
whose values ultimately will depend on the particular coordinate system cho-
sen. The dot product (1.1) between two vectors is the sum of the component-
by-component multiplication of both. Let us assume that there are three phys-
ical dimensions, thus three components ui, vi, i = 1, 2, 3. We will then have

u · v = u1v1 + u2v2 + u3v3, (1.2)

and in a more compact notation, we write

u · v =
∑
i

uivi = uivi. (1.3)

In the last equality the summation sign was skipped altogether. Indeed, in the
Einstein summation notation a sum over repeated indices (i, in the multiplica-
tive expression uivi, but i in the sum ui + vi would not count) is implied.

Only now do we arrive at the formal definition of the length of a vector used ‖u‖
in eq. (1.1), as its norm. In the various notations developed so far,

‖u‖ =
√

u · u =
(∑

i

uiui

)1/2

=
√
u2
i . (1.4)

By combining eqs (1.1) and (1.4), the Euclidean distance between two points r, ‖r− r′‖
for which ‖r‖ = r, and r′, for which ‖r′‖ = r′, is also given by

‖r− r′‖ =
(
r2 + r′2 − 2rr′ cos ∆

)1/2
, (1.5)
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known as the law of cosines in some circles, and as the Pythagorean theorem
when the opening angle ∆ = π/2.

Eq. (1.4) is a “2-norm” since we end up with squares inside the square root.
Sometimes you will see the explicit notation ‖u‖2 for the above, and you will
find its square, ‖u‖22 = u · u being manipulated in other texts. With this
elaboration we are ready for the usage of more general “p-norms”, defined as:

‖u‖p =
(∑

i

|ui|p
)1/p

. (1.6)

In statistics and data analysis, vectors are simply sets of numbers. There, you
will encounter the symbol ‖u‖0 to mean the number of nonzero elements in
a set u, and ‖u‖2 will be everywhere least-squares analysis for regression is
being discussed. But with our definition, ‖u‖0 is not a proper norm: eq. (1.6)
is undefined when p = 0. On the contrary, ‖u‖1 is well-defined, arising as the
“1-norm”, the sum of the absolute values of the vector components or elements
in the set. While we’re at it, ‖u‖∞ is the largest element of the component set.

Finally, there is another product by which to relate vector and tensor quanti-uv
ties. Let the dot product be known as the inner product, then the outer product
shall be the dyadic product of vectors u and v,

T = u v, (1.7)

a new quantity that we define to have the components

Tij = uivj . (1.8)

A tensor is an object with more than one “index”. Tensors deserving the
moniker are of rank two or more. By that token, vectors are “tensors” of rank
one, and scalars of rank zero. A matrix is a popular way of representing tensors
of rank two, written generically as T, with scalar components Tij , where both
indices i and j range over the dimensions, as they did in eqs (1.2)–(1.3).

An example is the orthonormal tensor R that rotates vectors clockwise inR(∆)
the plane over an angle ∆, preserving their lengths. Its rows and columns are
of unit length, and its transpose is its inverse, which defines the identity tensor,

R(∆) =
(

cos ∆ sin ∆
− sin ∆ cos ∆

)
, R−1 = RT, R ·RT = I. (1.9)

Tensors are linear operators: a “two-tensor” will act on a vector (or “one-T · u
tensor”) to produce another vector. To enact this property we form a dot prod-
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uct again, but now between a tensor and a vector. The result is a vector:

v = T · u. (1.10)

The rule is simple: a dot product represents the contraction, or multiplication-
and-summation-of-components between adjacent, dummy, indices. After con-
traction that index is gone: in component notation, the result of eq. (1.3) is

vi =
∑
j

Tijuj = Tijuj . (1.11)

Now, look again upon eqs (1.7)–(1.8). There was no dot, indices did not repeat,
they were not summed out, and instead of reducing the order, the result of the
operation was a quantity of increased order!

The cross product of vectors u and v is the vector perpendicular to both u u× v
and v whose magnitude is given by

‖u× v‖ = ‖u‖‖v‖ sin ∆. (1.12)

Its orientation is determined by the right-hand rule. Imagine positioning a
cork screw perpendicularly onto the plane containing both u and v, and then
twisting it in the direction from u to v. The direction of u×v will be given by
the motion of the corkscrew, i.e. into (⊗) or out of (�) this plane. Clearly, u×v
and v × u will be different vectors, although they have the same magnitude:
the cross product is not commutative, rather u×v = −v×u. Also, u×u = 0.

The vector that is the cross product

w = u× v (1.13)

has elements that, in component notation, are given by

wi =
∑
j

∑
k

εijkujvk = εijkujvk. (1.14)

Here, εijk is the Levi-Cività alternating symbol. It takes on the value 1 if εijk
the ordered list {i, j, k} is an even permutation of the numbers {1, 2, 3}, the
value −1 if {i, j, k} is an odd permutation of {1, 2, 3}, and 0 otherwise. At
least four different identities [8] relate εijk to δij , the Kronecker delta, a sym-
bol that evaluates to 1 when i = j and 0 if i 6= j, and which we will encounter δij
frequently. Easily verified is, for example, εijkεimn = δjmδkn − δjnδkm.

Let us revisit the cross-product in a determinant notation that should give us
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the equivalent to eq. (1.14),

u× v =

∣∣∣∣∣∣
x̂ ŷ ẑ
ux uy uz
vx vy vz

∣∣∣∣∣∣ (1.15)

= (uyvz − uzvy) x̂ + (uzvx − uxvz) ŷ + (uxvy − uyvx) ẑ. (1.16)

The volume of the parallelepiped described by three vectors u, v and w is

V = |u · v ×w|. (1.17)

1.2 From Cartesian to spherical coordinates, and back
In a Cartesian system, the location of a point r is given in terms of the fixed(x, y, z)
unit vectors x̂, ŷ and ẑ as

r = xx̂ + yŷ + zẑ, (1.18)

whereby it is most convenient to think of r as the vector joining the origin of
the coordinate system to the point of interest, with the set (x, y, z) containing
its Cartesian coordinates, see Fig. 1.1.

ŷ

r̂

Ω

θ

φ

ẑ

x̂

r ’^

∆

r̂

Fig. 1.1. Cartesian and spherical coordinates.

The vectors x̂, ŷ and ẑ are mutually perpendicular and have unit length:x̂, ŷ, ẑ
they define an orthogonal, indeed, an orthonormal coordinate system. The
components of r are “resolved” via the dot product:

x = r · x̂, (1.19)

y = r · ŷ, (1.20)

z = r · ẑ. (1.21)

Spherical coordinates, on the other hand, are the set (r, θ, φ) that describes(r, θ, φ)
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the location of r in terms of its distance from to the origin, r = ‖r‖, its colat-
itude 0 ≤ θ ≤ π, and its longitude 0 ≤ φ < 2π. The transformation between
Cartesian and spherical coordinates is achieved by the relations

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

r =
√
x2 + y2 + z2,

θ = tan−1(
√
x2 + y2/z), (1.22)

φ = tan−1(y/x).
The fixed Cartesian unit vectors x̂, ŷ and ẑ have counterparts that vary r̂, θ̂, φ̂

with position: at every location r the unit vectors r̂(r), θ̂(r) and φ̂(r) define
a local coordinate system that can be related to the Cartesian axes x̂, ŷ and ẑ as

 r̂
θ̂

φ̂

 = ΓT ·

 x̂
ŷ
ẑ

 ,

 x̂
ŷ
ẑ

 = Γ ·

 r̂
θ̂

φ̂

 , (1.23)

whereby Γ defines the orthogonal (its transpose being its inverse, producing Γ
the identity upon multiplication) matrix transformation

Γ =

 sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

 , Γ · ΓT = I. (1.24)

1

x

y

z

φ

θ

θ̂

φ̂

r̂

Fig. 1.2. Spherical unit vectors.

By definition, the Cartesian unit vectors x̂, ŷ and ẑ point in the directions in
which the position coordinates x, y and z, of r increase, thus

∂xr = x̂, ∂yr = ŷ, ∂zr = ẑ. (1.25)

In the same manner we define the spherical unit vectors r̂, θ̂ and φ̂ to point in
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the direction of increasing r, θ and φ with the position vector r. We write

∂rr = r̂, ∂θr/r = θ̂, ∂φr/(r sin θ) = φ̂. (1.26)

The scale factors 1, r and r sin θ follow from the requirement that the right-
hand sides are of length unity. Use eq. (1.22) to write the position vector
r = (r sin θ cosφ, r sin θ sinφ, r cos θ), take the derivatives, and then calcu-
late the norm of the result. Use trigonometry to find the divisor that normal-
izes the result to one. After you’ve done that, you will have discovered that
the Cartesian components of the spherical unit vectors are the columns of Γ
in eq. (1.24) and the left-hand side of eq. (1.23) will verified. Inverting the
relation will add the right-hand side once you notice the orthogonality of Γ.

With the colatitude of a geographical point on the unit sphere r̂ denoted by
0 ≤ θ ≤ π and the longitude by 0 ≤ φ < 2π, the geodesic angular distance
between two points r̂ and r̂′, as shown in Fig. 1.1, will be denoted by ∆, where

cos ∆ = r̂ · r̂′ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (1.27)

Finally, by differentiation of the columns of Γ of eq. (1.24), we find that the
partial derivatives of the spherical unit vectors themselves are given by

∂r r̂ = 0, ∂θ r̂ = θ̂, ∂φr̂ = φ̂ sin θ,
∂rθ̂ = 0, ∂θθ̂ = −r̂, ∂φθ̂ = φ̂ cos θ,
∂rφ̂ = 0, ∂θφ̂ = 0, ∂φφ̂ = −r̂ sin θ − θ̂ cos θ.

(1.28)

We will be using these soon enough.

1.3 Fields
A vector field u(r) is represented in a Cartesian system asu(r)

u = uxx̂ + uyŷ + uz ẑ, (1.29)

and in spherical polar coordinates as

u = ur r̂ + uθθ̂ + uφφ̂. (1.30)

As should follow immediately from eqs (1.23)–(1.30), the coordinate functions
in both representations, which all vary with position r, transform as ur

uθ
uφ

 = ΓT ·

 ux
uy
uz

 ,

 ux
uy
uz

 = Γ ·

 ur
uθ
uφ

 . (1.31)

The easiest route to this result is to rewrite eq. (1.30) using a vector product
for the components, then using eq. (1.23), evaluating eq. (1.24), writing it all
out, and collecting terms.
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A tensor field T(r) is represented in a Cartesian system as T(r)

T = Txxx̂x̂ + Txyx̂ŷ + Txzx̂ẑ

+ Tyxŷx̂ + Tyyŷŷ + Tyzŷẑ

+ Tzxŷx̂ + Tzyẑŷ + Tzz ẑẑ, (1.32)

using dyads of the coordinate vectors x̂, ŷ, ẑ, and, similarly, using r̂, θ̂, φ̂,

T = Trr r̂r̂ + Trθ r̂θ̂ + Trφr̂φ̂

+ Tθrθ̂r̂ + Tθθθ̂θ̂ + Tθφφ̂φ̂

+ Tφrφ̂r̂ + Tφθφ̂θ̂ + Tφφφ̂φ̂, (1.33)

whose position-dependent elements we collect in a matrix as

T =

 Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz.

 , T =

 Trr Trθ Trφ
Tθr Tθθ Tθφ
Tφr Tφθ Tφφ.

 . (1.34)

Peeling off the individual entries is as simple as it was with eqs (1.19)–(1.21),
by application of the dot product on either side of the tensor with the unit
vectors in whichever coordinate system:

Trr = r̂ ·T · r̂, Txz = x̂ ·T · ẑ, Trφ = r̂ ·T · φ̂, (1.35)

and so on. Either way, if we number the coordinate vectors instead of naming
them explicitly, the expressions generalizing eqs (1.29)–(1.33) simplify to

T = Tijx̂ix̂j and u = uix̂i. (1.36)

1.4 Chain rule and the change-of-variables theorem

Remember Leibniz’ differentiation rule for composed functions:

d

dr
f(x(r)) =

(
dx

dr

)(
d

dx
f

)
. (1.37)

Remember how to integrate as well as you can differentiate? Recall the funda-
mental theorem of the calculus, without worrying about the details for now:∫ b

a

f(x) dx = F (b)− F (a), whereby
dF

dx
= f(x) (1.38)

defines F to be the primitive function or antiderivative of f . If we now also
recall the substitution rule for a case where the variable x becomes identified
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with a function in terms of another variable, x(r):∫
f(x) dx =

∫
f(x(r))

(
dx

dr

)
dr, (1.39)

we can see that eq. (1.37) helps us find a primitive, in the sense of eq. (1.38),
for the integrand on the right side of eq. (1.39).

Suffice to write eq. (1.38) as∫
f(x(r)) dx(r) = F (x(r)) =

∫
g(r) dr, if

dF

dr
= g(r), (1.40)

and thus if F (x(r)) is the composite function of eq. (1.37),

g(r) =
(
dx

dr

)(
d

dx
F

)
=
(
dx

dr

)
f(x), (1.41)

which is consistent with how we’ve done the substitution in eq. (1.39).
Integrate a function, differentiate again, and you get the same function back.

Differentiate a function, integrate the result, and you also recover the origi-
nal (up to a constant). When the upper limit of a definite integral is itself a
function of the variable with respect to which you subsequently wish to differ-
entiate the result, we can use the chain rule to prove Leibniz integral rule for
differentiation under the integral sign:

d

dx

∫ g(x)

f(x)

h(t) dt = h[g(x)]g′(x)− h[f(x)]f ′(x). (1.42)

Consider the upper limit by positing u = g(x) and using the chain rule

d

dx

∫ g(x)

f(x)

h(t) dt =

(
d

du

∫ u

f(x)

h(t) dt

)
du

dx
= h(g(x))

dg

dx
. (1.43)

The multidimensional chain rule of differentiation is a generalization ofJ
eq. (1.37), applied for the other variables y, z, and for θ and φ. We express the
effect on the partial derivatives of the transformation to and from Cartesian to
spherical coordinates (x, y, z)↔ (r, θ, φ) concisely as: ∂r

∂θ
∂φ

 = JT ·

 ∂x
∂y
∂z

 ,

 ∂x
∂y
∂z

 = J−T ·

 ∂r
∂θ
∂φ

 , (1.44)
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whereby J defines the Jacobian of the transformation (r, θ, φ)→ (x, y, z) as

J =

 ∂rx ∂θx ∂φx

∂ry ∂θy ∂φy

∂rz ∂θz ∂φz

 (1.45)

=

 sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

 .

The multi-dimensional version of the integral substitution rule of eq. (1.39)
is the change-of-variables theorem, written in the short-hand form∫∫

V

∫
uC(x, y, z) dxdydz =

∫∫
V ′

∫
uS(r, θ, φ)

∣∣∣∣∂(x, y, z)
∂(r, θ, φ)

∣∣∣∣ drdθdφ. (1.46)

For the Cartesian-to-spherical case we end up with the well-known∫∫
V

∫
uC(x, y, z) dxdydz =

∫∫
V ′

∫
uS(r, θ, φ) r2 sin θ drdθdφ. (1.47)

1

x

y

z

r

dr

φ dφ

θ

dθ

Fig. 1.3. Spherical volume element.

The Cartesian volume element

dV C = dxdydz, (1.48)

becomes, in spherical polar coordinates,

dV S = r2 sin θ dr dθ dφ. (1.49)

The ratio of the volume elements in the two coordinate systems is the determi-
nant of the Jacobian, |J| = det J = r2 sin θ. It is also precisely the product of
the scale factors as can be derived purely geometrically from Fig. 1.3.
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Gravity

What do we want? To answer the age-old question: what’s inside the Earth?
The prime variable of interest is the mass density, an intrinsic property that
is meaningfully correlated with temperature (rocks typically expand with tem-
perature), pressure (rocks typically get denser with increased pressure), and
chemical composition (rocks are polymineralic aggregates whose density de-
pends on the types of atoms and molecules that compose them, and on how
these are assembled). If we can come up with models for the gross density
structure of the Earth, from measurements at (made by humans with instru-
ments) or outside (made by satellites) its surface, we then need to find a way to
study density anomalies inside the Earth from measurements of gravitational
potential, gravitational acceleration, moments of inertia, however obtained. In
short, we need to solve the gravimetric inverse problem.

We start with Newton and his point masses, and make our way to observing
the Earth in the satellite age. Our derivations rely on an increasingly complete
description of the structure of the Earth as a planet—a ball, or rather, a flattened
ellipsoid, and one that rotates, at that. As we strip off, one by one, the “known”,
or most easily explained “big” effects, what will be left are “anomalies” that
will reveal geological structure: chemical differentiation, pressure effects, and
temperature perturbations.

Most of our interest in this chapter will be kept by the decription and un-
derstanding of the largely unchanging, static gravity field of the Earth. We
will set up a formalism that is not time-dependent. This means we will be
ignoring Earth and oceanic tides, and we will only mention any secular time-
dependence at the end—the inevitable result of ice cap melting and sea-level
change under global warming.

The geophysical literature on gravity that is on my shelf is dominated by an
exceptionally well-written book [9], which I heartily recommend to all.

18
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2.1 Force and acceleration

A point mass M at r′ exerts on a point mass m at r a gravitational pull f ac-
cording to, with the gravitational constant G = 6.67408× 10−11 m3kg−1s−2,

f(r) = −G Mm

‖r− r′‖3
(r− r′). (2.1)

The name inverse-square law is all the more intuitively justified if we let the
origin of the coordinate system coincide with the location of the mass M , as

f(r) = −GMm

‖r‖2
r̂ = −GMm

r2
r̂. (2.2)

Be careful about the sign in the previous expression, and think about the di-
mensions, [MLT−2], and units of force, N—the Newton.

Of course we will be thinking of M as the mass of the “big” object (the M

Earth!), and of m as the mass of the “test” object (Newton’s apple!). Normal-
ized by the mass of the test object (force equals mass times acceleration), the
gravitational acceleration is the vector quantity g

g(r) = −GM
r2

r̂. (2.3)

Again, watch the sign, and observe the dimensions, [LT−2] and units, ms−2.
From the ballpark figure for the magnitude of the gravitational acceleration at
the surface of the Earth, derive the mean density of the Earth—and note that it
is much larger than expected from the density of rocks that you will find at the
Earth’s surface. Conclusion: the Earth’s density must increase with depth.

2.2 Potential

The gravitational point-mass potential U(r) is the energy it takes to bring a U

unit test mass from infinity, where its potential is defined to be zero, to the
position r in the gravitational field of the point mass M . We thus have

U(r) =
∫ r

∞
g(r′) · dr′ = G

∫ r

∞

M

r′2
dr′ = −GM

r
. (2.4)

Note the spherical symmetry: only the mass and the distance count. The sign
is established by convention: at the location of the point mass, the potential is
negative infinity.



20 Gravity

2.3 The gradient (of a scalar field)

From eq. (2.4), we heuristically deduce that, in Cartesian coordinates,dU

dU = g · dr = −gxdx− gydy − gzdz. (2.5)

Another way of describing the total variation of the potential U(r) is as∂i

dU =
(
∂U

∂x

)
dx+

(
∂U

∂x

)
dy +

(
∂U

∂x

)
dz. (2.6)

From eq. (2.6) we see that the Cartesian components of the gravitational accel-∇U

eration are the negatives of the partial derivatives of the gravitational potential.
Note that when the potential is constant, there is no acceleration. We write

g(r) = −∇U(r) , (2.7)

and have thereby introduced the gradient, which, in Cartesian coordinates, is
the differential operator∇

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, or, equivalently, ∇ = x̂i∂i. (2.8)

It is to be understood that operators act on something—in the case of eq. (2.7),
on the scalar function of position U(r). In spherical coordinates,

∇ = r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ φ̂

1
r sin θ

∂

∂φ
, (2.9)

which can be derived by using the expressions (1.23) and the chain rule (1.44),
collecting and equating terms.
In the next chapter we’ll be needing, from eq. (1.28), that

∇r̂ =
1
r

(θ̂θ̂ + φ̂φ̂) =
1
r

(I− r̂r̂). (2.10)

2.4 Point masses, no more

Let us consider the potential dU(r), at some location r, that is due to the
presence, at some other location r′, of an infinitesimal amount of mass dM(r′)
inside some infinitesimal volume dV ′. This increment of potential is given by

dU(r) = −G 1
‖r− r′‖

dM(r′) = −G ρ(r′)
‖r− r′‖

dV ′, (2.11)
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where we have introduced the volumetric mass density, ρ(r). If r′ = 0, we re- ρ

cover the differential form of eq. (2.4). Upon integration over the total volume,
we obtain the universal expression V

U(r) = −G
∫
V

ρ(r′)
‖r− r′‖

dV ′ . (2.12)

The gravitational field, with that same generality of expression, is

g(r) = −G
∫
V

ρ(r′) (r− r′)
‖r− r′‖3

dV ′ , (2.13)

which harks back all the way to eq. (2.1) and of course recovers eqs (2.3)
and (2.4) for a point mass at r′ = 0. Per eq. (1.49), dV ′ = r′2 sin θ′ dθ′ dφ′,
and eq. (1.5) in our coordinate system is ‖r−r′‖ =

(
r2 + r′2 − 2rr′ cos θ

)1/2
.

2.5 A spherical Earth

The gravitational potential and the acceleration outside a spherically symmet-
ric “Earth”, where ρ(r) = ρ(||r||) = ρ(r), from eqs (2.12) and (2.13), are
identical to eqs (2.3) and (2.4). In other words, such an idealized situation is
identical to one in which all of the mass were to be concentrated at the origin of
the coordinate system. Newton’s law not only applies to point masses, but also
to spherically symmetric mass distributions—in the right coordinate system.

What about potential and acceleration inside a spherically symmetric body
of radius a? The expression (2.12) breaks down into an integral over the radial a

coordinate r′ in two parts: (I) in which the queried position r is on the outside
of the mass that it encloses, (r′/r) < 1, and (II) in which r is on the inside of
the mass that still surrounds it, (r/r′) < 1. Hence, factoring r or r′ out from
eq. (1.5), and developing the result (1+x)1/2, where x is contains either (r′/r)
or (r/r′), in a Taylor series around x = 0, as appropriate, and disregarding the
colatitudinal dependence on the grounds of symmetry considerations, leaves

U(r) = −G4π
r

∫ r

0

ρ(r′) r′2 dr′︸ ︷︷ ︸
(I)

−G 4π
∫ a

r

ρ(r′) r′ dr′︸ ︷︷ ︸
(II)

(2.14)

when ‖r‖ = r ≤ a. The term (I) simply picks up −GM(r)/r as in eq (2.4).
The gravitational acceleration at a distance r ≤ a from the center is only
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due to the portion of mass that is enclosed in the sphere of radius r as follows:

g(r) = −r̂G
4π
r2

∫ r

0

ρ(r′) r′2 dr′ = −GM(r)
r2

r̂. (2.15)

The expressions (2.14)–(2.15) contain the results that the gravitational poten-
tial inside a homogeneous sphere grows quadratically with the distance from
the center, whereas the accceleration grows linearly. Indeed, if the density
were to be constant, ρ(r) = ρ, we can evaluate eqs (2.14)–(2.15) to yield

U(r) = −G2
3
πρ
(
3a2 − r2

)
, for r ≤ a, (2.16)

g(r) = −G4
3
πρ r r̂, for r ≤ a. (2.17)

The results in this section comprise the notions that the gravitational potential
everywhere inside a spherically symmetric hollow shell is constant, and thus
the acceleration zero. Newton knew all of that, and so do we, now.

It is this first-order picture of a non-rotating, spherically symmetric Earth,
that we shall be refining in subsequent sections.

2.6 Potential outside an Earth-like body

We shall now reevaluate eq. (2.12) outside a mass distribution with some more
generality, i.e., without recourse to spherical symmetry in the density nor the
shape of the volume of interest. Take a look at Figure 2.1 for what follows.

Fig. 2.1. Derivation of eq. (2.20), which expresses the gravitational potential outside a
matter-filled portion of space.

We rewrite the distance ‖r − r′‖ of eq. (1.5), by factoring out the query
point r, and expand the result in a Taylor (Maclaurin) series in (r′/r) < 1 that
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we truncate after the third term, to obtain, accurate to second order,

r

‖r− r′‖
=

[
1 +

(
r′

r

)2

− 2
(
r′

r

)
cos θ

]− 1
2

(2.18)

≈

[
1 +

(
r′

r

)
cos θ +

1
2

(
r′

r

)2 (
3 cos2 θ − 1

)]
, (2.19)

which is accurate at some distance away from the object, when (r′/r) < 1.
After integration, this turns the potential due to, but sufficiently away from,
the entire mass assemblage, correct to second order, into

U(r) = − G

r

∫
dM︸ ︷︷ ︸

(I)

− G

r2

∫
r′ cos θ dM︸ ︷︷ ︸
(II)

− G

2r3

∫
r′2
(
3 cos2 θ − 1

)
dM︸ ︷︷ ︸

(III)

.

(2.20)

The first term in this sum is simply the point-mass potential eq. (2.4) again. It
equals the potential at some distance r due to all of the mass concentrated at
the origin—the zeroth moment of the mass distribution. The second term is a
first moment of the mass density. It vanishes upon choosing the origin of our
coordinate system to coincide with the center-of-mass of the object under con-
sideration. The third term is a second moment of the mass density distribution.

We denote the nth moment of a distribution ρ(r) about a certain point r as
its integral weighted by the shifted coordinate raised to the nth power:

∫
||r′ − r||nρ(r′) d3r′. (2.21)

If, as in statistics, ρ were a probability density function, the zeroth, first (about
the origin) and second (about the first) moments would be the total mass of
probability, its expectation, and its variance. In physics, with ρ the mass den-
sity, the center of mass is the location about which the first moment of mass
density vanishes. The second moment, as you will recognize from your study
of mechanics, is a measure of the rotational inertia in the mass distribution. Do
make the connection with eq. (1.6). But for now, we recognize in eq. (2.20) the
succession of powers in the spherical distance r′. Next, we will relate those
explicitly to the rotational moments of inertia of our planetary system.
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2.6.1 Factoring out moments of inertia

Let us rewrite the integral in the third term of eq (2.20) using the trigonometric
identity sin2 θ + cos2 θ = 1 as follows:

1
2

∫
r′2
(
3 cos2 θ − 1

)
dM =

∫
r′2 dM︸ ︷︷ ︸
(I)

−3
2

∫
r′2 sin2 θ dM︸ ︷︷ ︸

(II)

. (2.22)

The first term of the right hand side of eq. (2.22) is proportional to the sum of
the three moments-of-inertia for rotation of the mass point at r′ = (x′, y′, z′)
around the arbitrarily oriented axes x̂, ŷ and ẑ, and the second term to its
moment-of-inertia with respect to rotation around the axis r̂:

(I)


I(x̂) =

∫
(y2 + z2) dM, around x̂,

I(ŷ) =
∫

(x2 + z2) dM, around ŷ,

I(ẑ) =
∫

(x2 + y2) dM, around ẑ,

(2.23)

(II)
{
I(r̂) =

∫
(r′ sin θ)2 dM, around r̂. (2.24)

This can be seen in Fig. 2.2 by rewriting the squared distance to the origin
system as r′2 = [(y′2 + z′2) + (x′2 + z′2) + (x′2 + y′2)]/2, and recognizing
the perpendicular distance of the integration point r′ to r̂ as r′ sin θ. Hence

1
2

∫
r′2
(
3 cos2 θ − 1

)
dM =

1
2
[
I(ẑ) + I(ŷ) + I(ẑ)− 3I(r)

]
. (2.25)

Fig. 2.2. Derivation of eqs (2.25) and (2.26).
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2.6.2 Picking a principal-moments coordinate system
After anchoring our coordinate system (x̂, ŷ, ẑ) to center of mass of our planet,
we now orient it so that the principal axes of the moment-of-inertia tensor are
x̂, ŷ and ẑ, such that A, B, and C are the principal moments-of-inertia, see
Fig. 2.2. In doing so we transform eq. (2.20) through eq. (2.25) into a result
known as MacCullagh’s formula

U(r) = −GM
r
− G

2r3
[A+B + C − 3I(r)] . (2.26)

The potential at a point r far enough outside a mass distribution, expressed in a
coordinate system centered around its center-of-mass, is now written in terms
of its three principal (A,B,C), and one generic (around r̂) moment-of-inertia.

The first term in eq. (2.26), the point-mass contribution, dominates at large
distances away from the body. Furthermore, eq. (2.26) contains the intuitive
result that the potential for spherically symmetric bodies is identical to that due
to a point with the same total mass located at the center of mass. Indeed, in
that case, A = B = C = I , which annihilates the second term in eq. (2.26).

2.6.3 An Earth-like oblate ellipsoid
We finally assume an Earth-like situation in which we define C to be the polar
moment around the rotation axis ẑ, and in which, due to rotational symmetry,
we assume the equality of the equatorial moments,A = B. In other words: we
consider the Earth to be an oblate ellipsoid. Note that rotation is the ultimate
cause of the flattening, but the Earth’s ability to deform its proximal cause. In
that case, and referring again to Fig. 2.2, the moment I(r) around the axis r
making the colatitudinal angle θ with the north polar axis is given by

I(r) = A+ (C −A) cos2 θ. (2.27)

The potential of such an Earth-shaped body ultimately becomes

U(r) = −GM
r

+
G

r3
(C −A)

(
3
2

cos2 θ − 1
2

)
(2.28)

= −GM
r

+
GM

r3
J2 a

2

(
3
2

cos2 θ − 1
2

)
. (2.29)

In its second form, the expression (2.29) contains the Earth model’s equato- a

rial radius a, and introduces the important dynamical flattening parameter J2

J2 =
C −A
Ma2

, (2.30)

which depends on the Earth’s shape and its internal density distribution.
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2.6.4 The effect of rotation
The above applied to a realistically ellipsoidal but non-rotating Earth, where
we’ll let the irony stand that it is the rotation that is responsible for the fact
that the Earth is a flattened ellipsoid. Let the Earth be rotating with a vector
ω = Ω ẑ. We obtain an expression for the potential due to rotation as in the
derivation of eq. (2.4), but instead of g we will use the centrifugal acceleration,

Urot(r) = −
∫ r

∞
ω × (ω × r′) · dr′ =

∫ r

∞
Ω2r′ sin2 θ dr′

= −1
2

Ω2r2 sin2 θ = −1
2
‖ω × r‖2. (2.31)

2.6.5 A four-parameter Earth model
Only now do we pick some actual values for the parameters introducted up
until this point: the reference Earth. The values for the international WGS-84
reference ellipsoid are a = 6378137 m, GM = 3986004.418 × 108 m3 s−2

and geodetically determined C and A that fix J2 = 108263× 10−8. Only one
additional parameter is necessary to completely define a reference ellipsoid,
namely the Earth’s angular velocity, Ω = 7292115× 10−11 s−1.

2.7 The gravitational potential on the reference ellipsoid
The potential outside of a rotating Earth-like reference ellipsoid becomes

U(r) = −GM
r

+
GM

r3
J2 a

2

(
3
2

cos2 θ − 1
2

)
− 1

2
Ω2r2 sin2 θ. (2.32)

We now call c the polar radius of the reference ellipsoid with equatorial ra-
dius a. We require that the reference ellipsoid be an equipotential surface with
valueUref . At its north pole (where θ = 0) and on its equator (where θ = π/2),

Uref = −GM
c

+
G

c3
J2Ma2︸ ︷︷ ︸

at the north pole

= −GM
a
− G

2a3
J2Ma2 − 1

2
a2Ω2︸ ︷︷ ︸

at the equator

. (2.33)

From these equations we derive the normalized difference between the polarf

and equatorial radii of the reference equipotential surface, equal to

f =
a− c
a

= J2

(
c

2a
+
a2

c2

)
+

1
2
a2cΩ2

GM
≈ 1

2

(
3J2 +

a3Ω2

GM

)
. (2.34)

This quantity, termed the geometrical flattening is approximately

f ≈ 1
2

(3J2 +m) , (2.35)
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isolating a term from within the brackets in eq. (2.34) that we define as m

m =
aΩ2

GM/a2
. (2.36)

With the values for the WGS-84 reference ellipsoid, we thus have Uref =
62636860.8497 m2 s−2, f = 1/298.257223563 and also c = 6356752.3142 m
and m = 0.003461391393112. At the North Pole the equipotential surface is
about 21 km closer to the center of the Earth that at the equator.

2.8 The gravitational acceleration on the reference ellipsoid

Let us now calculate the gravitational acceleration at the surface of such a
“model Earth” as defined by the reference ellipsoid. We use eq. (2.7) and
eq. (2.9) and the potential given by eq. (2.32). Owing to the small flattening
of the reference ellipsoid, we will be justified in neglecting all but the radial
component of the acceleration. We thus write:

g(r) ≈ GM

r2
− 3

GM

r4
J2 a

2

(
3
2

cos2 θ − 1
2

)
− Ω2r sin2 θ. (2.37)

Now we see that m in eq. (2.36) is the ratio between the magnitudes of the
centrifugal and the gravitational acceleration at the equator, as we shall see,

A useful approximation for the radius of the reference ellipsoid is

rref ≈ a (1− f cos2 θ), (2.38)

and for its inverse square we can write the approximation

r−2
ref ≈ a

−2 (1 + 2f cos2 θ), (2.39)

which we use to reduce the first term of eq. (2.37). Its second and third terms
are already small enough for us to use the approximation rref ≈ a, and thus
the gravitational acceleration on the reference ellipsoid will be

gref(θ) ≈
GM

a2

[
1 + 2f cos2 θ − 3J2

(
3
2

cos2 θ − 1
2

)
−m sin2 θ

]
≈ GM

a2

(
1 +

3
2
J2 sin2 θ −m+ 2m cos2 θ

)
. (2.40)

If we now define an analog to eq. (2.34), namely the gravity flattening, f∗

f∗ =
gnp − geq

geq
=
−3J2/2 + 2m
1 + 3J2/2−m

, (2.41)
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we can rewrite eq. (2.40) in the form of, once again, an ellipse:

gref(θ) = geq

(
1 + f∗cos2 θ

)
. (2.42)

So this is the magnitude of the gravitational acceleration of the reference ellip-
soid on the reference ellipsoid, at the point uniquely defined by its colatitude,
and expressed relative to the gravitational acceleration at the equator. To the
same order of the approximation as the above equations,

f∗ = 5m/2− f. (2.43)

Eqs (2.42)–(2.43) express the amazing results obtained by Clairaut in the mid-
eighteenth century: the geometrical shape of the Earth can be obtained from a
combination of purely dynamical quantities, i.e., by measuring gravity.

2.9 Practical formulas and international reference values

Maybe here a short first section on gravity “anomalies”.
After subtracting reference values from the measurements, the resulting

anomalies are those variations of gravity that cannot be accounted for by sim-
ply approximating the Earth as a rotating oblate ellipsoid. The insights we
get from such anomalies about the interior of the Earth are of fundamental
importance for our understanding of our planet.

Note the Fischer geoid.
To conclude, the defining parameters for WGS-84 are given in Table 2.1,

and from this, all of the above can be derived.

Table 2.1. Defining parameters of the WGS-84.

a 6378137 m
f 1/298.257223563
GM 3986004.418× 108 m3 s−2

Ω 7292115× 10−11 s−1

Picture of the geoid.

2.10 Flux

Is what, exactly? Treat flux graphically, and derive from this the expression for
divergence in Cartesian coordinates. Which you only name in the next section.
The gate analogy.
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2.10.1 The divergence (of a vector field)

The divergence ∇· can be thought of as the dot product between the gradient
and its argument, which must be at least a vector. In that case, the result is
scalar. Physically, it is the outward flux of the vector field per unit volume. In
Cartesian coordinates, the divergence of a vector function u(r) equals

∇ · u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

, (2.44)

which is easily derived from eqs (2.8) and (1.29). In spherical coordinates,
after a rather more lengthy calculation via eqs (2.9), (1.30) and (1.28), we get

∇ · u =
∂ur
∂r

+
2
r
ur +

1
r

(
∂uθ
∂θ

+ uθ cot θ +
1

sin θ
∂uφ
∂φ

)
. (2.45)

2.10.2 The Gauss theorem

One of the most fundamental results underlying the potential theory of gravity
is the divergence theorem due to Gauss, which states, for vector fields, that
the volume integral of the divergence of the quantity u is equal to the flux, or
surface integral of its surface-parallel component, with unit normal vector n̂:∫

V

∇ · u dV =
∫
∂V

n̂ · u dΣ. (2.46)

For good measure, we state the version for surfaces in two dimensions:∫
Σ

∇ · u dΣ =
∫
∂Σ

n̂ · u dl, (2.47)

with normal unit vector n̂, and for lines in one dimension, we get the well-
known result∫ b

a

∂u

∂l
dl = u(b)− u(a). (2.48)

2.11 Poisson’s and Laplace’s equations

Need Kellogg, brief treatment by Blakely. Bottom line: once again give the
perspective that we need to write potentials and their derivatives both inside
and outside of a mass distribution, and that it depends on the niceties of densi-
ties to be able to pull the derivatives out of the integral.
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Fig. 2.3. Diagram illustrating Gauss’ theorem, eq. (2.46).

So now we apply eq. (2.46) to the flux of gravity through a small sphere
containing a little bit of mass. Heuristic derivation.∫

V

∇ · g dV =
∫
∂V

n̂ · g dΣ. (2.49)

We use eq. (2.3) and eq. (2.7), pretending we’re in some tiny volume of radius r
with surface area 4πr2, with a homogeneous bit of enclosed mass, so r̂ = n̂,∫

V

∇ ·∇U dV =
GM

r2

∫
∂V

dΣ. (2.50)

And then∫
V

∇2U(r) dV = 4πG
∫
V

ρ(r) dV (2.51)

and then the biggest thing of all

∇2U(r) = 4πGρ(r) . (2.52)

This is called Poisson’s or Laplace’s equation—depending on whether the
equation has a right hand sign or not. The right-hand side of eq. (2.51) fol-
lows from the right-hand side of eq. (2.50) for the surface, and by writing out
the mass as a density integral.

2.12 The Laplacian (of a scalar field)

We’ve identified ∇2 = ∇ ·∇, the Laplacian, a measure of the curvature of a
scalar field. In Cartesian coordinates:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.53)
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And in spherical coordinates:

∇2 =
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

(
∂2

∂2
θ

+ cot θ
∂

∂θ
+

1
sin2 θ

∂2

∂φ2

)
. (2.54)

Use this expression to verify eq. (2.16).

2.13 Solutions to Laplace’s equation—I

Some generalities of solving differential equations: boundary conditions, meth-
ods.

Let’s say we’re outside (or in the limit, on the surface) of some mass distri-
bution, i.e. in a density-free region of space. There, Laplace’s equation holds:

∇2U(r) = 0. (2.55)

We want to find the function U that represents the potential due to the mass
distribution—this function is non-zero. It is, however, harmonic, that’s the
word. From looking at any of the foregoing expressions for U(r) that we
derived via more pedestrian means, we can see that sums and products of con-
stants, powers of r and trigonometric functions etc somehow will be good can-
didate functions to describe the general shape of U in spherical coordinates.
So we’re not worrying wat causes the potential, we’re just going to find the
most general form for it.

We take the bold if uninspired move to test a solution by separation of vari- RΘ Φ
ables, i.e. we propose that

U(r, θ, φ) = R(r) Θ(θ) Φ(φ), (2.56)

and thereby reduce this partial differential equation to a set of three ordinary
ones.

2.13.1 Radial behavior

Focus on derivation, then reduction, then solution, without the details.
We we find two possible solutions: R(r)

R(r) =
{

rl

r−l−1 . (2.57)

Maybe here say we suspect they’ll be useful for internal and external fields
separatly, depending on their decay.
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2.13.2 Azimuthal behavior

We plug eq. (2.54) into eq. (2.56), we chug, and find for the radial dependence
an equation

1
R

1
r2

d

dr

(
r2 d

dr
R

)
. (2.58)

This gives us the l(l + 1) behavior.
We plug, we chug, we find for the azimuthal or longitudinal dependence theΦ(φ)

equation

− 1
Φ
d2

dφ2
Φ = m2, (2.59)

which is solved for by a complex exponential modulo any constant,

Φ(φ) = Clm exp(imφ), (2.60)

for certain Clm and Slm, to be determined. We are prudently adding bothΘ(θ)
indices to the coefficients multiplying the sine and cosine terms.

2.13.3 Colatitudinal behavior

We plug and chug and get for the colatitudinal dependence

sin θ
d

dθ

(
sin θ

d

dθ
Θ(θ)

)
+ [l(l + 1) sin2 θ −m2]Θ(θ) = 0. (2.61)

Now we’re in luck, as eq. (2.61) is an equation that is known and loved inPlm
the mathematics community and goes by the name of associated Legendre
equation. The solutions are known as associated Legendre functions... and go
by Plm(θ) or, often Plm(cos θ), and often, in the notation µ = cos θ. Connect
up with them being eigenfunctions of the surface Laplacian.

This is the only one that triggers its own subsection.

2.13.4 Solutions to Legendre’s equation

First some business about the Legendre functions. Here they are. The Ro-
drigues’ formula for µ = cos θ:

Plm(µ) =
1

2ll!
(1− µ2)m/2

(
d

dµ

)l+m
(µ2 − 1)l. (2.62)

As implicit and analytical this formula is, its numerical evaluation gets cum-
bersome very fast. Calculating factorials is not for the faint of heart. Luckily,
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the Legendre functions follow a host of three-term recursion relations, start-
ing from some very simple building blocks, calculating the next order from
the previous two, or the next degree from the previous two. Smart normaliza-
tion will prevent numerical inaccuracies from building up. Table 2.2 lists the
low-degree functions explicitly, and Fig. 2.4 offers a graphical rendition.

Table 2.2. Associated Legendre functions of degree and order zero to two.

l m Plm

0 0 1

1 0 cos θ
1 1 sin θ

2 0 3
2

cos2 θ − 1
2

2 1 3 sin θ cos θ

2 2 3 sin2 θ

2.13.5 Back to the narrative

And the bottom line is that by combining eqs (2.57), (2.60) and (2.62) we have
found the complete solution in the form of eq (2.56), and thus, we have found
the general solutions of the Laplace equation, which we shall label Ulm,

Ulm(r, θ, φ) =
{

rl

r−l−1

}
Plm(cos θ) exp(imφ), (2.63)

call them solid spherical harmonics, if you will. People do.
Now we need to define the full solution for a harmonic potential in spher-

ical coordinates, the main point being that we now write the potential for an
external field as

U(r) =
∞∑
l=0

l∑
m=0

rl [C ′lm cosmϕ+ S′lm sinmϕ]Plm(cos θ). (2.64)

and the potential outside the mass distribution (i.e. for the internal field) as

U(r) =
∞∑
l=0

l∑
m=0

(
1
r

)l+1

[C ′′lm cosmϕ+ S′′lm sinmϕ]Plm(cos θ). (2.65)

Earth models, clearly of the latter kind, are often given as normalized band-
limited expansions
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Fig. 2.4. A rendition of spherical harmonics of various degrees l and ordersm, reduced
to their essence: whether they are positive or negative, hence in two tones, and with the
number of nodal crossings clearly visible. Whenm = 0, the spherical harmonic is said
to be zonal, and when l = m it is sectoral. The general case is called tesseral.

U(r) = −GM
a

L∑
l=0

l∑
m=0

(a
r

)l+1

[Clm cosmϕ+ Slm sinmϕ]Plm(cos θ),

(2.66)

as one form of the sought-after solution to eq. (2.55). Take a good look at the
canonical relation eq. (2.66). All the information about the planetary gravity
contained is contained in the spherical harmonic expansion coefficients of the
gravitational potential, Clm and Slm. Armed with these, and a knowledge
of the normalizing constants, GM and a, the equatorial radius, it becomes
easy to calculate the potential at any other value outside the mass distribution.
Operations such as upward and downward continuation from one height up or
down to another are a simple scaling by a degree-dependent term (a/r)l+1.
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Fig. 2.5. Legendre functions of order m = 0, for the construction of zonal spherical
harmonics, for various degrees l = 0, 1, 2, 3. The number of colatitudinal nodal cross-
ings equals the degree l. As to the associated Legendre functions, the order m modifies
the number of colatitudinal crossings. The spherical harmonics, which contain the lon-
gitudinal term exp(mφ), will distribute the l nodal lines on the Earth’s surface across
additional longitudinal nodal lines.

2.14 Spherical harmonics
The surface spherical harmonics occupy a special place:

Ylm(θ, φ) = eimφXlm(θ), (2.67)

Xlm(θ) = (−1)m
(

2l + 1
4π

)1/2 [ (l −m)!
(l +m)!

]1/2

Plm(cos θ), (2.68)

What their deal is with the surface Laplacian. What their orthogonality is.
Make sure to also list what Y00 is as we will be needing this later.
The least-squares approximation properties etc. that show us it’s more than

just an oddity. In fact, restricting our attention to those functions restricted to
the unit sphere, any function, whether it is harmonic or not, can be represented
as a sum of spherical harmonics as long as it is square-integrable, which is
nothing more than the rather mild condition that∫

Ω

|f(r)|2 dΩ <∞. (2.69)

This is easily shown by the following argument which I have written down
somewhere. Make the connection to Fourier analysis.
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Table 2.3. EGM96 coefficients in values of 10−6. The scaling values are
a = 6378136.3 m and GM = 3986004.415× 108 m3 s−1.

l m Clm Slm

0 0 1 0

1 0 0 0
1 1 0 0

2 0 -484.1654 0
2 1 -0.0002 0.0012
2 2 2.4391 -1.4002
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Fig. 2.6. Power in the coefficients for the gravitational field of Earth model EGM2008.
Starting from l = 0, note the missing l = 1 term, and the steep drop-off with increasing
spherical harmonic degree. Local slopes of power spectral densities like these are quite
diagnostic of the planet under consideration.

2.15 Solutions to Laplace’s equation—II
Rewriting the potential equation (2.11) in integral form, we have for the poten-
tial due the mass in the Earth at a point outside of the Earth,

U(r) = −G
∫
⊕

ρ(r′)
‖r− r′‖

dV ′. (2.70)
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Going back all the way to Gauss is the result that, when r′ < r,

1
‖r− r′‖

=
1
r

∞∑
l=0

(
r′

r

)l
Pl(r̂ · r̂′), (2.71)

=
1
r

∞∑
l=0

(
r′

r

)l l∑
m=−l

(
4π

2l + 1

)
Ylm(r̂)Ylm(r̂′), (2.72)

where we recall eq. (1.27), r̂ · r̂′ = cos ∆. In some sense we’ve already seen
this, as eq. (2.18). From this we conclude that

U(r) =
∞∑
l=0

l∑
m=−l

(
1
r

)l+1

UlmYlm(r̂), (2.73)

an expansion in solid harmonics, where the Stokes’ coefficients are given by

Ulm = − 4πG
2l + 1

∫
⊕
ρ(r′) r′l Ylm(r̂′) dV ′ . (2.74)

In a spherically symmetric Earth, we have the special case:

Ulm = − 4πG
2l + 1

∫ a

0

ρ(r′) r′l+2 dr′
∫ π

0

∫ 2π

0

Ylm(θ′, φ′) sin θ′ dθ′ dφ′, (2.75)

which we had seen in various guises before.

2.16 Potential, gravitational and geoidal anomalies

The real utility of using spherical harmonic expansions for the potential lies
in the ease with which derived quantities can be computed by simple manipu-
lations of the expansion coefficients. We begin by introducing and defining
some fundamental quantities, which we will then restate in terms of some
rather easily obtained functions of the spherical harmonic coefficients of the
root quantity that is the gravitational potential. Spherical harmonic expan-
sion coefficients of the gravitational potential of Earth and various planets and
Moons are a prime target for geodetic satellite missions, and their tables are
widely distributed by (international) space agencies.

The actual geopotentialU(s) and the potentialUref(s) of the reference Earth ∆U
differ by a quantity called a potential anomaly,

∆U(s) = U(s)− Uref(s). (2.76)

In eq. (2.76), s is a generic position coordinate. Henceforth, we introduce two
specific coordinates: one, r that defines an equipotential surface of the actual
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Earth, and another, r′ that defines an equipotential surface of the reference,
i.e. ellipsoidal, Earth. Both equipotential surfaces maintain the same constant
value of the potential— a choice of convenience which we call U⊕.U⊕

The reference geoid is the equipotential surface at the reference value,r′

{r′ : Uref(r′) = U⊕}, (2.77)

where ‖r′‖ = rref , which we have previously approximated by eq. (2.38).
Given that the reference Earth is at best an approximation of the real thing,r

the actual geoid, at the same potential, is the locus of points r defined by

{r : U(r) = U⊕}. (2.78)

In what follows we will continue to speak of “the” actual and reference geoids
as equipotential surfaces with the same potential U⊕, continuing to denote a
point on the actual geoid by r and on the reference geoid by r′. Hence, a
specific case of eq. (2.76) becomes the potential anomaly,

∆U(r) = U⊕ − Uref(r). (2.79)

The, to first order radial, difference between these two equipotential surfacesN

is the geoid height or geoid undulation,

N(r) = ‖r‖ − rref(θ). (2.80)

Refer to Fig. 2.7. Over regions of mass excess the equipotential surface will
be warped up compared to the reference, whereas it will be drawn down over
regions of mass deficit (e.g., low-density areas).

Fig. 2.7. Mass deficiencies cause geoid lows, mass excesses cause geoid highs.

How does the potential anomaly relate to the geoid height? We compute
the value of the reference potential at r (i.e, on the actual geoid) from its value
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at r′ (i.e., on the reference geoid), where Uref(r′) = U⊕. We make a first-order
Taylor expansion in the radial direction using eq. (2.7) to write

Uref(r) = U⊕ +
∂Uref(r)
∂r

∣∣∣∣
r′
N(r) = U⊕ + gref(r′)N(r). (2.81)

Now, the potential does not vary on the equipotential surface, but the gravity
does. And thus, combining eqs (2.79) and (2.81) we use a reference of the kind
of eq. (2.42) to derive that

∆U(r) = −gref(θ)N(r). (2.82)

This result is known as Bruns’ formula. It allows us to calculate the radial
distance to the reference geoid from a measurement of the potential and a com-
parison with the theoretical reference gravity. Take a good look at Fig. 2.8.

Fig. 2.8. Diagram illustrating the relation between the various anomalies (potential,
geoid, free-air gravity) and the gravity disturbance.

The vector gravity disturbance is the difference between the measured grav- δg
ity and the reference gravity at the same point in space:

δg(r) = g(r)− gref(r), (2.83)

which, using eqs (2.7) and (2.76) we can easily reduce to

δg(r) = −∇[∆U(r)]. (2.84)

To first order, we obtain for the scalar gravity disturbance δg

δg(r) = g(r)− gref(r) =
∂∆U(r)
∂r

. (2.85)
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The above quantities relate actual measurements to their reference or theoret-
ical values at the same point in space. For historical reasons, however, it has
been more popular to relate the value measured on (or, as we see later, referred
to) the actual geoid to the theoretical values on the reference surface. In other
words, there, the comparison between gravity values is to points at the same
potential, which, however, are at different locations spatially.

The free-air gravity anomaly is defined as the gravity g(r) at some point r∆g
on the Earth’s actual geoid, minus the reference gravity, gref(r′), at the projec-
tion r′ of this point onto the reference geoid. Neglecting the small differences
in direction, the scalar free-air anomaly is given by:

∆g(r) = g(r)− gref(r′). (2.86)

To reduce this further, we expand gref(r′) in a Taylor series to first order:

gref(r) = gref(r′) +
∂gref(r)
∂r

∣∣∣∣
r′
N(r). (2.87)

Using this and eq. (2.85) we rewrite eq. (2.86) as

∆g(r) =
∂∆U(r)
∂r

+
∂gref(r)
∂r

∣∣∣∣
r′
N(r), (2.88)

rewrite the second term of the above by approximating, starting from eq. (2.37),∂rgref(r)

∂gref(r)
∂r

∣∣∣∣
r′
≈ − 2

rref
gref(θ). (2.89)

Eq. (2.89) is a free-air correction: the formula by which we can relate, e.g., the
gravitational acceleration measured at some point on the actual Earth (like, in
Princeton) to the value that the gravitational acceleration has at some other
point a certain distance away. This rewrites eq. (2.88), with Bruns’ equa-
tion (2.82), as

∆g(r) =
∂∆U(r)
∂r

+
2
rref

∆U(r) . (2.90)

This is the fundamental equation of geodesy. It relates the measurement quan-
tity ∆g(r) to the unknown disturbing potential, ∆U(r). Since our measure-
ments are inevitably confined to the surface of the Earth, however, eq. (2.88),
embodies a boundary-value problem condition to Laplace’s equation (2.55).
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Fig. 2.9. Diagram illustrating the relation between the various anomalies (potential,
geoid, gravity) and the gravity disturbance.

2.17 Spherical harmonic formulation of the above

How can we relate, e.g., gravity anomalies to geoid heights, from the spherical
harmonic expansions coefficients of the potential? Simple transformations will
do the trick.

For convenience, we can represent the set of coefficients of eq. (2.66) by
using the subscriptsA andB to label the coefficients of the cosmϕ and sinmϕ
terms in the expansion as follows:{

UA
UB

}
= −GM

a

{
Clm
Slm

}
. (2.91)

The reference potential is by definition zonal, Uref(r, θ, φ) = Uref(r, θ). We
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can represent its coefficients as follows:{
Uref,A

Uref,B

}
= −GM

a

{
C ′lm

0

}
(2.92)

Note that we did not drop the m , even though m = 0 for the zonal harmon-
ics used for the reference spheroid. We just require the coefficient A

′m
l to be

zero for m 6= 0. By doing this we can keep the equations simple.
The coefficients of the anomalous potential ∆U(r, θ, ϕ) are obtained simply

by subtracting the coefficients of the reference:{
∆UA
∆UB

}
= −GM

a

{
Clm − C ′lm

Slm

}
(2.93)

Let us find the equations for the radial derivative of the potential anomaly,
which represent the gravitational attraction due to an anomalous mass. Note
that these are the equations for the gravity disturbance:

δgA

δgB

 =


d∆UA
dr

d∆UB
dr

 = −GM
a

(
−(l + 1)

a

)
Clm − C ′lm

Slm


(2.94)

We can find the expression for the coefficients of ∆g(r, θ, ϕ) using eqs. (??)
and (2.94):{

∆gA
∆gB

}
=
GM

a

(
l − 1
a

){
Clm − C ′lm

Slm

}
(2.95)

= gref(a)(l − 1)
{
Clm − C ′lm

Slm

}
(2.96)

Note that these expressions are only valid at the reference radius a since
the degree-dependent attenuation factors are not represented here. Actually,
should put them in here. The proportionality with (l − 1)gref(a) means that
the higher degree terms are magnified in the gravity field relative to those in
the potential field. This leads to the important result that gravity maps typically
contain much more detail than geoid maps because the spatial attenuation of
the higher degree components is suppressed.

Using eq. (2.82) we can express the coefficients of the expansion ofN(r, θ, ϕ)
in terms of either the coefficients of the expanded anomalous potential:

gref(a)
{
NA
NB

}
=
GM

a

{
Clm − C ′lm

Slm

}
, (2.97)
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which then leads to the following form{
NA
NB

}
= a

{
Clm − C ′lm

Slm

}
, (2.98)

or, in terms of the coefficients of the gravity anomalies (eqns 2.96 and 2.98){
NA
NB

}
=

a

(l − 1)gref(a)

{
∆gA
∆gB

}
. (2.99)

The geoid heights can thus be synthesized from the expansions of either
the gravity anomalies (2.99) or the anomalous potential (2.98). Geoid anoma-
lies have been constructed from both surface measurements of gravity (2.99)
and from satellite observations (2.98). Eq. (2.99) indicates that, relative to
those of the gravity anomalies, the coefficients of the geoid height at radius
rref = a N(r, θ, ϕ) are suppressed by a factor of 1/(l − 1). As a result,
shorter-wavelength features are much more prominent on gravity maps. In
other words, geoid (and geoid height) maps essentially depict the low harmon-
ics of the gravitational field.

A last note concerns the spectral representation of the free-air gravity anomaly
with respect to the gravity disturbance. From the foregoing,{

∆gA
∆gB

}
=
l − 1
l + 1

{
δgA
δgB

}
(2.100)

As we have seen, the gravity disturbance reveals much more of the hetero-
geneous structure of the Earth than the free-air anomaly. On the other hand,
the free-air anomalies are only filtered coefficients of the gravity disturbances.
However, this filter is very non-linear. Low harmonics are severely attenu-
ated. If most of the gravity disturbances are in the long-wavelength part of the
spectrum, the free-air anomaly will make those less visible.

2.18 Gravity due to (buried) bodies
Periodic loads. Infinite slabs. Buried loads. Derivation is best not in TS but
rather in Snieder. At least one worked example. And then later return to it with
flexure?

2.19 Gravity measurement and interpretation in practice
To reduce a gravity measurement g(r′′), made at some altitude h(r′′) above
the actual geoid r, to the actual geoid (so it can later be referred to the val-
ues on the reference geoid r′ in order to compute the free-air anomaly), we
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need an adjustment called the free-air correction. We follow the derivation of
eqs (2.87) and (2.89) and write, to first order,

g(r) = g(r′′) +
2
r
g(r)h(r′′). (2.101)

We add a bit of gravitational attraction to the measurement made above the
geoid, to compensate for the fact that we are further removed from the mass.
The free-air correction explains that part of the observed anomaly with respect
to the reference gravity that is due to the altitude of the measurement (without
any intervening mass, as for measurements made from an airplane, hence the
name, free-air), and what is left is the free-air anomaly. Shipboard measure-
ments minus the reference gravity are at once free-air anomalies.

Many assumptions have led us to finally writing down eq. (2.101), but prac-
tical implementations proceed in an even more cavalier fashion, by approxi-
mating the free-air gravity correction as

2
r
g(r) ≈ 0.3086× 10−5s−2. (2.102)

In other words, 0.3086 mgal is to be added to the measurement per meter of
observation altitude in order to reduce the measurement to the actual geoid —
at least, approximately.

By the way, tell them what a mgal is, and an Eötvós is 10−9 per second
squared, a unit of gravity gradient.

A terrain correction is needed to account for what we have been neglecting
thus, namely the mass in-between the measurement point and the actual geoid
(imagine a measurement taken on a mountain top).

Full problem done in Fourier space, or in spherical harmonics, gets compli-
cated rather quickly. Quick and dirty, leads to the Bouguer correction. Then,
there’s the fact that you need to do a similar correction for an interface at depth.
Perhaps should derive the Bouguer correction twice—once the easy way, and
the second time as a special case for the compensation due to an interface. Via
direct integration, or via Fourier-domain modelling.

Talk briefly about isostasy, it returns twice.

2.20 Gravity and topography
Flexure etc.

2.21 Time-variable gravity
GRACE, and what it does for us.
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Fig. 2.11. The EGM96 Earth geopotential reference model.



3
Magnetism

All the world is a magnet. “Magnus magnes ipse est globus terrestris”, said
Alexander von Humboldt, paraphrasing William Gilbert of Colchester [10].
Geomagnetism may well be the oldest natural science of all. Certainly older
than any other area of “modern” geophyiscs–knowledge of the study of Earth’s
magnetic field has been vital to humans ever since we learned how to sail.

Ancient Chinese civilizations knew how to navigate on the compass for ages.
They knew the magnetic needle did not point precisely to geographic pole.
That knowledge is said to have been passed on through Italy and Flanders to
the ages of Western “discovery”, and played a role in the voyages of Colum-
bus [11]. Formal inquiry had to wait for another few centuries, but as Newton
was to gravity in the 18th century, so was Gauss to magnetism in the 19th.

Again we are able to start with nineteenth-century physics and make our way
into the satellite age, with, as of 2019, the thirteenth-generation International
Geomagnetic Reference Field. Like its predecessors, IRGF-13 is a model valid
for a period of just five years, and it comes packaged with derivatives that
attempt to capture its time dependence—the secular variation.

This fact alone should give us pause. Surely the geodetic International Ter-
restrial Reference System in the previous chapter wasn’t changing all that fast?
After all we are still well served by the WGS84 geoid, are we not? But yes
indeed, the study of geomagnetism introduces a temporal component that we
will attempt to explain and understand.

The Earth’s core or main field is ever-changing, actively (re)generated by
convective currents in the Earth’s outer core, a dynamic system referred to
as the geodynamo [12]. In contrast, the crustal and lithospheric fields are
remnant. Quite literally they are the fossils of plate tectonics [13]. Their in-
teraction produces an induced field. And that’s just what happens in the solid
Earth system—about the oceans and atmosphere, we will be largely silent.

47
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3.1 Force, field and induction
Gravity was about the mutual gravitational attraction of two point masses, and
up from there. Next we will be considering the mutual magnetic attraction of
two small loops of electric current: “magnetic point masses”, if you will.

But first, introduce the Lorentz force on an electrical charge q moving with
a velocity v in an electric field E and a magnetic field B:E

f(r) = q [E(r) + v(r)×B(r)]. (3.1)

Electric currents generate a force on a moving charge which is proportonial to
the cross product of the magnetic induction field B and the velocity of theB
charge. Through the force we simultaneously define and find a way to measure
the electric and magnetic fields. This also fixes the units of B to be Tesla (T),
where the dimensions are clearly given as [T]=MT−2I−1.

Let us take a quick look at the electric force, and thereby define the electric
field, via Coulomb’s “law”, for a point charge Q, namely

fE = qE =
1

4πε0
qQ

r2
r̂, (3.2)

where ε0 is the electric constant, and the magnetic force is

fB = qv ×B. (3.3)

And thus much like with gravity in eq. (2.3), we obtain

E(r) =
1

4πε0
Q

r2
r̂. (3.4)

The electrical potential due to such a point charge (an electrical monopole)
will be

V PE =
1

4πε0
Q

r
, (3.5)

and for a dipole we will expect a term in r−2.

3.2 Electrical and magnetic dipoles
Two equal but opposite charges separated by a distance d (in the direction from
negative to positive) define an electrical dipole moment,

mE = Qd. (3.6)

From symmetry considerations, the expansion of 1/r etc., and using eq. (3.5),
exploiting symmetry and to first order,

V DE =
1

4πε0
mE · r̂
r2

, (3.7)
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and for the strength of the dipole we find after a short amount of work

ED(r) =
1

4πε0
mE

r3
(3 cos2 θ + 1)1/2. (3.8)

Like for gravity, the electric dipole generates an electrical potential at a point
a distance r removed from the center of the dipole that falls off as r−3, mod-
ulated by the angle θ that the observation point makes with the axis of the
dipole. Hence, (r, θ) are dipole coordinates.

Now let us anticipate that there is also something like a magnetic dipole,
and let’s pretend it is due to two elusive magnetic monopoles spaced very close
together. The analogy to eq. (3.7) is apparent from the result

V D(r) =
µ0

4π
m · r̂
r2

. (3.9)

3.3 Magnetic potential
As long as there are no electrical currents, outside of any magnetic materials,
a scalar potential is sufficient,

B = −∇VM , (3.10)

Apply eq. (3.10) to eq. (3.9), using the product rule, and eq. (2.10), to obtain
the vector expression

BD(r̂) =
µ0

4π
m

r3
[3(m̂ · r̂) r̂− m̂] , (3.11)

an equation that we can actually use in practice, and we note that

BD(r) =
µ0

4π
m

r3
(3 cos2 θ + 1)1/2, (3.12)

exactly as in eq. (3.8). In dipole coordinates of course.

3.4 Potential outside an Earth-like body
The above contained important simplifications. We want to get at Laplace’s
law for the magnetic potential but need to show the conditions under which this
holds. How do we do that? We first write the full solution for the potential of an
external field as eq. (2.64) and the potential for the internal field as eq. (2.65).

Earth models for an internal field are often given as normalized bandlimited
expansions—no longer just a dipole, but a collection of multipoles:

V (r) = a

L∑
l=1

l∑
m=0

(a
r

)l+1

[glm cosmφ+ hlm sinmφ]Plm(cos θ). (3.13)
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The dipole terms alone are

V D(r) =
a3

r2
(g10 cos θ + g11 cosφ sin θ + h11 sinφ sin θ). (3.14)

Writing out the dot product n eq. (3.9) after transforming the unit vector r̂
via eqs (1.23)–(1.24) yields

V D(r) =
µ0

4π
1
r2

(mx sin θ cosφ+my sin θ sinφ+mz cos θ), (3.15)

which allows for the identification of the components of the dipole vector with
the Gauss coefficients as follows: mx

my

mz

 = a3 4π
µ0

 g11

h11

g10

 . (3.16)

Similarly, we may obtain the components of the dipole field by combining
eq. (3.14) with eqs (3.10) and (2.9). This yields a field vector in a way that
can be thought of as a coordinate transformation from the dipole components
to the field components, if we reuse the matrix Γ from eq. (1.24): 1

2B
D
r

−BD

θ

−BD

φ

 =
a3

r3
ΓT ·

 g11

h11

g10

 . (3.17)

In a frame of reference (r′, θ′, φ′) with one axis aligned with the dipole itself,
so that m = ẑm = ẑ a34π g10/µ0, the field components are given by BD

r′

BD

θ′

BD

φ′

 =
m

r′3
µ0

4π

 2 cos θ′

sin θ′

0

 , (3.18)

which validates the observation that the field strength at the magnetic north
pole (θ′ = 0) is about twice that at the magnetic equator (θ′ = π/2). The
dipolar equatorial field strength at the Earth’s surface is

BD

0 =
m

a3

µ0

4π
= (g2

11 + h2
11 + g2

10)1/2. (3.19)

3.5 Inclination and declination

The angle between B = Br r̂+Bθθ̂+Bφφ̂ and the tangent plane to the Earth’s
surface at the same location (i.e. the dip measured positively downward from
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the local horizontal) is called inclination and given in general by:

I = atan
Br√

B2
θ +B2

φ

, (3.20)

which, for simple dipoles and in a dipole reference frame, simplifies to

ID = atan
BD

r′

BD

θ′
= atan (2 cot θ′). (3.21)

See Figure 3.5. The declination is the azimuth of the field vector, i.e. its
clockwise-positive angle with the geographic meridian:

D = atan
Bφ
Bθ

. (3.22)

Dipoles expressed in a dipole reference frame have no declination, DD = 0.
Important for navigation, isoclinal maps show contours of equal inclination, as
in Fig. 3.3; isogonal maps show contours of equal declination, as in Fig. 3.5.

Fig. 3.1. Magnetic inclination.
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POMME−6 magnetic field, year 2005, degrees 17−720
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Fig. 3.2. POMME-6 for 2005!

Fig. 3.3. Isoclinic map: constant inclination in the IGRF 1990 geomagnetic field.
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Fig. 3.4. Isogonic map: constant declination of the IGRF 1990 geomagnetic field .
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Fig. 3.5. Definitions and such.

3.6 Power spectrum and analytical continuation
Should write something about this. Simply about the description, causes later.

(1) My figure from SPIE would fit in great here.
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3.7 International reference values

See the table. Make maps.

IGRF−12 magnetic field, year 2015, degrees 1−13

 

 

0°  90° 180° 270° 360°

−90°

−45°

0°  

45° 

90° 

radial component (nT)
−6 −4 −2 0 2 4 6

x 10
4

IGRF−12 magnetic field, year 2015, degrees 1−13

minimum −60530 nT ; maximum 66619 nT ; contour interval 5000 nT
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Fig. 3.6. The twelfth International Geomagnetic Reference Field model [14]. Shown
is the radial component
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IGRF−12 magnetic field, year 1915, degrees 2−10

minimum −16420 nT ; maximum 13144 nT ; contour interval 2000 nT
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IGRF−12 magnetic field, year 2015, degrees 2−13

minimum −23676 nT ; maximum 19551 nT ; contour interval 2000 nT
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Fig. 3.7. The twelfth International Geomagnetic Reference Field model [14]. (Top)
The complete field for 2015. (Middle) The non-dipolar field for 2015. (Bottom) The
non-dipolar field for 1915. Note the clearly visible westward drift of the flux patches.

3.8 The curl (of a vector field)

In Cartesian coordinates. The curl or rotation operator ∇×, the cross product
of the gradient with the argument, leaves the rank intact — for our vector
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Fig. 3.8. Power-spectral density of the geomagnetic field model IGRF-12, for 1915 and
for 2015 [14]. Fits to the power in the range l = 1–10 for 1915 and l = 1–10 for 2015
show the spectral decay of the core field, and how little, on balance, has changed in
terms of the energy content of the main field.

l m glm hlm ġlm ḣlm

0 0 0 0 0 0

1 0 -29556.8 0 8.8 0
1 1 -1671.8 5080.0 10.8 -21.3

2 0 -2340.5 0 -15.0
2 1 3047.0 -2594.9 -6.9 -23.3
2 2 1656.9 -516.7 -1.0 -14.0

Table 3.1. Gauss coefficients (nT) of the Earth’s internal field and their
temporal derivatives (nT/yr), in 2005, according to the 10th International

Geomagnetic Reference Field (IGRF-10), as in eq. (3.13) with a = 6371.2 m.
Source: http://www.ngdc.noaa.gov/IAGA/vmod.

function u, the easiest representation is in determinant form:

∇× u =

∣∣∣∣∣∣
∂
∂x

∂
∂y

∂
∂z

ux uy uz
x̂ ŷ ẑ

∣∣∣∣∣∣ , (3.23)

which is as much as(
∂uz
∂y
− ∂uy

∂z

)
x̂ +

(
∂ux
∂z
− ∂uz

∂x

)
ŷ +

(
∂uy
∂x
− ∂ux

∂y

)
ẑ, (3.24)
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Fig. 3.9. Power-spectral density of the geomagnetic field model POMME-6, valid for
2005 [15]. A fit to the spectral power in the range l = 1–13 is shown to represent the
decay of the core field.

which defines a vector field normal to u and its gradient. It measures the rota-
tion or vorticity of the u-field. We show by example. In spherical coordinates
the expressions are a bit more complicated, but still:

∇× u =
1
r

(
∂uφ
∂θ

+ uφ cot θ − 1
sin θ

∂uθ
∂φ

)
r̂ (3.25)

+
(

1
r sin θ

∂ur
∂φ
− ∂uφ

∂r
− 1
r
uφ

)
θ̂ +

(
∂uθ
∂r

+
1
r
uθ −

1
r

∂ur
∂θ

)
φ̂.

Another shorthand is, in component notation, valid for both

∇× u =
∑
i

∑
j

∑
k

εijk∂juk x̂i, (3.26)

where εijk is the Levi-Cività alternating symbol.
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3.9 Maxwell’s equations in vacuo

Maxwells equations are all there is to know about the production and interrela-
tion of electric and magnetic fields. A few of them we’ve already seen (in var-
ious forms). In this section, we will give Maxwell’s Equations in vector form
but derive them from the integral forms which were based on experiments.

3.9.1 The Gauss, Stokes and Green theorems

Two results from vector calculus will be used here. The first we already know:
it is Gauss’ divergence theorem. It relates the integral of the divergence of the
field, over some closed volume V , to the flux through the surface ∂V = Σ that
bounds the volume. The divergence measures the sources and sinks within the
volume. If nothing is lost or created within the volume, there will be no flux
through its surface. Let’s repeat eq. (2.46) here:∫

V

∇ · u dV =
∫
∂V

n̂ · u dΣ. (3.27)

And remember its two-dimensional version, eq. (2.47).∫
Σ

∇ · u dΣ =
∫
∂Σ

n̂ · u dl. (3.28)

A second important law is Stokes’ curl theorem. This law relates the curl of a
vector field, integrated over some surface, to the line integral of the field over
the curve that bounds the surface, with tangent unit vector t̂:∫

Σ

n̂ · (∇× u) dΣ =
∫
∂Σ

t̂ · u dl. (3.29)

See the derivation from Gauss’ in Snieder, which is very enlightening. For
good measure, let us write eq. (3.29) in two planar Cartesian dimensions, i.e.
for a surface Σ whose normal is given by ẑ dΣ. Using eq. (1.29) to write
u = uxx̂+uyŷ for the vector field, and t̂ dl = dx x̂+dy ŷ for the field tangent
to the curve ∂Σ, and with the definition of the Cartesian curl, eqs (3.23)–(3.24),
we have∫

Σ

(
∂uy
∂x
− ∂ux

∂y

)
dΣ =

∫
∂Σ

(ux dx+ uy dy) . (3.30)

In this form, eq. (3.30) is known as Green’s theorem.
This is a very handy theorem, e.g. to compute the area of a certain (para-

metric) surface. For instance, let the curve be defined by the planar equations
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inspired by eq. (1.22),

x = r cosφ , y = r sinφ and 0 ≤ φ < 2π, (3.31)

describing, in other words, a circle of radius r. If we now let ux = −y and
uy = x, we notice that the left hand side of eq. (3.30) defines the area of the
enclosed disk, which is thus equal to

2πr2 =
1
2

∫
∂Σ

(x dy − y dx) =
1
2

∫ φ=2π

φ=0

(
x
∂y

∂φ
− y ∂x

∂φ

)
dφ, (3.32)

as can be easily verified by substitution of eq. (3.31).
Now to an exercise in spherical geometry:∫

Σ

dΩ =
∫
θ

∫
φ

sin θ dθ dφ =
∫
θ

∫
φ

(
∂uφ
∂θ
− ∂uθ

∂φ

)
dθ dφ, (3.33)

and thus what goes is∫
∂Σ

(uθ dθ + uφ dφ) . (3.34)

But can’t now uθ be anything non-φ dependent, and uφ = − cos θ? And note
that the integral of φ is along the curve. This is the solution—whatever the
constant, it vanishes on a closed curve....

Fig. 3.10. Diagram illustrating the geometry of Stokes’ theorem.

3.9.2 The magnetic field is solenoidal

We have already seen that magnetic field lines begin and end at the magnetic
dipole. Magnetic “charges” or “monopoles” are not generally thought to exist
except in very exotic materials and under special circumstances. Hence, all
field lines leaving a surface enclosing a dipole, reenter that same surface. There
is no magnetic flux through a closed surface:∫

∂V

B · dΣ = 0. (3.35)

Rewriting this with Gauss’ theorem (4.17) gives a first law of Maxwell’s:solenoidal

∇ ·B = 0. (3.36)
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3.9.3 Electromagnetic induction
An empirical law due to Faraday says that changes in the magnetic flux through
a surface induce a current in a wire loop that encloses the surface:

d

dt

∫
Σ

B · dΣ = −
∫
∂Σ

E · dl, (3.37)

which can be rewritten using Stokes’ theorem (3.29) to give a second law of
Maxwell’s:

∇×E = − ∂

∂t
B. (3.38)

3.9.4 Displacement current
We’ve seen that a time-dependent magnetic flux induces an electric field. The
reverse is true: a time-dependent electric flux induces a magnetic field. But a
current by itself was also responsible for a magnetic field, as per Biot-Savart’s
law of eq. (??). Both effects can be combined into one equation as follows:

µ0

(
i+ ε0

d

dt

∫
Σ

E · dΣ
)

=
∫
∂Σ

B · dl (3.39)

The term i is the conductive “regular” current that was studied experimentally
by Ampère. The second term within the brackets also has the dimensions of a
current and is termed “displacement” current. Instead of current i we will now
introduce the current density vector J (per unit of surface and perpendicular to
the surface) so that

∫
Σ

J · dΣ = i. We can then use the curl theorem again and
write the third of Maxwell’s equations:

∇×B = µ0

(
J + ε0

∂

∂t
E
)
. (3.40)

The curl of B is the vector sum of all forms of charge through the region. In
the absence of moving charge, B is irrotational. irrotational

In the absence of conduction or displacement currents, the magnetic field is
irrotational, ∇ × B = 0, as per eq. (3.40), in additional to being solenoidal,
∇ ·B = 0, which we knew from eq. (3.36). In that case, Maxwell’s equations
imply the harmonicity of the magnetic potential,∇2V = 0.

3.9.5 Electric flux in terms of charge density
Remember how we obtained the flux of the gravity field in terms of the mass
density. In contrast, the flux of the magnetic field was for a closed surface en-
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closing a dipole. For a closed surface enclosing a charge distribution, the flux
through that surface will be related to the electrical charge density contained
in the volume! This is a manifestation of the potential (rather than solenoidal)
nature of the electric field. We writepotential ∫

∂V

E · dΣ =
q

ε0
, (3.41)

which, with the help of the divergence theorem and introducing the volumetric
electrical charge density ρE so

∫
V
ρE dV = q, transforms easily to the fourth

of Maxwell’s laws:

∇ ·E =
ρE
ε0
. (3.42)

Make connection with Helmholtz’ theorem a la Backus, 2nd chapter

3.10 Maxwell’s equations in an Earth-like body

The Earth ain’t a vacuum. Got to do something about it. Basic point is that we
need terms for the electric polarization and the magnetic polarization or mag-
netization of continuous media such as rocks. The main thing being that we
consider Maxwells’ equations to apply not just at points in a vacuum, but also
on average, over some small volume including a number of atoms, whose av-
erage properties vary smoothly when the center of the volume is moved about
a little. Here’s the complete set again

∇ ·B = 0, (3.43)

∇×E = −∂tB, (3.44)

∇×B = µ0 (J + ε0∂tE) , (3.45)

∇ ·E = ρE/ε0. (3.46)

And let’s now have them hold on average, as in

∇ · 〈B〉 = 0, (3.47)

∇× 〈E〉 = −∂t〈B〉, (3.48)

∇× 〈B〉 = µ0 (〈J〉+ ε0∂t〈E〉) , (3.49)

∇ · 〈E〉 = 〈ρE〉/ε0. (3.50)

At macroscopic distances an atom looks like a point charge plus an electric
and a magnetic dipole. We take this into account as follows. Define a small
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volume ∆V 6= 0 for which

P =
1

∆V

∑
i

pi, (3.51)

for the electric polarization per unit volume and likewise for the magnetic
polarization per unit volume

m =
1

∆V

∑
i

mi. (3.52)

Otherwise called the magnetization vector it is the vector sum of all of the
individual magnetic moments per unit of volume.

It can then be shown that the average charge density is

〈ρE〉 = ρF −∇ ·P, (3.53)

and that the average current density

〈J〉 = J
F

+ ∇×m + ∂tP, (3.54)

where the subscript F refers to free charges and currents (the macroscopic
ones), and the correction terms represent the bound charges and currents (the
microscopic ones), those intrinsic to the atoms and molecules contained in the
small volume of material over which is averaged.

So we rewrite Maxwell’s equations for the last time in this section in a real
medium as:

∇ · 〈B〉 = 0, (3.55)

∇× 〈E〉 = −∂t〈B〉, (3.56)

∇× 〈B〉 = µ0

(
J
F

+ ∇×m + ∂tP + ε0∂t〈E〉
)
, (3.57)

∇ · 〈E〉 = (ρF −∇ ·P)/ε0. (3.58)

3.11 The electric and the magnetic displacement vectors
Materials respond to an applied electric field E and an applied magnetic field
B by producing their own internal bound charges and current distributions,
which in turn contribute to E and B. Since those properties are difficult to
calculate, it is customary in the literature to define an electric displacement
vector

D = ε0〈E〉+ P, (3.59)

and a magnetic displacement vector or magnetic field intensity

H = 〈B〉/µ0 −m, (3.60)
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which is seen to be the magnetic induction minus the effects of magnetization.
These auxiliary fields H qand D allow us to rerwite two of Maxwell’s equa-

tions again in terms of the free current and charge densities

∇×H = J
F

+ ∂tD, (3.61)

∇ ·D = ρF . (3.62)

or, finally, assuming spatial variability on the length scale of averaging, all four
of them in their most often quoted form

∇ ·B = 0, (3.63)

∇×E = −∂tB, (3.64)

∇×H = J
F

+ ∂tD, (3.65)

∇ ·D = ρF . (3.66)

Eqs. (3.63)–(3.66) are not “better” or more general than the original equa-
tions (3.55)–(3.63). But it is possible to avoid needing to calculate the bound
charges and currents if you can supply constitutive relations between B and
H and between E and D.

3.12 Constitutive relations

Now we’re getting to real materials. We need constitutive relations that ex-
press how we can find the terms J

F
, P, and m, which we need in order to

solve Maxwell’s equations. We also need ρF , but that one is easier: adding the
time derivative of eq. (3.58) to the divergence of eq. (3.57), we obtain

∇ · J
F

= −∂tρF , (3.67)

which is a continuity equation expressing the fact that free charges are con-
served. So we know how they relate, and with an initial condition for ρF (r, 0)
we can construct ρF (r, t) at all times t > 0.

It is the domain of experiment or ab initio calculations to obtain the material
parameters

J
F

= σ · 〈E〉, (3.68)

P = ε0 χE · 〈E〉, (3.69)

m = χB · 〈B〉/µ0, (3.70)

where σ is the electric conductivity, χE the electric susceptibility and χB the
magnetic susceptibility. All of these quantities are tensors; in the absence of
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information about the anisotropy of the materials in question, we can think of
them as scalars, and write

J
F

= σ〈E〉, (3.71)

P = ε0 χE〈E〉, (3.72)

m = χB〈B〉/µ0, (3.73)

Eq. (3.71) is known as Ohm’s “law”. In a stationary reference frame, it be-
comes identifiable with the effect of the Lorentz force of eq. (3.1):

J
F

= σ(〈E〉+ v × 〈B〉). (3.74)

3.13 Rock magnetism

The relative magnetic susceptibility is now usually defined not via B as in
eq. (3.73) but rather via H, as

m = χH, (3.75)

The quantity m is the magnetization induced by the ambient or applied exter-
nal field H. We are now writing eq. (3.60) with eq. (3.75) as

H =
B
µ0
−m =

B
µ0(1 + χ)

=
B
µ
, (3.76)

where µ is the magnetic permeability of the material. So B is the resulting
field. If we write perhaps that

B = µ0(H + m) = µ0(1 + χ)(H) = µH (3.77)

it is easier to read this equation... the total magnetic field is given by the sum of
the ambient field and the resulting magnetic field induced in the magnetizable
substance. The materials science aspect of these relations is very complex. Not
only can the relationships be tensorial, but they need not even be linear, and
the are strongly temperature dependent.

3.13.1 Diamagnetism

Small effect. Opposing the applied field. This when χ < 0.

3.13.2 Paramagnetism

Small effect. Reinforcing the applied field. This when χ > 0.
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3.13.3 Ferromagnetism

Strong effects with hysteresis. This when χ � 0. The subclasses are ferro-
magnetic proper, antiferromagnetic, and ferrimagnetic.

Ferromagnetic materials will acquire an induced magnetization, as seen in
eq. (3.75), which will disappear when the applied field H disappears. But they
might also retain an remanent magnetization as a function of their geologic
history. The sum total of both effects is

mT = χH + mR, (3.78)

and the relative importance of remanent to induced magnetization is the Königs-
berger ratio:

Q =
‖mR‖
χ‖H‖

. (3.79)

Ferromagnetism disappears above the material-dependent Curie tempera-
ture. While paramagnetic and diamagnetic effects persist at these tempera-
tures, they are so small that above the Curie temperatures we may consider
rocks and minerals to be nonmagnetic.

3.14 The Laplacian (of a vector field)

We’ll need this

∇2u = ∇(∇ · u)−∇× (∇× u). (3.80)

3.15 The geodynamo

Under the magnetohydrodynamic approximation, we assume the displace-
ment currents are small and that the material is Ohmic. Furthermore, in the
Earth’s core, it is assumed that no magnetization exists, so H = B/µ0 in that
case. Eq. (3.74) holds, and eq. (3.65) becomes

∇×H = σ(E + v ×B). (3.81)

Then it gets messy, because in order to solve the problem, we need to also solve
for the velocity of the material... One ingredient in the required set of equations
needed to solve for v is definitely Poisson’s equation (2.52), but we also need
to keep track of diffusion and advection of heat, and of supplying a good set
of consitutive equations for the mass density. We’re not nearly there, but we
can get some insight quickly by looking at eq (3.81), taking the curl, taking



3.15 The geodynamo 67

its time derivative, using the vector rule eq. (3.80), and Maxwell’s eqs (3.63)
and (3.64) to get

∂H
∂t

= ∇× (v ×H) +
1
µ0σ
∇2H. (3.82)

which is known as the magnetic induction equation. The time variability of
the field represents the balance between the competition between advective
regeneration by core convection and Ohmic diffusional decay.

Define the ratio of the two terms as the magnetic Reynolds’ number:

Rm = µ0σ
‖∇ × (v ×H)‖
‖∇2H‖

. (3.83)

And thus Rm > 1 is a necessary but not sufficient condition for the sustenance
of the field, i.e. for the geodynamo to operate.

Full solutions require numerical, analog, mathematical, modelling, and cou-
pling Maxwell’s equations to those from fludi flow. It gets very complicated
quickly. So we do two end-member cases to get some physical insight.

3.15.1 Diffusion-dominated regime

At low Rm, the right hand term in eq. (3.82) dominates. The field decays
according to a diffusion equation:

∂tH = (µ0σ)−1∇2H. (3.84)

3.15.2 Advection-dominated regime

At high Rm, the left-hand term dominates in eq. (3.82). We get an advection
equation

∂tH = ∇× (v ×H). (3.85)

We still won’t be able to solve it without knowing what the fluid does, but
we will just look at some implications for a generic surface through which we
study the magnetic flux:∫

Σ

n̂ · (∂tH) dΣ =
∫

Σ

n̂ ·∇× (v ×H) dΣ. (3.86)

Use Stokes’ theorem (3.29) on the right hand side:∫
Σ

n̂ · (∂tH) dΣ =
∫
∂Σ

t̂ · (v ×H) dl. (3.87)
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Noting that t̂ · (v ×H) = −(v × t̂) ·H we rewrite∫
Σ

∂t(n̂ ·H) dΣ +
∫
∂Σ

(v × t̂) ·H dl = 0. (3.88)

The vector v×t̂ is the normal to the area swept out by the moving line segment
in a unit time interval, and thus the second term represents the flux change
experienced by the material enclosed within ∂Σ as it moves about with the
fluid. Rephrasing eq. (3.88) as as:

d

dt

∫
Σ

n̂ ·H dΣ = 0, (3.89)

we have arrived at the frozen-flux principle: field lines move with the flow in a
perfect conductor.

3.16 Magnetic measurements and interpretation in practice
See what the magnetometer does.

3.17 Magnetism to (buried) bodies
A bit of an application. A worked example.

3.18 Magnetism and plate tectonics
In the context of plate tectonics, should tie it all together nicely.

3.19 Time-variable magnetism
Causes. Jerks. Reversals. Etc. Extension of the “secular variation bit”. Check
out the sign indifference of eq. (??).

3.20 Secular variation
Should write something about this. Simply about the description, causes later.

(1) Taylor series, jerks.

ge(t) = ge(t0) +
∂g

∂t

∣∣∣∣
t0

(t− t0) +
1
2
∂2g

∂t2

∣∣∣∣
t0

(t− t0)2 (3.90)

(2) Relaxation time.
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τ =


∑
lm

(g2
lm + h2

lm)∑
lm

(ġ2
lm + ḣ2

lm)


1/2

(3.91)

Fig. 3.11. Bauer plot. Should really remake this myself.
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3.20.1 Change in dipole strength
3.20.2 Change in orientation

3.20.3 Westward drift



4
Seismology

Not so long ago, none of us had literally any idea what earthquakes are, or
what seismic waves are, for that matter. Seismology, before the word existed,
was a branch of mathematics. Slawinski waxes philosophical about it.

Check out the historical account of Prince Galitzin at the Fifth Mathematical
Congress.

Lord Rayleight knew stuff, as did Love, and Lamb.
Should also explicitly do the acoustic wave equation to make the link with

exploration seismology and undergraduate physics. Think again also about my
FRS2017 lecture on waves.

4.1 Force and traction
Continuum mechanics describes how materials (solids, liquids, gases) behave
under the influence of external and internal forces. For the most part, it disre-
gards the molecular structure of continuous media, and assumes that the math-
ematical functions that describe their properties are continuous—except at a
finite number of interior surfaces separating regions of continuity.

A force f is a push or pull experienced by a mass m that is accelerated:

f = ma, (4.1)

where a is the acceleration vector. This is known as Newton’s second law:
force equals mass times acceleration. The force of gravity or weight depends
on the gravitational acceleration g,

f = mg, (4.2)

which we have described in detail in Chapter 2. Body (“action-at-a-distance”)
forces are often reckoned per unit mass. Surface (“contact”) forces are usually
defined as tractions, and reckoned per unit area.

71
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Talk about inertia and linear momentum.

4.2 Torque

Need to connect that here, to moment of inertia in previous chapter! And
angular momentum.

4.3 Cauchy’s stress tensor

The (“Cauchy”) stress tensor can be thought of as a matrix whose columns are
filled with the components of the vector tractions t acting on three perpendicu-
lar faces of an imaginary infinitesimally small cube inside a solid object, as in
Figure 4.1. Those three faces are denoted by their unit vectors. In a Cartesian
coordinate system, these are x̂, ŷ, and ẑ, and the stress tensor is written as:T

T =

 tx(x̂) tx(ŷ) tx(ẑ)
ty(x̂) ty(ŷ) ty(ẑ)
tz(x̂) tz(ŷ) tz(ẑ)

 =

 Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

 . (4.3)

Switching to a pure index notation, we write the elements of T as Tij , in
the three physical dimensions i, j = 1, ..., 3. The tractions Tij , i = j, are
perpendicular to the face on which they act and are called normal; the tractions
Tij for i 6= j are called shear.

4.3.1 Symmetry of the stress tensor

Also known as: conservation of angular momentum.
We might have defined T in terms of rows of traction components. It doesn’t

matter. The stress tensor must be symmetric. This is a first law due to Cauchy:
TT

T = TT. (4.4)

or in index notation,

Tij = Tji. (4.5)

Eq. (4.4) is a statement of the principle of conservation of angular momentum.
Proof here that is seat-of-the-pants. Maybe see Stein and Wysession. If we

are to keep the infinitesimally small faces from rotating... Full treatment see
Malvern or DT.
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Fig. 4.1. Free-body diagram to illustrate the equilibrium condition and equations of
motion. See GEO424 notes 9-30-02. In 2019 I used a single picture with three coordi-
nate planes, an arbitrary cut, and a principal plane. Emphasizing the thread of choosing
coordinate systems that runs through the course.

4.3.2 Tractions, from the stress tensor
It is to be understood that all the quantities defined so far will be considered
to vary as a function of position r within the continuous medium (a strictly
Eulerian viewpoint). By writing x̂, ŷ, and ẑ, we’ve specified a particular
Cartesian coordinate system—but why should our choice be special? What
will the traction be on a plane that does not coincide with these coordinate
axes? Let’s label such a plane of some random orientation by its unit normal n̂.

Applying eq. (4.1) on the four sides of an imaginary (“Cauchy”) tetrahedron
show in Fig. (4.2), formed by cutting the coordinate axes by the plane n̂, we
may show that t(n̂)

t(n̂) = n̂ ·T. (4.6)

or in index notation with the Einstein summation convention:

ti(n̂) = n̂jTji. (4.7)

This formula is also due to Cauchy. Knowing the stress tensor, we thus know
precisely the tractions acting on any given plane inside the continuous medium.

Cauchy’s relation (??) applies whether or not the medium is in equilibrium.
It is true for an infinitesimally small volume element inside a medium; thus in
the limit, it is true for a zero-volume volume! Thus, eq. (??) is true in fluid
dynamics as well as solid mechanics. Incidentally, so is (4.4).
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Fig. 4.2. The Cauchy tetrahedron. How to resolve the tractions on an arbitrary plane
from the known tractions on the coordinate planes as given by the Cauchy stress tensor
in a chosen reference frame.

The equation relating the stress tensor to the traction on an arbitrary plane
appears in the work of A. L. Cauchy around 1823, and thus bears his name in
continuum mechanics. Note that Cauchy wrote close to eight hundred research
papers, and many, many relationships are known as “Cauchy’s formula”.

4.3.3 Principal axes and principal stresses

Instead of specifying all six components of the stress tensor in the “usual” co-
ordinate system x̂, ŷ, and ẑ, we may opt to specify three principal stresses
(T1, T2, T3) in a new special coordinate system defined by the three princi-
pal stress directions, n̂1, n̂2, and n̂3. What are the special planes inside of a
medium, those upon which all stresses are normal with out shear components?
Another way of asking the questions is: what are the special planes whose unit
normals coincide (as in: aligned in the same direction but with a scaling factor
to allow for a different magnitude) with the tractions acting on them. The prin-
cipal stresses are the eigenvalues and the principal axes the eigenvectors of the
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stress tensor,

T ·N = N ·Λ, (4.8)

or in index notation,

t(n̂i) = t · n̂i = λin̂i. (4.9)

This representation is not more economical, but it is certainly more convenient:
it allows us to distinguish quickly and easily between different states of stress:
hydrostatic stress (TH), uniaxial compression and tension (t1D), pure shear
(TPS), deviatoric stress tensor (TD), and so on.

TH =

 P 0 0
0 P 0
0 0 P

 T1D =

 ±T 0 0
0 0 0
0 0 0

 (4.10)

TPS =

 ±T 0 0
0 ∓T 0
0 0 0

 TD =

 ±T1 − P 0 0
0 T2 − P 0
0 0 T2 − P


(4.11)

The mean normal stress, a tensor invariant,

P = 1
3 (T1 + T2 + T3) (4.12)

is sometimes called pressure. However, it is usually preferred to reserve the
word pressure for the thermodynamic quantity that is only realized in a state
of hydrostatic stress, when T = P I.

We introduce the trace of a vector field as the scalar

trace(t) = tii. (4.13)

Hence, by our definitions, we have decomposed any type of stress as a hy-
drostatic stress plus a deviatoric stress.

4.3.4 Equilibrium conditions and equations of motion
Or: conservation of linear momentum.

We can be more explicit and define what it really means for a solid to be in
static equilibrium. Must vanish:

(i) the resultant of body and surface forces, and
(ii) the resultant moment about any axis.
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We have looked at the second condition before, and it led to the symmetry
of the stress tensor (4.4). Detailing the first condition is very similar to the
setup with Cauchy’s tetrahedron, but for an infinitesimal cube this time. See
Figure 4.1 again.

Newton’s second law (4.1) gives us an equation of motion; setting a = 0
gives us an equilibrium condition:

∂Tji
∂xj

+ ρfi = 0 , i = 1, ..., 3. (4.14)

The very presence of body forces implies that there is heterogeneity of stress in
a body in equilibrium. The equation(s) of motion are more general and known
as the linear momentum conservation law(s):.

∂Tji
∂xj

+ ρfi = ρ
dui
dt

, i = 1, ..., 3. (4.15)

The stress tensor t collects the surface tractions; f is a body force per unit
mass; ρ the mass density; du/dt the acceleration. All physical quantities (f ,
ρ, t and u) are functions of specific points r in space—the Eulerian view-
point. However, the derivation assumed we were dealing with a specific set of
particles whose positions vary with time—the Lagrangian viewpoint.

The spatial derivatives are with respect to the location in the deformed medium,
and d/dt represents a temporal rate of change at those evolving locations. The
latter is thus a material derivative, in that it describes what happens to the
physical qualities of a parcel of matter while journeying through space. In
Section 4.6, we compare and contrast both viewpoints.

4.4 The divergence (of a tensor field)
We rewrite eq. (??) as a single vector equation and thereby define the diver-
gence of a tensor field:∇ ·T

∇ ·T + ρ f = ρ
du
dt
. (4.16)

Eq. (4.16) is known as Cauchy’s law of motion. Once again, all variables are
Eulerian and the derivative is material. This is exact (not linearized, stronger
than the previous derivation would have had us believe) and applicable to a
non-rotating earth. The body force could be gravity, but we’ll ignore it in
what’s next.

Requote the divergence theorem (2.46) but now for a tensor field, namely:∫
V

∇ ·T dV =
∫
∂V

n̂ ·T dΣ. (4.17)
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Let us restate Newton’s second law (DT. 2.59) for what it is, the conservation
of (linear) momentum. In a comoving volume (which we neglect for now), the
change in total momentum is the sum of all the surface tractions on the volume,
which we know from eq. (??) to be given by the first term, and the sum of all
of the body forces, which we express as the second term in

d

dt

∫
V

ρu dV =
∫
∂V

n̂ ·T dΣ +
∫
V

ρ f dV. (4.18)

All we have to do next is use eq. (4.17) to express all the integrals in terms
of the volume, and then consider that our (moving) volume wasn’t special at
all, once again directly implying eq. (4.16). To switch the derivatives inside
the integral I used Reynold’s transport theorem and the continuity equation
without being very upfront about it. Maybe we should discuss this theorem in
more detail. The bottom line is that after we have done that, the derivative is
material.

4.5 The gradient (of a vector field)

We’re going to need this before going on. Perhaps in the context of the multi-
variable chain rule? The gradient of a vector field u is a tensor whose elements
are given by ∇u

(∇u)ij =
∂uj
∂xi

, (4.19)

which, in three Cartesian dimensions amounts to a quantity that can be written
in the convenient matrix form

∇u =


∂ux
∂x

∂uy
∂x

∂uz
∂x

∂ux
∂y

∂uy
∂y

∂uz
∂y

∂ux
∂z

∂uy
∂z

∂uz
∂z

 . (4.20)

As before, the gradient operator increases the rank of its argument by one: the
gradient of a vector field (rank 1) becomes a tensor (rank 2). As it turns out,
the gradient of a vector field is the dyadic product of the “gradient vector” of
eq. (2.8) and its vector argument, u:

∇u = ∂iuj x̂ix̂j . (4.21)

Note that the divergence, e.g., eq (2.44), is the trace of the gradient.
If we kept going we’d define the gradient of a tensor field before its trace,

the divergence of a tensor field, but we won’t need it in here.
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4.6 Eulerian and Lagrangian viewpoints
Let r describe a position inside a continuous body. As it deforms, a point ini-
tially at r0 in the undeformed medium, ends up in different places over time:
r = r(r0, t). Thus, r0 = r(r0, 0) identifies a parcel of matter, a particle,
inside the undeformed medium. A Lagrangian description involves tracking
particles; the Eulerian viewpoint, which we will continue to prefer unless oth-
erwise noted, describes properties at fixed spatial positions. The (“Eulerian”)
velocity u(r, t) specifies the velocity of whatever particle occupies the spatial
position r at a certain time t. It is thus given by

u(r, t) =
∂r
∂t
. (4.22)

To compute the acceleration of a certain particle r0 we need to take the partial
derivative of the Lagrangian velocity uL(r0, t), the latter being equal to the
Eulerian velocity u(r(r0, t), t). Using the multivariable chain rule we iden-
tify a total, substantial or material derivative of the Eulerian velocity u(r, t),
according to which

du(r, t)
dt

=
∂2r
∂t2

+ u(r, t) ·∇u(r, t)
∂uL(r0, t)

∂t
. (4.23)

You can by writing a “total derivative” in terms of r and t and then divide by
dt. The whole thing is a dot product if you think about it—a four-dimensional
derivative using the four-dimensional gradient which you simply split into two
terms. In very general terms, changes in a Eulerian physical quantity q can be
expressed in terms of its Lagrangian description qL and its Eulerian velocity u
by the relation

dq/dt = ∂tq + u ·∇q = ∂tqL. (4.24)

The first term is the first partial derivative of the property with respect to time;
the second term is an advective term: physical quantities that refer to moving
particles can change in time because the fields in which they move change in
time, but also, and even in the absence of such changes, because the particles
move through spatial gradients of those fields.

For infinitesimal deformation, we can drop the distinction between Eulerian
and Lagrangian viewpoints, and confuse

d/dt↔ ∂t (4.25)

It is important to note that for infinitesimal deformation means: to first order;
small velocities and small displacements away from the undeformed state in
which the initial values of velocity and displacement are zero. We will not in
general be able to interchange partial and total derivatives for quantities such
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as density, gravity and stress, which have zeroth-order initial values and non-
negligible initial spatial gradients.

4.7 Infinitesimal deformation and linearized theory
Displacements in seismology, as opposed to tectonics and geology, are small.
Hence we shall be using linearized theory. The approach we take is to just
rewrite the equation (4.16) not in terms of density ρ, stress T and velocity u,
but in terms of small perturbations from their reference state. We drop the
body force and neglect rotation for the moment. τ

For the stress perturbation, we write τ = T−T0; for the infinitesimal dis- s
placement, we write s = r− r0; and the unperturbed density is ρ0. Neglecting ρ0

gravity, from eq. (4.16), the Earth at rest satisfies ∇ ·T0 = 0. T0

Substituting the perturbation equations for stress and density into eq. (4.16),
using the small displacement, and subtracting the equations for the Earth at
rest, we then get to solve: ∇ · τ

∇ · τ = ρ0
∂2s
∂t2

, (4.26)

which is the linearized wave equation valid in a non-rotating, non-gravitating
Earth. Euler and Lagrange are now confused for good. Now the derivatives are
evaluated in the undeformed Earth... Three equations, six stress unknowns.

Write in terms of pressure and deviatoric stress? And then lead on to the
acoustic wave equation? See “Acoustic Theory”.

Before solving eq. (4.26), we need a proper definition strain so we can get
ready for the constitutive equations.

4.8 Displacement, strain and rotation
Consider two points at initial positions r0 and r′0 and their separation vector
dr0 = r′0 − r0. Some time later, they end up at r = r(r0, t) and r′ = r(r′0, t),
respectively, and now the vector joining them is dr = r′ − r. We adopt a
Lagrangian viewpoint (but don’t make a big deal out of it since we’ve already
confused the two scenarios) in writing that the first particle is experiencing the
small displacement

s(r0, t) = r− r0 = s. (4.27)

and the second particle experiences the small displacement

s(r′0, t) = r′ − r′0 = s′. (4.28)
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Fig. 4.3. Two diagrams. On the left, two points r0 and r′0, and their separation vector
dr0 = r′0 − r0. After a while, the new points are r and r′, and dr = r′ − r. In a
different color, s and s′. On the right, we show those same guys in gray but with now
the moved vectors to illustrate the relations that exist between ds and dr.

4.8.1 The displacement-gradient and deformation tensors
We are interested in how dr relates to dr0, or, alternatively, how the initial sep-
aration dr0 maps into a difference in the respective displacements of the two
points, ds = s′ − s . We define r0 = (x1, x2, x3) and dr0 = (dx1, dx2, dx3),
or indeed r0 = xix̂i and dr0 = dxix̂i, summation convention implied.

As to the latter relation, we write, to first order, that individual components

si(r′0, t) = si(r0, t) +
∂si
∂xj

dxj , (4.29)

which, in vector form, amounts to∇s

ds = (∇s)T · dr0 = J · dr0. (4.30)

On the other hand,

dr = dr0 + ds = [I + (∇s)T] · dr0 = F · dr0. (4.31)
J

Thus, the displacement-gradient tensor,

J = (∇s)T, (4.32)

relates the change in displacement experienced by two particles to their initial
separation, and the deformation tensor,F

F = I + (∇s)T = I + J (4.33)

describes how the separation between two particles evolves over time.
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As with all tensors, we decompose J into a symmetric and an antisymmetric
part: ε

J = 1
2

[
(∇s)T + ∇s

]
+ 1

2

[
(∇s)T −∇s

]
(4.34)

= ε+ ω, (4.35)

where we note that, by design, ε = εT and ω = −ωT . See the next two
subsections for formal definitions of those two quantities. ω
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4.8.2 The infinitesimal strain tensor
We have defined

ε = 1
2

[
∇s + (∇s)T

]
. (4.36)

Example of an infinitesimal cube pegged at the (0, 0) corner being deformed
with

ε =
(

0 θ

θ 0

)
, ω = 0. (4.37)

Infinitesimal shear strain. No volume change. Equivoluminal. ∇ · s = 0.d
Define the deviatoric strain:

d = ε− 1
3 (tr ε)I = ε− 1

3 (∇ · s)I (4.38)
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4.8.3 The infinitesimal rotation tensor
We now have

ω = − 1
2

[
∇s− (∇s)T

]
. (4.39)

Example of a cube being deformed with

ω =
(

0 θ

−θ 0

)
, ε = 0. (4.40)

Infinitesimal rotation over clockwise θ. No volume change. ∇ · s = 0. Let us
say

s = (θy,−θx) (4.41)

and write down J and ω and ∇× s = −2θẑ is the rotation vector!
Write a little arc diagram with triangle with sides dx and dx and hypothenusa
−θdx and then tan(−θ) ≈ −θdx/dx and indeed, as θ → 0 we have sin(−θ)/ cos(−θ) =
−θ.

Thus the rotation or curl returns a vector whose magntitude is the angular
velocity and whose direction follows the movemement of a xcrew tightened by
the rotation, clockwise or anticlockwise.
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4.8.4 Cubic dilation and volume change

Somehow this comes out very easily. Let us think of F in the expression

dr = F · dr0. (4.42)

as the Jacobian of the transformation from the undeformed to the deformed
coordinate system r0 → r, and from this conclude that the deformed and
undeformed volume elements dV and dV0 are related by

dV = det(F) dV0, (4.43)

for which, to first order

det(F) ≈ 1 + ∇ · s = 1 + tr(ε) (4.44)

represents the relative change in volume. This is easily verified heuristically
by considering the infinitesimal cubic volume

dV0 = dx1dx2dx3 (4.45)

deformed using eq. (4.42) to the new volume

dV = dx1

(
1 +

∂s1

∂x1

)
dx2

(
1 +

∂s2

∂x2

)
dx3

(
1 +

∂s3

∂x3

)
, (4.46)

≈ dx1dx2dx3

(
1 +

∂s1

∂x1
+
∂s2

∂x2
+
∂s3

∂x3

)
, (4.47)

d ≈ V0 (1 + ∇ · s). (4.48)

to first order in the displacement. The quantity

∇ · s = (dV − dV0)/dV0 (4.49)

is called the cubic dilation, or indeed the relative volume change per unit vol-∇ · s
ume.

Example:

s = xx̂ + yŷ (4.50)

s = −xx̂ + yŷ (4.51)

No volume change.
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4.8.5 Rotation and vorticity ∇× s
From the definition of the wedge... in Cartesian coordinates, in compo-

nents... and the antisymmetry... the rotation rate

∇× s = −εijkωjk x̂i (4.52)

Now the summation is implicit as compared to eq. (3.26).
Example:

s = −yωx̂ + xωŷ (4.53)

No volume change.
Wrap-up here?

τ = τ 0 + τD and τD = τ − pI (4.54)

ε = ε0 + εD and εD = ε− (∆/3)I. (4.55)

Note that tr(τD) = 0 and tr(εD) = 0. Note that ε0 is that part of ε that results
in volume changes. Note that εD is that part of ε that results in shape changes.
Note that εDij = εij for i 6= j. Shear components of total strain and the strain
deviator are identical. Off-diagonal terms relate to angular deformations. If
εD = 0 then purely volumetric deformation. If ε0 = 0 then purefly shape-
changing deformation, but note that if ε = diaga, b, c if a 6= b, a 6= c and b 6= c

then there is a shape change! Thus ∇ · s does not preclude shape changes, but
requires null volume change.

Talk again about principal strains and principal strain directions. Normal
strains, shear strains.

4.9 Hooke’s law of linear elasticity

Ut tensio sic vis. Symmetry of stress, of strain, of thermodynamical Maxwell
relations and strain energy function. C : ε

Hooke’s law relates stress and strain as follows:

τ = C : ε or τij = Cijklεkl (4.56)

Many, many elastic constants. Symmetries:

Cijkl = Cjikl = Cijlk = Cklij (4.57)

Reduce all the way down to isotropy.
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4.9.1 Isotropyλ, µ

Now, in an isotropic medium, it turns out there is only one fourth-order
rank tensor with all the required symmetries, and that one depends on two free
parameters, λ and µ:

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (4.58)

These are called Lamé’s parameters, one of which, µ, is the shear modulus.
The infinitesimal stress tensor in such a medium takes the form:

τij = λδijδklεkl + µ(δikδjlεkl + δilδjkεkl), (4.59)

written in tensor notation

τ = λ(∇ · s)I + 2µε. (4.60)

Give an example. τ12 leads to ε12 = τ12/2/µ. Zero µ for a liquid. Using
eq. (4.38) yields an alternative expression

τ = κ(∇ · s)I + 2µd (4.61)

whereby now we have introduced κ, the bulk modulus,

κ = λ+
2
3
µ. (4.62)

And then, dτ = −dP I, using eq. (4.61) directly explains its alternative name,
the incompressibility,κ

κ =
−dP

d(∇ · s)
. (4.63)

Finally then we rewrite the alternative expression to eq. (4.58):

Cijkl = (κ− 2
3µ)δijδkl + µ(δikδjl + δilδjk) (4.64)

Write in tensor notation for fun...
This equation by itself shows that the principal stress axes and principal

strain axes coincide in an isotropic medium! Proof. Let n(1) be an eigenvector
of ε with eigenvalue e1. Then

ε · n(1) = e1n(1) (4.65)

τ · n(1) = (λ(∇ · s)I + 2µε) · n(1) (4.66)

= λ(∇ · s)n(1) + 2µε · n(1) (4.67)

= [λ(∇ · s) + 2µe1] n(1) (4.68)
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Now, and because that’s true let us write a relation between the eigenvalues τ1
τ2
τ3

 =

 λ+ 2µ λ λ

λ λ+ 2µ λ

λ λ λ+ 2µ

 ε1
ε2
ε3

 (4.69)

Shear, torsion, equivoluminal.
Things we might know from rock mechanics. Uniaxial, τ1 6= 0 but τ2 =

τ3 = 0. Then e2 = e3 = −λ
2(λ+µ)e1 which defines the Poisson’s ratio aka DO ν

NOT USE α or β yet

ν =
α2 − 2β2

2(α2 − β2)
. (4.70)

Can be negative “anti-rubber” but must be larger than negative 1. And E

E =
τ1
e1

=
µ(3λ+ 2µ)
λ+ µ

(4.71)

defines the Young’s modulus.

4.9.2 Anisotropy

Maybe just mention Love’s numbers?

4.9.3 Anelasticity

Maybe just mention some key points. Get it right! Karato papers?

4.10 The wave equation in a homogeneous medium
Let us rewrite eq. (4.26) in a homogeneous medium. SNREI. The divergence
of such a stress tensor is given by:

∇ · τ = (λ+ µ)∇(∇ · s) + µ∇2s (4.72)

and thus the wave equation (4.26) becomes:

ρ0
∂2s
∂t2

= (λ+ 2µ)∇(∇ · s)− µ∇× (∇× s) (4.73)

after using eq. (3.80). These are called Navier’s equations (1821, 1827) given,
corrected by Cauchy, in 1822. So a balance between dilatational and torsional
motion! Had we done this for incompressible fluid flow, we would have ob-
tained the “Navier-Stokes” equations.
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Note that in here, we have neglected any and all gradients of the elastic
properties: ∇λ = ∇µ = 0. This is a huge simplification (maybe should give
the Jordan forms?), but as we’ll see, “layering the Earth” allows us to treat it as
locally homogeneous, and later patch up the solutions. Is this ever more than
mathematically useful? Yes, it’s a physical approximation which holds when
the wavelengths of the waves are much too small to be aware of boundary
effects!

4.10.1 A wave equation for the volume change

Remember the magnetic induction equation, and how we made sense of the
two terms. This is a purely formal “finger exercise” to motivate what’s coming
next.

We remind ourselves that for any vector field u and for any scalar field φ,
the divergence of the curl and the curl of the gradient, respectively, vanish:
∇ ·∇× u = 0 and ∇×∇q = 0.

Take the divergence of (4.73), rewrite as:

∂2
t (∇ · s) = α2∇2(∇ · s), (4.74)

and we get a scalar wave equation where a first phase speed can be identifiedα

as

α =

√
λ+ 2µ
ρ0

=

√
κ+ 4

3µ

ρ0
. (4.75)

Now it’s a wave equation, i.e., a hyperbolic differential equation.

4.10.2 A wave equation for the rotation

and the right hand side of (4.72), using ∇×∇2 = ∇2∇×, rewrite as:

∂2
t (∇× s) = β2∇2(∇× s) (4.76)

and we get a vector wave equation where a second phase speedβ

β =
√
µ

ρ0
. (4.77)

And so this, too, is a wave equation. Write α2

β2 =

λ can be negative! You might wonder about κ, how about
√

κ
ρ = α2 − 4

3β
2

the bulk sound speed.
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4.10.3 Solution by separation of Cartesian variables

Let’s solve eqs (4.74) and (4.76). Both of them are of the same form, though
one is a scalar and the other one a vector equation. If we define

Φ′ = ∇ · s and Ψ′ = ∇× s, (4.78)

we see immediately that

∂2
t Φ′ = α2∇2Φ′, (4.79)

∂2
tΨ
′ = β2∇2Ψ′. (4.80)

These are known as the Helmholtz equations. Both the volume change and the
vorticity travel through the medium as waves with speeds α and β.

Do the solution here for Φ for a simple scalar wave equation. Separation of
Cartesian variables. Big story is Cartesian, could have done it in spherical also.
Get integral at the end. Do it ON the ball, get sums, and spherical harmonics!

Φ(x, y, z, t) = X(x)Y (y)Z(z)T (t) (4.81)

and∇2Φ = ∂2Φ/∂2
x + ∂2Φ/∂2

y + ∂2Φ/∂2
z hence

XY Z
d2T

dt2
= α2

(
Y ZT

d2X

dx2
+XZT

d2Y

dy2
+XY T

d2Z

dz2

)
(4.82)

and thus, rather

1
α2T

d2T

dt2
− 1
X

d2X

dx2
− 1
Y

d2Y

dy2
− 1
Z

d2Z

dz2
= 0 (4.83)

So each of the terms must be a constant and hence we pick numbers

1
2T

d2T

dt2
= ω2 ⇒ T = e±iωt (4.84)

1
X

d2X

dx2
= k2

x ⇒ X = e±ikxx (4.85)

1
Y

d2Y

dy2
= k2

y ⇒ Y = e±ikyy (4.86)

1
Z

d2Z

dz2
= k2

z ⇒ Z = e±ikzz (4.87)

with clearly

k2
x + k2

y + k2
z =

ω2

α2
. (4.88)

And now do a simple suite of test functions, e.g. for T = sin(ωt), T =
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cos(ωt), T = exp(iωt) = cos(ωt) + i sin(ωt), and so on, which proves our
point. And then the general solution is

Φ(x, y, z, t) = e±ikxxe±ikyye±ikzze±iωt (4.89)

That’s a wave! A plane wave. Signs and amplitudes to depend on boundary
conditions and initial conditions. Characteristics. Then discuss the general
concepts such as wavefronts, period, phase, etc. And the dispersion relation.
And the fact that we need to sum over all wavevectors, so in fact we’ve discov-
ered the Fourier transform.

It’s like we’ve replaced the original equation with something like

d2s
dt2

= α2∇Φ− β2∇×Ψ (4.90)

and then taken the temporal Fourier transform to get (check the signs)!

s(ω) = −α
2

ω2
∇Φ +

β2

ω2
∇×Ψ (4.91)

which we then turn into what’s next.

4.11 Whole-space solutions to the wave equation

As Feynman is reported to have said, “the same equations have the same so-
lutions”. There is another way at arriving at equations that look similar to
eqs (4.79)–(4.80), and one which is ultimately more useful in expressing the
displacement field. If we look for the displacement field in terms of scalar and
vector potentials by the Helmholtz decomposition theorem:

s = ∇Φ + ∇×Ψ with ∇ ·Ψ = 0. (4.92)

Now Φ and Ψ are the “inverse Laplacians” of the divergence and curl of the
displacement field, respectively:

∇2Φ = ∇ · s and ∇2Ψ = −(∇× s). (4.93)

Substituting eqs (4.92)–(4.93) into eq. (4.73) we need to satisfy:

∇
(
∂2
t Φ− α2∇2Φ

)
+ ∇×

(
∂2
tΨ− β2∇2Ψ

)
= 0, (4.94)

which is possible by requiring that the terms within the brackets equal zero.
This leads to equations for Φ and Ψ of the exact same form as eqs (4.79)–
(4.80). solutions to those equations — by separation of variables or Fourier
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methods — are waves. We obtain that, whether the phase speed c = α or
c = β,

k2
x + k2

y + k2
z =

ω2

c2
. (4.95)

Φ(r, t) = Φ0 exp(i[k · r− ωt]) with |k| = |ω/α|, (4.96)

Ψ(r, t) = Ψ0 exp(i[k · r− ωt]) with |k| = |ω/β|, (4.97)

in other words, oscillations in space and time linked together by the dispersion
relation which is of the form k

|k| =
∣∣∣ω
c

∣∣∣ , (4.98)

with k the wave vector, |k| = k the wave number, c the phase speed and
ω the angular frequency of the wave. means... that the complete solutions
are all possible frequencies and all possible wave vectors in the appropriate
weightings. Plane waves. Wave fronts. Propagation direction.

Why P waves travel faster than S waves (back to the bulk modulus).
Can I give an equation for the density as a function of space and time in a

passing wavefield? Should I give an expression for the energy in the P versus
the S wave, which is a question I was asked and which is apparent in the
seismogram.

4.11.1 Dispersion and plane waves
Eqs (4.96) and (4.97) were general. The complete wavefield will be a super-
position. The complete solution to the wave equation is thus given by inverse
transformation of Φ(r, ω) as follows:

Φ(r, t) =
1

(2π)4

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

Φ(kx, ky, ω, z)ei(k·r−ωt) dkx dky dω. (4.99)

Remember the spherical harmonics! They also were superposed. But by
sums, not integrations, since they are in a quantized medium.

There are three independent quantities involved here (not four): kx, ky and
ω, and their relationship is given by the dispersion equation. In other words,

k · r = kxx+ kyy + z

(
ω2

c2
− k2

x − k2
y

)1/2

(4.100)

It’s important to see Eq. 4.99 as what it is: a superposition (integral) of plane
waves with a certain wave vector and frequency, each with its own amplitude.
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The amplitude is a coefficient which will have to be determined from the initial
or boundary conditions. We will describe plane waves in more detail, more
particularly their general form exp(i(k · r − ωt)). In the following section
we will show an alternative way of solving the scalar potential equations—by
separation of variables.

Fig. 4.4. P and S waves in an unbounded medium.

4.11.2 P and S waves

Going back to eq. (4.92), the displacement field is decomposed into

s = sP + sS , (4.101)

whereby the scalar P-wave potential Φ is of the form eq. (4.96) and the irrota-
tional P-wave displacement field is given by

sP = ∇Φ, (4.102)

x and the divergence-free vector S-wave potential Ψ is of the form eq. (4.97)
and the S-wave displacement field is given by

sS = ∇×Ψ, ∇ ·Ψ = 0. (4.103)

It’s only logical that P waves arrive first and S second; this is contained in the
wave speeds eqs (4.75) and (4.77).

Note the similarity between eqs. (4.102), (2.7), (??), and (3.10): in each of
the three chapters on gravity, electricity and magnetism, and now, seismology,
we’ve managed to express an observable in terms of the gradient of a potential
functions.

This is where you talk about particle motion and the relation between k and
s, namely kP · sP 6= 0 but kS · sS = 0.

Relate this directly to particle motion. Here the figure on particle motion
vs wave vector. Aki Richards p 127. ∇(k · r) = k is the direction in
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which the phase varies the most. ∇ exp(iωξ) = exp(iωξ)∇ξ. And ∇ ×
(Ψ exp(iωξ)) = ∇ exp(iωxi) × Ψ + exp(iωξ)∇ × Ψ. And ∇ × ξΨ =
∇ξ ×Ψ + ξ∇×Ψ. Thus exp(iωξ)∇ξ ×Ψ + exp(iωξ∇×Ψ) thus k×Ψ
both perpendicular.

So the Cartesian components of the complete displacement field in an infi-
nite medium are given by (refer to the explicit equations for grad and curl)

sx =
∂Φ
∂x

+
(
∂Ψz

∂y
− ∂Ψy

∂z

)
, (4.104)

sy =
∂Φ
∂y

+
(
∂Ψx

∂z
− ∂Ψz

∂x

)
, (4.105)

sz =
∂Φ
∂z

+
(
∂Ψy

∂x
− ∂Ψx

∂y

)
. (4.106)

4.11.3 Displacements and tractions in plane-layered media
Plane-strain case.

We’ll use the above to do something important in planar media. The above
was for infinite media, but it’s not hard to image we could solve the equations
in homogeneous “layers” and determine the required multiplicative constants
by patching up the solutions via the appropriate boundary conditions.

In a halfspace, plane-layered medium, write Ψ = BΨ, and ky = 0, nothing
propagates in the y direction,

sP =

 −ikx0
−ikz

Φ (4.107)

sS =

 ikzBy
−Bxikz +Bzikx
−iBykx

Ψ (4.108)

i.e., with s = sSV + sSH in the (x, z) plane and out of the (x, z) plane.
Since no variations or presence of anything occur in the y direction, we can

write:

s =
(
∂Φ
∂x
− ∂Ψy

∂z
,
∂Ψx

∂z
− ∂Ψz

∂x
,
∂Φ
∂z

+
∂Ψy

∂x

)
, (4.109)

in order to notice that the (sx, 0, sz) or the P-SV system is completely decou-
pled from the (0, sy, 0) or the SH system. And then we might as well write

s =
(
∂Φ
∂x
− ∂Ψ
∂z

, sy ,
∂Φ
∂z

+
∂Ψ
∂x

)
, (4.110)
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Fig. 4.5.

as if it resulted from the alternative plane-layered decomposition

s = ∇Φ + ∇× (Ψŷ) + syŷ, (4.111)

where now the three scalar potentials Φ, sy and Ψ each satisfy a Helmholtz
equation of the type (4.79).

Fig. 4.6. Ray conversions in the P-SV system, should make sense they all couple to-
gether.

Let’s consider a stress tensor of the kind (4.60) and write it in component
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notation as

τij = λ(∇ · s)δij + µ

(
∂si
∂xj

+
∂sj
∂xi

)
(4.112)

and let us consider the tractions on a horizontal plane (with unit normal ẑ);
from eq. (??) these would be given by

t(ẑ) = (τzx, τzy, τzz). (4.113)

We’re here just going to derive what they look like. Later on, we’ll do Snell’s
law for reflection and refraction etc... and then in the next chapter we’ll actu-
ally put the tractions to zero at the free surface. And derive the Rayleigh and
Love waves with them.

Let us now consider a medium in which three types of waves might exist:
the P, the SV and the SH systems. Let the wave vectors be in the (x, z) plane...
we can immediately position the zeroes in the following three expressions.

Consider tractions on a horizontal plane in this medium.
The tractions due to the P wave are:

tP =
(

2µ
∂2Φ
∂x∂z

, 0 , λ∇2Φ + 2µ
∂2Φ
∂z2

)
(4.114)

The tractions due to the SV wave are:

tSV =
(
µ

[
∂2Ψ
∂x2

− ∂2Ψ
∂z2

]
, 0 , 2µ

∂2Ψ
∂x∂z

)
(4.115)

The tractions due to the SH wave are:

tSH =
(

0 , µ
∂sy
∂z

, 0
)

(4.116)

4.12 Boundary conditions
Boundary conditions Various types, give a general intro also suitable for heat
flow and computation? Whether bottom of the ocean is no-slip or free-slip?
Dicussion in Vienna 2017 with Markus Jochum! Connect to geomagnetism by
Nature NV of geodynamo simulations. Physical. Kinematic, dynamic. Math-
ematical. Dirichlet and Neumann and Cauchy. Computational. Absorbing,
PMLStacey.

For solid-solid (i.e. welded) transitions, we have continuity of traction and
continuity of displacement:

t+(n̂) = t−(n̂), (4.117)

s+(n̂) = s−(n̂). (4.118)
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For fluid-solid transitions, we still have continuity of traction, but we require
zero tangential traction, i.e. “stress-free”, “free-slip” as opposed to “no-slip”
commonly used for viscous fluids. In addition, we have continuity of the non-
tangential displacements.

t+(n̂) = t−(n̂) = (n̂ · t)n̂, (4.119)

n̂ · s+ = n̂ · s− (4.120)

For solid-vacuum (i.e. the free surface) transitions, we have zero traction:

t(n̂) = 0. (4.121)

So from here we now infer intuitively that rays get reflected and transmitted
— but refracted.

4.12.1 Reflected and transmitted waves
Now more specifically, let us consider a situation in which we only have a P
and an SV (and thus coupled) system... and no coupling to SH so leave it out
of consideration. Let’s say it’s a case of reflection. Or transmission. So what.
The point is to illustrate Snell’s law, and later apply the general principle to the
Earth.

Fig. 4.7. Snell’s law.

The wave vector is in the direction of propagation (must have proved this be-
fore). Schematic shows particle motion (must have shown this before). At any
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rate, make sense, from the dispersion relation (4.98), that the three potentials
would be given by:

Φ′ = A exp
(
iω

[
sin j′

α
x− cos j′

α
z − t

])
(4.122)

Φ8 = B exp
(
iω

[
sin j8

α
x+

cos j8

α
z − t

])
(4.123)

Ψ8 = C exp
(
iω

[
sin l8

β
x+

cos l8

β
z − t

])
(4.124)

Boundary conditions? Involving first and second derivatives of those poten-
tials. Treat the free-surface reflection. Each of the traction components is still
some constant times the exponentials of above. Since the boundary conditions
hold on z = 0 for all x and t, the phase factors must be unchanged. Whatever
they are, will lead to needing

sin j′

α
=

sin j8

α
=

sin l8

β
≡ p (4.125)

Thus, for plane waves in plane-layered media, the whole system of rays is char-
acterized by a common horizontal slowness. This is true for the whole wave
field of reflected and transmitted (refracted) waves. Eq. (4.125) is known as
Snell’s law and p is called the ray parameter. Horizontal slowness is preserved
upon reflection and also upon conversion. And transmission.

Frederiksen and Bostock put it well. By Snell’s law, the component of phase
slowness parallel to an interface is preserved across the interface.

It should be clear we can now, from the boundary conditions, define the
ratios between the multiplicative factors B/A and C/A... thereby defining
some sort of reflection and transmission coefficients that tell you how much
of the potential/displacement/energy etc... is reflected/converted/transmitted.
This is fairly pedestrian, but the subject of seismology proper.

Fig. 4.8. Snell’s law, need to make another point about this.
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4.12.2 Snell’s law via the principle of stationary time

Fermat’s principle. Connect to Fresnel zone, easy way of saying it is as Yomogida.
An important principle in optics is Fermat’s principle, which governs the

geometry of ray paths. This principle states that a wave propagating from
position A to position B follows a path of stationary time. The principle of
stationary time plays a fundamental role in high frequency seismology. Note
that stationary time does not necessarily mean minimum time; it can also be a
maximum time.

See SIAM review article on thin lenses and the spring connections!

Fig. 4.9. The principle of stationary time.

Consider Fig. 4.9. A ray leaves point P that is in a medium with wave speed
c1 and travels to point Q in a medium with wave speed c2. What path will the
ray take to Q? Since the wave speeds in the media are constant the ray path
in each medium is a straight line, so that in this simple case the geometry is
completely defined by the positions of P , Q, and the point x where the ray
crosses the interface.

The travel time on an arbitrary path between P and Q is given by

TP−Q =
d

c1
+

e

c2
=
√
a2 + x2

c1
+

√
b2 + (c− x)2

c2
(4.126)

For the path to be a stationary time path (i.e. time is maximum or minimum)
we simply set the spatial derivative of the travel time to zero:

dT

dx
= 0 =

x

c1
√
a2 + x2

− c− x
c2
√
b2 + (c− x)2

(4.127)
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and note that
x√

a2 + x2
= sin i1 and

c− x√
b2 + (c− x)2

= sin i2 (4.128)

This gives Snell’s law again:

sin i2
c2

=
sin i1
c1
≡ p (4.129)

p is called the ray parameter.
The ray parameter p is constant along the entire system. As a ray enters

material of increasing velocity, it is is deflected toward the horizontal; if it
enters material with lower velocity, the ray is deflected to the vertical. The
angle between the ray and the vertical is referred to as the angle of incidence
or take-off angle.

Snell’s law — in spherical geometry. Add in the scale factor. Bullen and
Bolt is quick. Aster is decent.

4.12.3 Ray tracing
General equations. Then Crewes/Slotnick for linear media. Examples?

Let’s take the standard derivation in two dimensions whereby an infinitesi-
mal ray path segment ds in the xz plane defines the geometry

Maybe move slownesses from below up.
dx/ds = sin θ = c

dx/dz = cos θ = sqrt1− p2c2

dx/dz = p
c−2−p2

which you then integrate. Maybe go straigh to the piecewise discretization.
dt/dz = c−1

1−p2c2
which you then integrate.
Then rewrite these equations for spherical geometry.
Then make a piecewise linear approximation and you can do a whole lot of

calculations a la Slotnick.

4.12.4 Propagating and evanescent waves
Consider a plane wave in two dimensions:

Φ = e−iωteikxx+ikzz (4.130)

The horizontal wavenumbers kx and kz reflect how fast a wave of a particular
frequency travels in the direction of (given the sign, positive) x and z, respec-
tively. For an incidence angle (the angle between the wave vector and the
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surface normal) i, we have

kx = +
∣∣∣ω
c

∣∣∣ sin i (4.131)

kz = −
∣∣∣ω
c

∣∣∣ cos i (4.132)

We have defined the ray parameter p as:p

p =
sin i
c

(4.133)

and noticed, with Snell, that in plane-layered media, the ray parameter is a
constant throughout the plane wave system (including all reflections and trans-
missions). The ray parameter is related to the horizontal slowness. Let’s define
a similar quantity related to the vertical slowness:η

η =
cos i
c

=

√
1
c2
− p2, (4.134)

and let’s rewrite the wave equation in this format:

Φ = e−iω(t−px−ηz). (4.135)

In the case discussed above, p and η are real numbers and the wave is a
propagating plane wave. When η = 0, the wave propagates horizontally along
the surface since it has no vertical component of slowness.

Also, η could be a complex number; this happens when

p >
1
c

(4.136)

In the latter case, we can represent η = iη̂, and we get

Φ = e−η̂ωze−iω(t−px). (4.137)

In the positive z−direction (with increasing depth), the amplitude of the dis-
placement dies out until it is zero at infinity: the wave is evanescent.

Fig ?? illustrates Snell’s law for free surface interactions for a particular
example. For an incident SV -wave to generate a critically reflected P wave
(in situation b), the SV -wave needs to have an incidence angle given by

p =
1
α

=
sin j1
β

. (4.138)
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Fig. 4.10. Critical reflection.

The critical incidence angle, ray parameter and vertical slowness are given by:

jc = sin−1

(
β

α

)
, (4.139)

pc =
1
α
, (4.140)

ηc =

√
1
α2
− p2

c . (4.141)

If, as in Figure 4.11, the incoming SV wace comes in at an even steeper angle
than the critical reflection angle, j1 > jc, its ray parameter will be bigger than
the critical one p > pc > 1/α and η will indeed be complex. This is how
surface reflections can become evanescent. (If you like to turn this situation
upside down, you can study headwaves in this manner. They, too, become
evanescent for waves inciding above the critical refraction angle.)

It better be evanescent in an infinite halfspace! To conserve energy the am-
plitude of the horizontally propagating P wave must decrease with depth and
vanish at some point, i.e., a critically refracted P wave is an evanescent wave.

4.12.5 Body-wave nomenclature; travel-time curves

Body-wave nomenclature. Classical τ -p curves and the first-order information
derived from them.
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Fig. 4.11. Evanescent waves.

Fig. 4.12.

4.13 Half-space solutions to the wave equation

Surface waves. Rayleigh and Love. First time we bring in a bounding surface,
and the attendant zero-traction boundary conditions.

Rewrite the next sentence which is from Essentials: The existence of P and
S-waves was first demonstrated by Poisson (in 1828). He also showed that P
and S-type waves are, in fact, the only solutions of the wave equations for an
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Fig. 4.13.

unbounded medium (a “whole” space), so that eq. (4.101) provides the com-
plete solution for the displacement in an elastic, isotropic and homogeneous
medium. Or in the sense that spatial variations in elastic properties occur
over much larger distances than the wavelength of the waves involved. If the
medium is not unbounded, as a half-space with perhaps some stratification,
there are more solutions to the general equation of motions. Those solutions
are the surface (Rayleigh and Love) waves.

A simple treatment is by [16].

4.13.1 Rayleigh waves

As a conclusion to Lord Rayleigh’s paper On waves propagated along the
plane surface of an elastic solid, he writes: “It is not improbable that the sur-
face waves here investigated play an important part in earthquakes, and in the
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Fig. 4.14. Rayleigh waves sketch: a P and and SV wave that are both critically re-
flected at an interface

collision of elastic solids. Diverging in two dimensions only, they must acquire
at a great distance from the source a continually increasing preponderance.”

We turn our attention to a homogeneous half-space. In this half-space, we
want to study the three kinds of scalar potentials we know could be present,
and we know they’re all plane waves with an unknown amplitude:

Φ = Ae−iω(t−px−ηαz), (4.142)

Ψ = B e−iω(t−px−ηβz), (4.143)

uy = C e−iω(t−px−ηβz). (4.144)

We understand that the vertical wavenumbers are given by

ηα =

√
1
α2
− p2 and ηβ =

√
1
β2
− p2. (4.145)

The tractions on the free surface vanish, hence

t(ẑ) = (τxz, τyz, τzz) = 0. (4.146)

This leads to the following three conditions (after some rearranging):

τyz = 0 ⇒ 0 = µCe−iω(t−px−ηβz)(iωηβ) (4.147)

τzz = 0 ⇒ 0 = A
[
(λ+ 2µ)η2

α + λp2
]

+B [2µηβp] (4.148)

τxz = 0 ⇒ 0 = A [2pηα] +B
[
p2 − η2

β

]
. (4.149)

The first condition immediately dictates that C = 0. In other words, in a
homogeneous halfspace no component of displacement can be perpendicular
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to the plane of propagation. SH waves in a halfspace do not exist and we
shouldn’t have bothered with them in the first place. The P − SV system is
what counts here. This leaves the last two conditions.

Given a particular system of plane waves in a homogeneous halfspace with
compressional wave speed α and shear wave speed β, and a particular ray
parameter p of an incoming SV -wave, one can calculate the amplitudes of the
reflected SV and the converted reflected P -wave. You could start from an
upcoming SV -wave and calculate how its kinetic energy is fractionated into a
downgoing SV and a downgoing P -wave and hence determine the reflection
coefficient in function of the incidence angle, etcetera.

Indeed, for subcritical incidence angles, when p < 1/α < 1/β, this is
nothing but a simple system of reflected waves.

But when

p >
1
β
>

1
α
, (4.150)

and both ηα and ηβ are imaginary:

ηα = i

√
p2 − 1

α2
and ηβ = i

√
p2 − 1

β2
. (4.151)

we will get a resulting wave which is evanescent: the Rayleigh wave, which is
formed by the interaction of P and SV at the free surface. Because it propa-
gates horizontally, its phase speed will be given by cR = 1/p.

What is the phase speed of the Rayleigh wave? In Rayleigh’s paper, the
remaining two boundary conditions are recognized as a matrix equation for the
unknown amplitudes A and B, and the discriminant of the coefficient matrix
is used to derive an explicit equation for c/β. For a Poisson solid, λ = µ and
α2 = 3β2, the ratio of the speed of the Rayleigh wave to the shear wave speed
of the half-space is about 0.92.

1) Amplitudes evanescent. 2) speed is cR=1/p. 3) cR=rβ. Then go.
I’ve found a much easier way to show this for the Poisson solid. Let’s indeed

look for the ratio

r =
c

β
. (4.152)

Going back to the boundary conditions, we can derive the ratio of the ampli-
tudes of the P and the SV wave which interfere to give the Rayleigh wave.

By subsituting the definitions for p = 1/cR, cR = rβ and the complex
valued functions ηα and ηβ into eq. 4.148, that ratio is:

A

B
= − 2µηβp

(λ+ 2µ)η2
α + λp2

= +
1
2i

r2 − 2√
1− r2/3

. (4.153)
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Similarly, we can use eq. 4.149 and write

A

B
= −

p2 − η2
β

2pηα
= −1

i

√
1− r2

(1− r2/2)
. (4.154)

Note that as always λ = (α2 − 2β2) and η2
α = 1

α2 − p2 and η2
β = 1

β2 − p2,
we can rewrite

(λ+ 2µ)
µ

η2
α +

λ

µ
p2 =

ρα2

µ
η2
α +

ρ

µ
(α2 − 2β2)p2 (4.155)

=
ρα2

µ

(
η2
α + p2

)
− 2

ρ

µ
β2p2 (4.156)

=
ρα2

µ

(
η2
α + p2

)
− 2p2 (4.157)

=
ρ

µ
− 2p2 (4.158)

=
1
β2
− 2p2 (4.159)

= η2
β − p2 (4.160)

and now we have the same terms on the left of the right, and we can write
the Rayleigh equation:

2ηβp
η2
β − p2

=
p2 − η2

β

2pηα
, (4.161)

or indeed(
p2 − η2

β

)2
+ 4p2ηαηβ = 0. (4.162)

Not just Poisson. This is when a and b can be whatever. But when it IS Poisson,
when a2=3b2, then As can be quickly verified graphically, in order to equate
both expressions, besides the trivial solution at r = 0, the only other solution
is indeed r ≈ 0.92. This particular case implies that

B = −1.47iA and ηα = 0.85
i

c
and ηβ = 0.39

i

c
. (4.163)

4.13.2 Particle motion of Rayleigh waves

With the expressions for the displacement from eq. ??, and after filling in our
findings from eq. 4.163 into eqs 4.142 and 4.143, we get, after some rearrang-
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Fig. 4.15.

ing, that

sx = e−iω(t−px)ω

c
Ai
(
e−0.85z ωc − 0.58e−0.39z ωc

)
(4.164)

sz = e−iω(t−px)ω

c
Ai
(
−0.85e−0.85z ωc + 1.47e−0.39z ωc

)
(4.165)

The particle motion is given by the real part of the above expressions, and
therefore we get:

Re[sx] = −ω
c
A sin

(ω
c
x− ωt

) [
e−0.85z ωc − 0.58e−0.39z ωc

]
, (4.166)

Re[sz] = +
ω

c
A cos

(ω
c
x− ωt

) (
−0.85e−0.85z ωc + 1.47e−0.39z ωc

)
.

(4.167)

Along the interface the critically refracted P-wave exists simultaneously
with the incident SV-wave; in fact, the evanescent P-waves alone do not sat-
isfy the stress-free boundary conditions and they cannot propagate along the
interface without coupling to SV. The interference of P and SV-wave produces
a particle motion in the x − z plane that is retrograde at shallow depth, but
changes to prograde at larger depth (see Fig. 4.16). This is similar to the parti-
cle motion in ocean waves (but there gravity is a restoring force, here we have
ignored gravity).

The Rayleigh wave can thus be observed at both the vertical (in the direc-
tion of z) and horizontal (radial, i.e., in the direction of x) components of the
displacement field (see also Fig. ??).

It’s useful to plot the particle motion as a function of depth. The particle mo-
tion in the x−z plane is retrograde at shallow depth, but changes to prograde at
larger depth (see Fig. 4.16). At the surface, we get ux = −0.42Ak sin(kz−ωt)
and uz = 0.62Ak cos(kz−ωt). The change occurs at a depth z = λ/a, where
a = −2π(0.85 − 0.39)/ ln(0.58) ≈ 5. Hence, at a depth of about a fifth of λ/5
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Fig. 4.16. Normalized Rayleigh-wave particle motion at different depths. The motion
changes from retrograde to prograde elliptical at a depth of about one fifth of the wave-
length.

the wavelength of the Rayleigh wave, the displacement is purely in the ver-
tical direction, and the particle motion changes from retrograde to prograde
elliptical.

Another important observation is that long-wavelength waves have larger
displacements at greater depths than short-wavelength waves. As a rule of
thumb, their sensitivity drops significantly below a depth of about half their
wavelength. This can be appreciated qualitatively from Figure 4.17, where the
magnitude of the displacement (defined as

√
u2
x + u2

z) is plotted in function
of the period of Rayleigh waves, for a homogenous Poisson halfspace with a
Rayleigh wave phase speed of 4500 m/s. Below λ/2, the magnitude of theλ/2
partical motion drops to about half of the magnitude at the surface.

4.14 Layered half-space solutions to the wave equation
Love: layer-over-a halfspace. Derive the important

β1 < cL < β2 (4.168)

The observation of earthquake waves shows that they generate more than
just Rayleigh waves, and that the Earth is not a homogeneous halfspace. Among
them are the fact that seismograms usually have a lot of energy on the trans-
verse component, the fact that most motion is actually observed on the hori-
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Fig. 4.17. Magnitude of displacement at depth for varying periods of Rayleigh waves in
a homogeneous Poisson halfspace with constant (non-dispersive) phase speed of 4500
m/s.

zontal component, and that the wavetrains are usually dispersed, which implies
that the phase speed shows a variation with frequency, unlike for the Poisson
halfspace, where cR ≈ 0.92β, regardless of ω.

4.14.1 Love waves

Let us study the case where a layer (1) of thickness h and elastic properties µ′,
α′, β′ and ρ′ overlies a halfspace (2) characterized by µ, α, β and ρ. Since
we’ve already studied the P − SV interactions and Rayleigh waves in the
homogeneous halfspace (where we’ve shown that there could be no uy), we
will now study the behavior of the uy(x, z) wavefield which is non-zero in the
layer-over-halfspace case. The fields ux and uz will be a function of P and
SV waves and require the treatment with displacement potential functions as
in the previous sections on Rayleigh waves. Now, uy will always involve only
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Fig. 4.18. Love waves sketch.

S-waves and can be solved for separately. There is no need for displacement
potential functions, as uy solves the wave equation directly.

Let’s investigate the situation of a downgoing wave (with amplitudeB1) and
an upgoing (with amplitudeB2) in the layer, and a downgoing wave (amplitude
B3) in the half-space, and see how they interact. The wavefields are given by:

u(1)
y = B1 e

−iω(t−px−ηβ′z) +B2 e
−iω(t−px+ηβ′z) (4.169)

u(2)
y = B3 e

−iω(t−px−ηβz), (4.170)

where, as before, the vertical wavenumbers are

ηβ′ =
√

1
β′2
− p2 and ηβ =

√
1
β2
− p2. (4.171)

Since we’re studying the free surface, the tractions at the surface need to be
zero. Hence, as before, (τxz, τyz, τzz) = (0, 0, 0). Using eq. ??, we can write:

τyz = 0 ⇒ 0 = µB1e
−iω(t−px−ηβ′z)(iωηβ′)−µB2e

−iω(t−px+ηβ′z)(iωηβ′),

(4.172)

and this leads to B1 = B2. In other words, besides the fact that the upgoing
SH wave is never coupled to a P -conversion (we already knew that), it is
always totally reflected from the surface.

What are the boundary conditions on the interface? For the interface to be
welded, the displacements as well as the stresses must be continuous across it.
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Hence,

u(1)
y = u(2)

y (4.173)

τ (1)
yz = τ (2)

yz (4.174)

Let’s use eqs 4.173 and 4.174 by equation eqs 4.169 and 4.170 at a depth z = h

for B1 = B2 and by using the expression of eq. ?? again. This leads to:

u(1)
y = u(2)

y ⇒ B1

[
eiηβ′hω + e−iηβ′hω

]
= B3e

iηβhω (4.175)

τ (1)
yz = τ (2)

yz ⇒ (iωηβ′)µ′B1

[
eiηβ′hω − e−iηβ′hω

]
= (iωηβ)µB3e

iηβhω.

(4.176)

Recognizing that cosu = (eu + e−u)/2 and sinu = (eu − e−u)/(2i), we can
easily rewrite eq. 4.176 to yield the following quotient:

tan(ηβ′hω) = −iηβ
η′β

µ

µ′
. (4.177)

It’s easy to see how a solution can only be found in case ηβ is complex (hence,
the waves in the halfspace are evanescent), and if η′β is real (hence, oscillatory
waves in the layer). In other words, the horizontal propagation speed c of what
we’ll call Love waves must obey

β > c > β′. (4.178)

As before, we shall replace

ηβ = i

√
p2 − 1

β2
and ηβ′ =

√
1
β′2
− p2. (4.179)

Hence, Love waves always require at least a low-velocity layer over a half-
space. Because, as for Rayleigh waves, the magnitude of displacement at depth
of Love waves is dependent on the wavelength λ = 2π/k = 2πc/ω of the wave
(longer wavelength waves “feel” deeper than shorter wavelengths), a radial
increase of β > β′ must mean that the phase speed c will depend on the
frequency of the wave: Love waves are naturally dispersive.

Plugging eqs 4.179 and ?? into eq. 4.177, with p = 1/cL, and realizing that
tan is a periodic function of period, some rearranging quickly leads to

ωh

c

√(
c

β′

)2

− 1 = tan−1

 µµ′
√

1−
(
c
β

)2

√(
c
β′

)2

− 1

+ nπ (4.180)
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So now

cn(ω) =
ω

kn(ω)
(4.181)

This naturally introduces the different modes of the Love wave system (of
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Fig. 4.19. Graphical representation of the solutions to eq. 4.180. A plot of phase speed
versus frequency is usually called a dispersion diagram.

course, Rayleigh waves generated in a layer over a halfspace will also exhibit
this phenomenon): for increasing frequency ω, more and more solutions to this
equation exist. In the low-frequency limit, as ω → 0, the Love wave propa-
gates with a phase speed of c ≈ β, i.e. it is most sensitive to the halfspace. In
the high limit, ω →∞, its speed is c ≈ β′ because it is mostly confined to the
layer. The modes (labeled fundamental mode for n = 0 and higher modes or
overtones for n > 0 can be thought of as corresponding to how many different
times you can fit the oscillatory wave inside a layer of finite thickness h.

4.14.2 Particle motion of Love waves

It’s easy to write expressions for the displacement functions once we know
they are oscillatory in the layer and evanescent in the halfspace. Then, by
taking the real part of uy , you can get the particle motion.

In the layer:

sy(0 < z < h) = 2B1e
−ω(t−x/c) cos

ω
c
z

√(
c

β′

)2

− 1

 (4.182)
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In the halfspace:

sy(z > h) = B3e
−ω(t−x/c)e−z

ω
c

q
1−( cβ )2

(4.183)

In Figure 4.20, the magnitude of the displacement of a fundamental mode Love
wave is plotted as a function of period. For this layered system, the phase ve-
locities of the Love wave were computed using eq. 4.180 and the displacement
functions uy were computed using eqs 4.182 and 4.183. As indicated before,
waves of infinitely long period ω → 0 will be affected by the entire halfs-
pace and propagate with its shear-wave speed β, and in the short-period limit
ω → ∞, the Love wave is almost entirely confined to the low-velocity layer,
and propagates with the shear wave speed of the layer, β.
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Fig. 4.20. Fundamental mode Love wave displacement in a layer over a halfspace with
β′ = 3800 m/s, β = 4500 m/s, ρ′ = 3000 g/cm3, ρ = 3360 g/cm3.

As we have said before, the mode number equals the number of times the
magnitude of the displacement goes through zero. This is illustrated in Fig-
ure 4.21. The introduction of a length scale (the layer of finite thickness over
the halfspace) allows for only a discrete number of Love-wave solutions. Since
the medium has no horizontal length-scale, any possible value of k is allowed.
But since there is a vertical length scale, in a sense, the Love wave has to “fit”
inside of the layer. In Figure 4.21, the maximum displacement (over one pe-
riod) is plotted as a function of depth, for the fundamental modes and three
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overtones of three distinct periods. The overtone number is equal to the num-
ber of zero crossings with depth. This is akin to the overtone number n used to
describe the normal modes of the Earth. In addition, for the Earth, the number
of surface wavelengths is discrete as well since the medium is bounded. We
will see this in more detail when we discuss the normal modes of the Earth.
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Fig. 4.21. Love-wave displacement magnitude for the layered system as in Figure 4.20,
for the fundamental mode n = 0 and two overtones n = 1→ 3, for three periods T=1,
2, and 3 s.

Love waves are observed only on the transverse component (parallel to x2)
of the displacement field.

4.15 Propagation speed of Rayleigh and Love waves
Make a table, perhaps? Must have mentioned anisotropy around Hooke.

From looking at data we can make an important observation: Love waves
arrive before Rayleigh waves. Love waves propagate intrinsically faster than
Rayleigh waves, see below, but the difference is not large enough to explain
the observed advance of the Love wave arrival. Since Love waves involve only
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horizontal displacement whereas Rayleigh waves are composed of P-waves
and vertically polarized SV-waves, the observed advance of the Love waves
suggests a form of seismic anisotropy with faster wave propagation in the hor-
izontal plane than in the vertical direction (a situation known as transverse
isotropy).

It can be shown that for horizontally propagating waves to be evanescent
they must travel with a propagation velocity c that is always smaller than the
compressional wave speed α, c = 1/p < α, and also smaller than the shear
wave speed β, c = 1/p < β. If 1/p → β the amplitude of the surface waves
no longer decays with depth and conservation of energy is then achieved by
the leaking of energy into the half space in the form of body waves (SV in the
case of Rayleigh waves and SH in the case of Love waves). If this happens one
speaks of leaky modes.

Airy.
So Rayleigh waves always propagate with a speed that is lower than the

shear wave speed. For a half space with shear wave speed β1, the propagation
speed of the Rayleigh wave is about 0.9β1. (In the Earth the situation is more
complicated because of the radial variation of both P and S-wave speed: if
the wave speed gradually increases with depth from c = β1 at the surface to
c = β2 in the half space: 0.9β1 < cRayleigh < 0.9β2). We will see below
that the surface-wave propagation speed depends on the wave length, and thus
on frequency, of the wave (dispersion). For Love waves it is slightly different.
Here it’s the head wave that is evanescent; for high-frequency waves (short
wavelengths) the evanescent head wave hardly penetrates into the half space
(suppose a shear wave speed of β2) so that the propagation speed is dominated
by SH-propagation in the layer over the half space (propagation speed c = β1).
For longer period Love waves, the head wave is sensitive to as much larger
depth range and the propagation speed gets closer to the shear wave speed in
the half space (β2). Thus: β1 < cLove < β2.

4.16 Dispersion, phase and group speed
Treatment by Udias as taught in class before?

Naturally dispersive Love waves lead us to need to think about dispersion in
general. Phase speed makes way to group speed.

Physical dispersion... anelasticity. Mention or ignore?
The dependence of the depth of penetration on the period is described by the

sensitivity kernels. If the wave speed is constant in the half space the waves
associated with different kernels travel with the same wave speed and thus
arrive at the same time at a receiver at some distance from the source. But
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if, as is the case in Earth, the P and S-wave speed changes with depth, the
longer period waves arrive at a different time than the shorter period waves. In
Earth, the propagation speed of Rayleigh waves is thus frequency-dependent,
and the waveform changes with increasing or decreasing distance from the
source. This frequency dependence of propagation speed is called dispersion.
Love waves are always dispersive since they cannot exist unless there is a layer
over a half space, with the shear wave speed in the half space larger than in the
overlying layer.

As a result of dispersion the surface waveform changes with varying dis-
tance from the source, and it is clear that one can no longer describe the wave
propagation with a single wave speed. We describe the propagation velocity of
the part of the waveform that remains constant, such as the onset of the phase
arrrival, a peak, or a trough (see discussion of plane waves) with the phase
velocity c = ω/k. Wave packages with different frequencies travel at different
velocities and their interference results in a phenomenon known as beating:
the propagation velocity of the envelope, which is related to the energy, of the
resulting wave train is called the group velocity U.

Fig. 4.22. Two harmonic waves with the same amplitude but slightly different frequen-
cies.
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Consider two harmonic waves with the same amplitude but slightly different
frequencies (ω1 and ω2), wave numbers k1 and k2, and phase velocities k1 =
ω1/c1 and k2 = ω2/c2 (see Fig. 4.22). These waves combine to give the total
displacement

u(x, t) = cos(k1x− ω1t) + cos(k2x− ω2t). (4.184)

If we define ω as the average between ω1 and ω2 so that ω1 + δω = ω =
ω2− δω, and k1 + δk = k = k2− δk, with δω � ω and δk � k, insert it into
(4.184) and apply the cosine rule 2 cosx cos y = cos(x+ y) + cos(x− y), we
obtain

u(x, t) = 2 cos(kx− ωt) cos(δkx− δωt) (4.185)

This is the product of two cosines, the second of which varies much more
slowly than the first. The second cosine “modulates” the amplitude of the first.
The propagation speed of this ’envelope’ is given by U(ω) = δω/δk. In the
limit as δω → 0 and δk → 0,

U(ω) =
dω

dk
= c+ k

dc

dk
= c− λ dc

dλ
(4.186)

The group velocity is related to interference of waves with slightly different
phase velocities; in other words U depends on c and on how c varies with
frequency (or wavelength or wave number). In the earth dc/dλ > 0 so that the
group velocity is typically smaller than the phase velocity.

Peaks or troughs in the wave form, or the onset of a particular phase arrival in
the seismogram, all propagate with the phase velocity. In fact, we have seen
this before when we discussed travel time curves of the body waves, which
depend on the phase velocity. The phase velocity can thus be measured directly
from travel time curves (recall that the horizontal slowness p can be determined
from the slope of the travel time curve at a certain distance).

In Fig. 4.23 the dashed lines through A, B, etc. are travel time curves for
those phases. But note that the frequency of those phases change with distance,
so that the waveform changes. For instance, with increasing distance, the first
arriving phase (A) is composed of waves with larger frequencies (because they
sample deeper).

The group velocity is constant for a given frequency (dω = 0). Thus the
group velocity of surface waves of a particular frequency defines a straight
line through the origin and through the signal of that particular frequency on
records of ground motion at different distances. The group velocity decreases
as the frequency increases. As a result, high frequency phases become less
and less pronounced with increasing distance from the source (or time in the
seismogram).



118 Seismology

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

23

27

32

36

41

45

50

54

59

63

68

Time (s)

E
pi

ce
nt

ra
l d

is
ta

nc
e 

(°
)

S SS SSS L
R

Fig. 4.23. Group velocity windows and phase velocity curves.

The group velocity is very important: the energy in surface waves propa-
gates mainly in the constructively interfering wave packets, which move with
the group velocity.

Narrow-band filtering can isolate the wave packets with specific central fre-
quencies (see Fig. 4.24), and the group velocity for that frequency can then
be determined by simply dividing the path length along the surface by the
observed travel time. This technique can be used for the construction of dis-
persion curves (see Sec. ??).

4.17 Free oscillations

We had neglected gravity. Now we won’t.
See how much I would need to amend the wave equation to impart a simple

understanding of how this would work. Coriolis? Gravity?

4.18 The earthquake source

We had neglected the forcing. Now we don’t.
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Fig. 4.24. Frequency-band filtering of seismograms.

Does this have a simple treatment for a beginner’s course? Maybe via Udias
or Herrmann?

4.19 Earthquake location
Talk again about particle motion. Introduce inverse methodology.

4.20 Earth structure from seismology in one dimension
This now should make sense.... via the various kinds of waves.

4.21 Earth structure from seismology in three dimensions
Seismic tomography. Talk about inverse theory. Should have talked a tiny bit
about it in the context of density determination from gravity, or magnetization
in the context of geomagnetism. Some simple examples and some nice results.

4.22 Time-variable seismology
A field with not much history and perhaps not much future, yet very interesting.
In global seismology. Perhaps tie in with 4D industry monitoring.
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Fig. 4.25.

Need to say something about Green’s functions, Helmholtz equation. The
connection to gravity and magnetic Green’s functions. Freeden stuff. Yomogida92
easy paper. Nolet’s book.

The word Fresnel zone must appear here.
Here be pictures of some reference Earth models, maybe like S40RTS?
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Fig. 4.26.



5
Heat

The Earth is hot. Its primordial heat is the result of its formation from hum-
ble origins by the accretion of interstellar dust, chemical differentiation, core
formation, and gravitational settling of the mantle, all of which liberated heat.
Earth also continues to actively generate heat, by the decay of radioactive el-
ements, which are concentrated mostly in the crust, and via some exothermic
phase transformations. The Earth is also cooling. Whatever its early temper-
ature, and whatever its subsequent evolutionary path, as a geologically active
planet it is constantly in the business of ultimately, slowly, losing its heat. The
primary mechanisms are conductive cooling (in the crust), convective redistri-
bution (especially in mantle and core), and, to a minor extent radiation.

What is the Earth’s internal temperature? Dig a mine, drill a hole, and it
gets hot rather quickly. But what is that behavior beyond the deepest mine
(some 4 km) or the longest drill hole (some 12 km)? We will study the mech-
anisms of heat transfer in steady-state, both with and without the presence of
heat-producing elements, before moving on to time-dependent problems. As
with the magnetic induction equation, which described the time-dependence of
the field, we require the fundamental equations that describe how Earth’s tem-
perature evolves over time. As in previous chapters, our story starts with the
luminaries of yesteryear. In particular Fourier, whose 1822 Théorie Analytique
de la Chaleur paved the way for the study of heat conduction.

The discovery of radioactivity took another hundred years, and that the man-
tle should convect was a similarly foreign concept. Lord Kelvin’s famous cal-
culation of the age of the Earth—some 60 million years, considering conduc-
tive cooling alone—was so demonstrably at odds with the growing evidence
of geology and paleontology that it now literally is a textbook example of how
physics stands to gain from respecting evidence from other fields, even those
that are less quantitative. With the wrong assumptions, even a correct calcula-
tion is likely to turn up... er, garbage [17]. Caveat emptor!.

122
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5.1 Making heat

5.2 Losing heat

Pekeris 65 writes what we need to know in about a page. Good start.
We’ll be shortcutting this somewhat.
Maybe just write the equation ones, then talk about v being difficult, like

for geomagnetism, Bunge & Kennett maybe, then just focus on the conductive
part. So we ignore the convection itself (and yet wait with the adiabat until
after since it’s lower down in the Earth?

Some underbraces!

5.3 Principles/Basic Theory/Conservation Equations

According to Fourier’s law of conduction, for a system characterized by a
temperature T , at a given location r, the rate of heat energy transfer per unit T

of surface (thus measured in Wm−2), namely the heat flow or heat flux, q(r), q
is proportional to the temperature gradient at that point:

q(r) = −k ·∇T (r), (5.1)

where k is the thermal conductivity tensor. For simplicity, we quote eq. (5.1) k
with a scalar proportionality constant, the thermal conductivity k, as in k

q(r) = −k∇T (r). (5.2)

From the units of q follows that the thermal conductivity has units of WK−1m−1.
See Table 5.1 for more details. The outward flux of heat through a surface per
unit of volume, which, via the divergence theorem (2.46),∫

V

∇ · q dV =
∫
∂V

n̂ · q dΣ. (5.3)

is equal to the divergence of the heat flow inside the volume bounded by this
surface, must be balanced by what is being generated internally, on a per-
volume basis—and ultimately by the rate at which the object reduces or in-
creases its internal thermal energy Q, barring any work done. The former is Q

the volumetric heat production rate, H , the latter involves the specific heat H

capacity at constant pressure P , the intensive property which, for a certain cP
mass m is given by

cP =
1
m

(
∂Q

∂T

)
P

. (5.4)
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Together, this balance gives the thermal diffusion equation as

ρcP
∂T

∂t
= −∇ · q +H, (5.5)

which involves the familiar mass density, ρ. Here, the volumetric heat pro-ρ

duction rate H has units of Wm−3, and the specific heat capacity cP is in J
kg−1K−1: the energy required to raise the temperature of a unit mass by one
degree Kelvin.

Combined with Fourier’s laws eqs (5.1)–(5.2) the diffusion equation is writ-
ten as the parabolic differential equation

∂T

∂t
=

k

ρcP
∇2T +

H

ρcP
, (5.6)

or indeed, in the scaled variables κ = k/(ρcP ) and h = H/(ρcP ) = Hκ/k,κ,h

∂T

∂t
= κ∇2T + h, (5.7)

noting that h is in Ks−1 and the thermal diffusivity κ is in m2s−1, and of course
h/κ = H/k. Again, see Table 5.1 for a table of quantities and their units.

Special cases of the thermal diffusion equation, eq. (5.7) that are immedi-
ately of interest are the steady-state (time-independent) regime satisfying

∇2T = −h
κ
, (5.8)

which expresses the balance of heat production with a spatial gradient of tem-
perature.

In the absence of heat production, we recover the plain-vanilla transient
(time-dependent) heat diffusion equation

∂T

∂t
= κ∇2T. (5.9)

A non-homogeneous differential equation (with a right-hand side in standard
form) is solved by adding a particular solution to the general solution to the
homogeneous equation (with a zero-right hand side). This gives the general
solution to the overall equation, after which one proceeds to determine the
integration constants so as to obtain the particular solution to the full equation.

5.4 Steady-state geotherms

Oceanic vs continental. Crust vs mantle. Heat flow vs heat production.



5.4 Steady-state geotherms 125

Heat (energy) Q J The original “stuff”
Heat (flow, flux) q Wm−2 The “flux of stuff”
Heat (specific) cP Jkg−1K−1 An intensive property

Heat (production) H Wm−3 “Volumetric rate of creation of stuff”
Heat (production) h Ks−1 The scaled version of H

Temperature T K The property of being “hot” or “cold”
Time t s The passage of time

Conductivity k Wm−1K−1 Heat flow scales with thermal gradient
Diffusivity κ m2s−1 The scaled version of k

Table 5.1. Quantities, symbols, and units in the study of heat flow, and some
colloquialisms by which to make sense of them.

5.4.1 Conductive, and with heat-producing elements
Let us specialize eq. (5.8) by restricting the Laplacian to the special and most
important vertical dimension. Hence, in steady-state, and for a constant heat
production term h, we obtain the differential equation

d2T

dz2
= −h

κ
. (5.10)

We also of course still know from Fourier’s law, eq. (5.2), in its scalar and
one-dimensional form and choosing z to be positive downward, that the mag-
nitude of the heat flux, q = |q|, relates to the scaled first spatial derivative of q

the temperature, according to

dT

dz
=
q

k
. (5.11)

Eq. (5.11) supplies our first measurable boundary condition for eq. (5.10). At
the surface, the observable temperature is given by

T |z=0 = TS , (5.12)

and the surface geothermal gradient dT/dz

dT

dz

∣∣∣∣
z=0

=
qS
k
. (5.13)

To solve for the steady-state geotherm that satisfies (5.10) in an unbounded
medium we postulate for the general form of the solution the Ansatz

T (z) = az2 + bz + c, (5.14)

with the constants a, b and c yet to be determined. Using eq. (5.14) with
eq. (5.10) returns a = −h/(2κ) = −H/(2k). Using the boundary conditions,
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combining eq. (5.14) with eq. (5.13) we obtain b = qS/k, and finally, the
combination with eq. (5.12) yields c = TS .
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Fig. 5.1. Steady-state geotherms. (Left) Constant heat producing elements through-
out, eqs. (5.15)–(5.16). (Middle) Constant heat producing elements in the top layer
eqs (5.15)–(5.16) and none eqs (5.21)–(5.22) in the lower layer (Right) an exponential
distribution of heat producing elements throughout,x eqs (5.26)–(5.27)

Thus, the steady-state conductive geotherm in a medium with constant heat
production is given by the parabolic form

T (z) = TS +
qS
k
z − H

2k
z2, (5.15)

with a heat flux that is linear in depth, given via eq. (5.11) by

q(z) = qS −Hz. (5.16)

The above derivations apply in a halfspace. Nevertheless, at a certain depth
z = D, we obtain two specific values,

T |z=D = TD = TS +
qS
k
D − H

2k
D2. (5.17)

and the geothermal gradient

dT

dz

∣∣∣∣
z=D

=
qD
k

=
qS
k
− HD

k
, (5.18)

which we can use as boundary conditions for the region below z = D, if we
should wish to consider the solutions for a layer-over-a-halfspace regime, next.
Note the linear relation between surface heat flow and the heat production term:

qD = qS −HD. (5.19)
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5.4.2 Conductive, and without heat-producing elements

Let us now specialize eq. (5.8) to the homogeneous version of eq. (5.10), suit-
able at depths deeper than z ≥ D,

d2T

dz2
= 0. (5.20)

Again, we start from the general form (5.14), and use eq. (5.20) to find that,
in this case, a = 0. We then use the new boundary condition eq. (5.18) to
find that b = qD/k and then, using the boundary condition eq. (5.17), that
c = TD − qDD/k. We conclude that the steady-state temperature profile is
given by

T (z) = TD +
qD
k

(z −D). (5.21)

In the absence of heat-producing elements, the quadratic temperature behavior
of eq. (5.15) gives way to the linear behavior of eq. (5.21). As to the heat flow
in the half-space, it is of course constant,

q(z) = qD. (5.22)

In a layer-over-a-halfspace regime where the difference between the layer
and the halfspace beyond the presence/absence of a heat-production term should
also involve a change in thermal conductivity, eqs (5.15)–(5.16) and (5.21)
would have to be trivially adjusted to reflect the different thermal conductivi-
ties and diffusivities. The full patched solution, which we think of as applicable
to the Earth’s ocean crust, in that case, would be

T (z) = TS +
(
qS −HD/2

k1

)
D +

qD
k2

(z −D) for z ≥ D. (5.23)

5.4.3 A patched solution for the continents

Now give it a little more realism with an exponential decay of heat-producing
elements in the “above” portion. The problem to solve is

d2T

dz2
= −ho

κ
e−z/τ , (5.24)

for some characteristic spatial length scale τ . Our temperature Ansatz is

T (z) = ae−z/τ + bz + c. (5.25)
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The form of the particular solution is a constant times the functional form
present in the non-homogeneous term. We can do this because this term it-
self is indeed a solution of the equation, again we only have to determine the
constant—hence the name “Method of undetermined coefficients” (see, for ex-
ample, Bender and Orszag, 1999, p 19).

To be a solution is to satisfy eq. (5.24), hence a = −τ2h0/κ = −τ2H0/k.
The boundary conditions eqs (5.12)–(5.13) return b = qS/k − τh0/κ =
qS/k− τH0/k and c = TS + τ2h0/κ = TS + τ2H0/k. Thus, the steady-state
conductive geotherm in a medium with exponential heat production is given by

T (z) = TS +
(
qS − τH0

k

)
z + τ2H0

k

(
1− e−z/τ

)
, (5.26)

with a corresponding heat flux

q(z) = qS − τH0

(
1− e−z/τ

)
. (5.27)

At some depth z = D we would have, in this particular case,

T |z=D = TD = TS +
(
qS − τH0

k

)
D + τ2H0

k

(
1− e−D/τ

)
, (5.28)

and a geothermal gradient

dT

dz

∣∣∣∣
z=D

=
qD
k

=
qS
k
− τ H0

k

(
1− e−D/τ

)
. (5.29)

If the evaluation depth D is large compared to the characteristic depth τ ,
the exponential term drops out of eq (5.27), and we again obtain a quasi-linear
relation, as we did in eq. (5.19),

qD = qS − τH0

(
1− e−D/τ

)
≈ qS − τH0 for D � τ. (5.30)

We will call the right-hand side the reduced heat flow

qm = qS − τH0. (5.31)

Observations made on many continents lend credence to the fact that surface
heat flow qS does seem to scale linearly with the measured heat-production h,
as in eq. (5.31). There thus is some basis for the interpretation of the intercept
of the linear relation between h and qS as the “reduced” or “mantle” heat flow,
and the slope as a characteristic length scale for the presence of heat produc-
ing elements in the crust. But also eq. (5.19) was in this exact same linear
form, so this is no validation of the particular exponential shape function of
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the distribution of heat-producing elements in the crust. Except for the fact
that assuming the exponential preserves the linear relation between heat flux
and heat-producing elements under erosion, which is used as an argument in
support of it.

Whatever the interpretation, the reduced heat flow remains the “basal” heat
flow, at the point where the geotherm becomes linear and the concentration of
radio-isotopes is effectively zero.

As we did in Section 5.4.2 we now move to the regime below the heat-
producing layer in the continents. Again we solve the homogeneous version
of eq. (5.24), which means that if we stick to the form of eq. (5.25) we have
a = 0, and from the boundary conditions in eqs (5.28)–(5.29) we are getting
expressions identical to eqs. (5.21)–(5.22), but of course TD and qD now derive
from eqs (5.28)–(5.29).

Finally, return to a two-conductivity regime, to conclude that, at z ≥ D,

T (z) = TS +
(
qS − τH0

k1

)
D+

qD
k2

(z−D)+τ2H0

k1

(
1− e−D/τ

)
. (5.32)

Next up is another steady-state geotherm, but of a very different nature.

5.4.4 Convective, under adiabaticity

Wasn’t going to tell you much about the velocities themselves (back of the
env? from red book?) but let’s see what geotherm we be getting, just about.

Return to eq. (5.4) for the specific heat capacity at constant pressure and
now get rid of the “per unit of mass”, an intensive characterization, to turn it
into an extensive property. Then, make the thermodynamic identification, the
definition of entropy, that

dS =
δQ

T
. (5.33)

Funny that the word “entropy” does not appear in Jaupart and Mareschal, at
least not in the index. With this, rewrite

cP =
T

m

(
∂S

∂T

)∣∣∣∣
P

. (5.34)

Now consider a no-heat added, reversible, isolated, equilibrium, isentropic
process for which entropy is conserved,

dS = 0, (5.35)
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and then write the differential change in entropy as the total differential

dS =
(
∂S

∂T

)∣∣∣∣
P

dT +
(
∂S

∂P

)∣∣∣∣
T

dP (5.36)

We have(
∂S

∂T

)∣∣∣∣
P

=
mcP
T

(5.37)(
∂S

∂P

)∣∣∣∣
T

=
(
∂V

∂T

)∣∣∣∣
P

= V α (5.38)

We thus have, with the mass density ρ = m/V ,

T
V α

mcP
=
(
∂S

∂P

)∣∣∣∣
T

/ (
∂S

∂T

)∣∣∣∣
P

=
(
∂T

∂P

)∣∣∣∣
S

(5.39)

And then in function of the radius:(
∂T

∂r

)∣∣∣∣
S

=
(
∂T

∂P

)∣∣∣∣
S

(
∂P

∂r

)∣∣∣∣
S

(5.40)

=
αgT

cP
. (5.41)

since ∂P/∂r = ρg.
And so on. Then also define potential temperature which means integrate

up the adiabat. Entropy is in J per K. We have used a MAXWELL relation.
Super/subadiabatic profiles according to notes, to make the argument that

the mantle really does convect.

5.5 Time-variable geotherms
We done the continents. They ain’t being created so much to today. But the
oceans, they is! We bring time back!

But we take out the heat production term, so we have a thermal diffusion
equation with κ the diffusivity in dimensions L2T−1. So immediately we no-
tice that sqrt(kt) has dimensions of length. Remember it is k/ρ/cP .

∂T

∂t
= κ∇2T. (5.42)

We specify

T (0, t) = 0 (5.43)

T (∞, t) = Tm (5.44)

T (z, 0) = Tm (5.45)
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Temperature on the sea bottom is just one or two degrees above 0. Ambient
temperature in the mantle is much hotter, on the order of 1300◦C. Temperature
at zero age is Tm at all depths.

Equations (5.43)–(5.45) are just the right boundary conditions and initial
conditions for the heat flow equation, a parabolic partial differential equation,
to work.

5.5.1 Cooling of a half-space

The one-dimensional solution to eq. (5.42), after some analysis [18], is:

T (z, t) =
2√
π
Tm

∫ z/
√

4κt

0

e−u
2
du. (5.46)

Let us verify that the solution (5.56) indeed works. Indeed,

T (0, t) =
∫ 0

0

du = 0 (5.47)

satisfies eq. (5.43) the boundary condition at the top. Furthermore,

T (∞, t) = T (z, 0) =
2√
π
Tm

∫ ∞
0

e−u
2
du = Tm, (5.48)

which satisfies the boundary condition eq (5.44) at the bottom, and the initial
condition (5.45) throughout the mantle. Thus the temperature at zero age and
at infinite depth are those of the ambient mantle. The integral in eq (5.56) is
the Gaussian integral, its value is

√
π/2. Remember this fact separately, it’s an

important integral that crops up in different contexts!! Also talk about when
t =∞ which wasn’t yet part of our problem.

Now verify that eq (5.56) solves eq. (5.42), restated in one dimension as

∂T

∂t
= κ

∂2T

∂z2
. (5.49)

Calculate the first temporal and the second spatial derivative and don’t forget
to use eq. (1.43).

On left of eq. (5.49), differentiating the upper boundary term, we have

∂T

∂t
= − 2√

π
Tme

−z2/4κt ∂

∂t

(
z√
4κt

)
(5.50)

=
Tm

2
√
π
e−z

2/4κt

(
z√
κt3

)
. (5.51)
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On the right-hand side of eq. (5.49), we have

∂2T

∂z2
= − 2√

π
Tm

∂

∂z

[
e−z

2/4κt ∂

∂z

(
z√
4κt

)]
(5.52)

= − 2√
π
Tm

∂

∂z

[
e−z

2/4κt 1√
4κt

]
(5.53)

= − 2√
π
Tm

1√
4κt

(
e−z

2/4κt
) ∂

∂z

(
−z2

4κt

)
(5.54)

=
Tm

2
√
π
e−z

2/4κt

(
z√
κt3

)
1
κ
, (5.55)

which validates our solution, since eqs. (5.51) and (5.55) together imply eq. (5.49).
Amending eq. (5.56) to nonzero surface temperature

T (z, t) = Ts + (Tm − Ts)
2√
π

∫ z/
√

4κt

0

e−u
2
du. (5.56)

Bring back the heat flow (using Leibniz?) and write

q = k
Tm − Ts√

πκt
(5.57)

Data show Tm − Ts is 1350◦±275◦. So the fractional temperature excess
is (T (z, t) − Ts)/(Tm − Ts) and since erf(1/2) is 0.5 we have that z =√
κt is the depth down to which 50% of the temperature excess has been felt.

Boundary layer, define z at which, say, only 90%, leads to about z = 2.3
√
κt.

Put a figure here and then run to the end of the page.
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5.5.2 Cooling of a plate with limit-thickness

This being a slight variation on plate cooling, motivated by observations that
the plate appears to reach some kind of a limit thickness due to, ultimately,
gravitational foundering [19]. Fixed L, not some growing “crust!”. FIGURE
in 4 panels, t < 0, t = 0, t > 0 and t =∞ (really? or very large?).

Initial conditions:

T (0, 0) = TS (5.58)

T (z, 0) = Tm, z > 0 (5.59)

Boundary conditions:

T (0, t) = Ts (5.60)

T (L, t) = Tm. (5.61)

We partition the behavior. We will look for a solution that satisfies both the
initial and the boundary conditions in the form

T (z, t) = T1(z) + T2(z, t) (5.62)

where T2(z, t) is a solution to it with homogeneous boundary conditions, i.e.

T2(0, t) = 0 (5.63)

T2(L, t) = 0. (5.64)

Here T1(z) is some solution that satisfies the boundary conditions but without
any initial conditions or time dependence.

Choosing the equilibrium linear gradient as

T1(z) = Ts + (Tm − Ts)
z

L
, (5.65)

which satisifes the BC but has no time evolution, we may find a general solu-
tion for T2(z, t) by separation of variables.

The initial conditions for T2(z, t) are then given by

T2(0, 0) = T (0, 0)− T1(0) = 0 (5.66)

T2(z, 0) = T (z, 0)− T1(z) = (Tm − Ts)
(

1− z

L

)
, z > 0, (5.67)

Separation of variables to solve eq. (5.42), or rather, eq. (5.49),

T2(z, t) = F (z)G(t), (5.68)
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leads to, using the dash for the spatial and the overdot for the time derivative,

FĠ = κGF ′′. (5.69)

Consequently,

F ′′

F
=

Ġ

κG
= −p2 (5.70)

must hold separately, which in turns implies

F ′′ + p2F = 0 (5.71)

Ġ+ κp2G = 0 (5.72)

As to the first of those, let us realize that

F = A cos pz +B sin pz (5.73)

with the homogeneous boundary conditions, though, that implies A = 0 and
B sin pL = 0 when pL = nπ with n integer for any B, therefore

F (z) =
∞∑
n=1

sin
(nπz
L

)
(5.74)

and then back to the G with this new information, now that’s

Ġ+ κ
(nπ
L

)2

G = 0 (5.75)

which implies, still choosing constants,

G =
∞∑
n=1

an exp
[
−κ
(nπ
L

)2

t

]
, (5.76)

which combines the whole thing down to the form

T (z, t) = Ts+(Tm−Ts)
z

L
+
∞∑
n=1

an sin
(nπz
L

)
exp

[
−κ
(nπ
L

)2

t

]
. (5.77)

The T2 equation now has to satisfy eq. (5.67), which implies
∞∑
n=1

an sin
(nπz
L

)
= (Tm − Ts)

(
1− z

L

)
, (5.78)

and thus we need to solve for the coefficients by integration!! It should be
relatively obvious that sin(nπx/L) forms an orthogonal set on the interval
zero to L! Orthogonal on −L to L. Orthonormal on −1 to 1.∫ L

0

sin
(
nπ

z

L

)
sin
(
mπ

z

L

)
dz =

L

2
δnm. (5.79)
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Try at home, find

an =
2
L

∫ L

0

(Tm − Ts)
(

1− z

L

)
sin
(nπz
L

)
dz (5.80)

. (5.81)

Note that (−1)(n−1) comes from cos(nπ). This last bit needs an update to
make it right. Also, should have mentioned integration by parts right in the
first chapter, since we be using it here.

Reflect on the similarity of the solution. What when L → ∞, we lose the
discrete sum and go to the integral and we end back up with the erf?
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5.6 The Adams-Williamson equation
I have good notes on that. Linking seismology to geodynamics.

Fig. 5.2.

Write down the advective term v ·∇T at some point.
Write down as in Korenaga with Claude Herzberg some parameterized loss

form.

5.7 What we’ve ignored
Super/supra adiabaticity?

Phase changes. Write something about that.



5.7 What we’ve ignored 137

0 500 1000 1500 2000

0

5

10

15

x 10
4

Temperature °C

D
ep

th

Fig. 5.3. Sclater



6
Topography

We’ve talked about it in so many words but not in so many words. Proper
definition, choice words? Some first order questions: how deep the oceans,
what happens when you load them with seamounts? What happens when you
pull them down from a side?

What happens on continental lithosphere? Rember isostasy.
Topography defined by gravity. At the end we bring it all together and link

topography to gravity in our special way.x
Got to begin with the big picture like we had for geoid, gravity, magnetism,

(not heat flow yet!) and now topography. That could be a unifying theme, those
awesome Mollweides? And knowing their spherical harmonic expansions?
Refer to Mark W. Treatise.

6.1 How deep are the oceans?

Just cooling and isotasy.
Not waves. But still a relation that links time to space: the fact that the

oceans spread, cool, thicken, and subside while they’re at it.
Let us take the cooling of the halfspace one step further and see what hap-

pens, introduce isostasy. Probably should have mentioned it before, when we
did gravity, but never mind. Archimedes lives on.

Return to eq. (5.56)

T (z, t) = Ts + (Tm − Ts) erf
(

z√
4κt

)
. (6.1)

Introduce coefficient of thermal volume expansion! then approximate it lin-

138
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early

α =
1
V

(
∂V

∂T

)
P

= −1
ρ

(
∂ρ

∂T

)
P

(6.2)

= − 1
ρm

ρ− ρm
T − Tm

(6.3)

Little diagram. The concept of isostasy. The water depth is w, the growing
thickness of the lithosphere is zL. At the ridge, no water. At distance, have
both. Something like α = 3.2× 10−5 per degree C.

ρm(w + zL) = ρww +
∫ zL

0

ρ(z, t) dz (6.4)

Work towards eq. (6.2), then use it, then substitute in eq. (6.1), hence end up
with

w(ρw − ρm) = −
∫ zL

0

[ρ(z, t)− ρm] dz (6.5)

= αρm

∫ zL

0

[T (z, t)− Tm] dz (6.6)

= αρm(Ts − Tm)
∫ zL

0

[
1− erf

(
z√
4κt

)]
dz (6.7)

And now, with the complementary error function, we rewrite the before with
(maybe introduce ∆T and ∆ρ?

w =
αρm(Ts − Tm)

(ρw − ρm)

∫ zL

0

erfc
(

z√
4κt

)
dz (6.8)

Remember, at zL we have T = Tm and ρ = ρm. Also, remember that∫∞
0

erfc(q) dq = π−1/2, so how about we make a zL → ∞ approximation
and we end up with

w(t) =
2
√
κt√
π

αρm(Ts − Tm)
(ρw − ρm)

(6.9)

which is something like 350
√
t for t < 70 Ma. Of course, plus 2500 m, which

is the depth to the ridge in the first place.

6.2 Flexure: It’s Not Just Istostasy
Yes, but. Strength, dudes.

We have seen that upon rifting away from the MOR the lithosphere thick-
ens (the base of the thermal lithosphere is defined by an isotherm, usually
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Tm ≈ 1300◦C) and subsides, and that the cooled lithosphere is more dense
than the underlying mantle. In other words, it forms a gravitationally unsta-
ble layer. Why does it stay atop the asthenosphere instead of sinking down to
produce a more stable density stratification? That is because upon cooling the
lithosphere also acquires strength. Its weight is supported by its strength; the
lithosphere can sustain large stresses before it breaks. The initiation of sub-
duction is therefore less trivial than one might think and our understanding of
this process is still far from complete.

The strength of the lithosphere has important implications:

(i) it means that the lithosphere can support loads, for instance by seamounts
(ii) the lithosphere, at least the top half of it, is seismogenic

(iii) lithosphere does not simply sink into the mantle at trenches, but it bends
or flexes, so that it influences the style of deformation along convergent
plate boundaries.

Investigation of the bending or flexure of the plate provides important in-
formation about the mechanical properties of the lithospheric plate. We will
see that the nature of the bending is largely dependent on the flexural rigidity,
which in turn depends on the elastic parameters of the lithosphere and on the
elastic thickness of the plate.

An important aspect of the derivations given below is that the thickness of
the elastic lithosphere can often be determined from surprisingly simple ob-
servations and without knowledge of the actual load. In addition, we will see
that if the bending of the lithosphere is relatively small the entire mechanical
lithosphere behaves as an elastic plate; if the bending is large some of the de-
formation takes place by means of ductile creep and the part of the lithosphere
that behaves elastically is thinner than the mechanical lithosphere proper.

6.2.0.1 Basic theory

To derive the equations for the bending of a thin elastic plate we need to

(i) apply laws for equilibrium: sum of the forces is zero and the sum of all
moments is zero:

∑
F = 0 and

∑
M = 0

(ii) define the constitutive relations between applied stress σ and resultant
strain ε

(iii) assume that the deflection w � L, the typical length scale of the sys-
tem, and h, the thickness of the elastic plate� L. The latter criterion
(#3) is to justify the use of linear elasticity.

In a 2D situation, i.e., there is no change in the direction of y, the bending
of a homogeneous, elastic plate due to a load V (x) can be described by the
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fourth-order differential equation that is well known in elastic beam theory in
engineering:

D
d4w

dx4
+ P

d2w

dx2
= V (x) (6.10)

with w = w(x) the deflection, i.e., the vertical displacement of the plate,
which is, in fact, the ocean depth(!),D the flexural rigidity, and P a horizontal
force.

The flexural rigidity depends on elastic parameters of the plate as well as on
the thickness of the plate:

D =
Eh3

12(1− ν2)
(6.11)

with E the Young’s modulus and ν the Poisson’s ratio, which depend on the
elastic moduli µ and λ (See Fowler, Appendix 2).

The bending of the plate results in bending (or fiber) stresses within the
plate, σxx; depending on how the plate is bent, one half of the plate will be
in compression while the other half is in extension. In the center of the plate
the stress goes to zero; this defines the neutral line or plane. If the bending is
not too large, the stress will increase linearly with increasing distance z′ away
from the neutral line and reaches a maximum at z′ = ±h/2. The bending
stress is also dependent on the elastic properties of the plate and on how much
the plate is bent; σxx ∼ elastic moduli ×z′× curvature, with the curvature
defined as the (negative of the) change in the slope d/dx(dw/dx):

σxx = − Eh3

1− ν2
z′
d2w

dx2
(6.12)

This stress is important to understand where the plate may break (seismic-
ity!) with normal faulting above and reverse faulting beneath the neutral line.

The integrated effect of the bending stress is the bending momentM , which
results in the rotation of the plate, or a plate segment, in the x− z plane.

M =

−h2∫
h
2

σxxz
′ dz′ (6.13)

Equation (6.10) is generally applicable to problems involving the bending of
a thin elastic plate. It plays a fundamental role in the study of such problems
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as the folding of geologic strata, the development of sedimentary basins, the
post-glacial rebound, the proper modeling of isostasy, and in the understanding
of seismicity. In class we will look at two important cases: (1) loading by sea
mounts, and (2) bending at the trench.

Before we can do this we have to look a bit more carefully at the dynamics of
the system. If we apply bending theory to study lithospheric flexure we have to
realize that if some load V or moment M causes a deflection of the plate there
will be a hydrostatic restoring force owing to the replacement of heavy mantle
material by lighter water or crustal rock. The magnitude of the restoring force
can easily be found by applying the isostasy principle and the effective load
is thus the applied load minus the restoring force (all per unit length in the y
direction): V = Vapplied−∆ρwg with w the deflection and g the gravitational
acceleration. This formulation also makes clear that lithospheric flexure is in
fact a compensation mechanism for isostasy! For oceanic lithosphere ∆ρ =
ρm − ρw and for continental flexure ∆ρ = ρm − ρc. The bending equation
that we will consider is thus:

D
d4w

dx4
+ P

d2w

dx2
+ ∆ρwg = V (x) (6.14)

6.3 Loading by sea mounts

How deep are the oceans at the smaller scales.
Let’s assume a line load in the form of a chain of sea mounts, for example

Hawaii.
Let V0 be the load applied at x = 0 and V (x) = 0 for x 6= 0. With this

approximation we can solve the homogeneous form of (6.14) for x > 0 and
take the mirror image to get the deflection w(x) for x < 0. If we also ignore
the horizontal applied force P we have to solve

D
d4w

dx4
+ ∆ρwg = 0 (6.15)

The general solution of (6.15) is

w(x) = e
x
α

{
A cos

x

α
+B sin

x

α

}
+ e−

x
α

{
C cos

x

α
+D sin

x

α

}
(6.16)

with α the flexural parameter, which plays a central role in the extraction of
structural information from the observed data:
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α =
(

4D
∆ρg

) 1
4

(6.17)

The constants A − D can be determined from the boundary conditions. In
this case we can apply the general requirement that w(x) → 0 for x → ∞
so that A = B = 0, and we also require that the plate be horizontal directly
beneath x = 0: dw/dx = 0 for x = 0 so that C = D: the solution becomes

w(x) = Ce−
x
α

{
cos

x

α
+ sin

x

α

}
(6.18)

From this we can now begin to see the power of this method. The deflec-
tion w as a function of distance is an oscillation with period x/α and with an
exponentially decaying amplitude. This indicates that we can determine α di-
rectly from observed bathymetry profiles w(x), and from equations (6.18) and
(6.11) we can determine the elastic thickness h under the assumption of values
for the elastic parameters (Young’s modulus and Poisson’s ratio). The flexural
parameter α has a dimension of distance, and defines, in fact, a typical length
scale of the deflection (as a function of the “strength” of the plate).

The constant C can be determined from the deflection at x = 0 and it can
be shown (Turcotte & Schubert) that C = (V0α

3)/(8D) ≡ w0, the deflection
beneath the center of the load. The final expression for the deflection due to a
line load is then

w(x) =
V0α

3

8D
e−

x
α

{
cos

x

α
+ sin

x

α

}
x ≥ 0 (6.19)

Let’s now look at a few properties of the solution:

• The half-width of the depression can be found by solving for w = 0. From
(6.19) it follows that cos(x0/α) = − sin(x0/α) or x0/α = tan−1(−1) ⇒
x0 = α(3π/4 + nπ), n = 0, 1, 2, 3 . . . For n = 0 the half-width of the
depression is found to be α3π/4.
• The height, wb, and location, xb , of forebulge ⇒ find the optima of the

solution (6.19). By solving dw/dx = 0 we find that sin(x/α) must be zero
⇒ x = nπα, and for those optima w = w0e

−nπ , n = 0, 1, 2, 3 . . . For the
location of the forebulge: n = 1, xb = πα and the height of the forebulge
wb = −w0e

−π or wb = −0.04w0 (very small!).

Important implications: The flexural parameter can be determined from
the location of either the zero crossing or the location of the forebulge. No
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need to know the magnitude of the load! The depression is narrow for small
α, which means either a weak plate or a small elastic thickness (or both); for
a plate with large elastic thickness, or with a large rigidity the depression is
very wide. In the limit of very large D the depression is infinitely wide but the
amplitude w0, is zero⇒ no depression at all! Once α is known, information
about the central load can be obtained from Eq. (6.19)

Note: the actual situation can be complicated by lateral variations in thick-
ness h, fracturing of the lithosphere (which influences D), compositional lay-
ering within the elastic lithosphere, and by the fact that loads have a finite
dimensions.

6.4 Flexure at a deep sea trench

With increasing distance from the MOR, or with increasing time since forma-
tion at the MOR, the oceanic lithosphere becomes increasingly more dense
and if the conditions are right† this gravitational instability results in the sub-
duction of the old oceanic plate. The gravitational instability is significant for
lithospheric ages of about 70 Ma and more. We will consider here the situation
after subduction itself has been established; in general the plate will not just
sink vertically into the mantlebut it will bend into the trench region.

This bending is largely due to the gravitational force due to the negative
buoyancy of the part of the slab that is already subductedM0. For our modeling
we assume that the bending is due to an end load V0 and a bending moment
M0 applied at the tip of the plate. As a result of the bending moment the
slope dw/dx 6= 0 at x = 0 (note the difference with the seamount example
where this slope was set to zero!). The important outcome is, again, that the
parameter of our interest, the elastic thickness h, can be determined from the
shape of the plate, in vertical cross section, i.e. from the bathymetry profile
w(x)!, in the subduction zone region, without having to know the magnitudes
of V0 and M0.

We can use the same basic equation (6.15) and the general solution (6.16)
(with A = B = 0 for the reason given above)

w(x) = e−
x
α

{
C cos

x

α
+D sin

x

α

}
(6.20)

† Even for old oceanic lithosphere the stresses caused by the increasing negative buoyancy of
the plate are not large enough to break the plate and initiate subduction. The actual cause
of subduction initiation is still not well understood, but the presence of pre-existing zones of
weakness (e.g. a fracture zone, thinned lithosphere due to magmatic activity — e.g. an island
arc) or the initiation of bending by means of sediment loading have all been proposed (and
investigated) as explanation for the triggering of subduction.
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but the boundary conditions are different and so are the constants C and D.
At x = 0 the bending moment‡ is−M0 and the end load−V0. It can be shown
(Turcotte & Schubert) that the expressions for C and D are given by

C = (V0α+M0)
α2

2D
and D = −M0α

2

2D
(6.21)

so that the solution for bending due to an end load and an applied bending
moment can be written as

w(x) =
α2e−x/α

2D

{
(V0α+M0) cos

x

α
−M0 sin

x

α

}
(6.22)

We proceed as above to find the locations of the first zero crossing and the
fore bulge, or outer rise.

w(x) = 0 ⇒ tan(x0/α) = 1 + αV0/M0 (6.23)

dw/dx = 0 ⇒ tan(xb/α) = −1− 2M0/αV0 (6.24)

In contrast to similar solutions for the sea mount loading case, these ex-
pressions for x0 and xb still depend on V0 and M0. In general V0 and M0

are unknown. They can, however, be eliminated, and we can show the depen-
dence of w(x) on x0 and xb, which can both be estimated from the nathymetry
profile. A perhaps less obvious but elegant way of doing this is to work out
tan(1/α(x0 − xb)). Using sine and cosine rules (see Turcotte & Schubert,
3.17) one finds that

tan
(
xb − x0

α

)
= 1 (6.25)

so that x0 − xb = (π/4 + nπ)α, n = 0, 1, 2, 3, . . . For n = 0 one finds that
α = 4(x0−xb)/π, so that the elastic thickness h can be determined if one can
measure the horizontal distance between x0 and xb.

After a bit of algebra one can also eliminate α to find the deflection w(x) as
a function of wb, x0, and xb. The normalized deflection w/wb as a function of
normalized distance (x − x0)/(xb − x0) is known as the Universal Flexure
Profile.

‡ At this moment, it is important that you go back to the original derivation of the plate equation
in Turcotte & Schubert and realize they obtained their results with definite choices as to the
signs of applied loads and moments — hence the negative signs.
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w(x)
wb

=
√

2e
π
4 exp

{
−π

4

(
x− x0

xb − x0

)}
sin
{
−π

4

(
x− x0

xb − x0

)}
(6.26)

In other words, there is a unique way to bend a laterally homogeneous elastic
plate so that it goes through the two points (x0, 0) and (xb, wb) with the condi-
tion that the slope is zero at x = xb. The example of the Mariana trench shown
in Figure ?? demonstrates the excellent fit between the observed bathymetry
and the prediction after Eq. (6.26) (for a best fitting elastic thickness h as
determined from the flexural parameter calculated from equation (6.25).

6.5 How deep are mountains?
After two simple ocean models, something for the continents.

Bring in the cartoon of the Himalayas but now with three end members:
infinitely stiff, weak, in-between.

The bending of a homogeneous, elastic plate due to a load V (x) can be
describedby a fourth-order differential equation that is well known in elastic
beam theory. We assume a 2D situation, i.e., there is no change of any physical
properties in the direction of y.

D
d4w

dx4
+H

d2w

dx2
+ ∆ρgw = V (x) (6.27)

with w = w(x) the deflection, i.e., the vertical displacement of the plate, D
the flexural rigidity, and H a horizontal force (see Figure ??). The restoring
force is given by ∆ρgw, where the density difference amounts to ρm − ρc for
a crust-mantle (continental interface) and ρm − ρw in the oceanic case. The
flexural rigidity depends on elastic parameters of the plate as well as on its
thickness:

D =
Eh3

12(1− ν2)
, (6.28)

where E is Young’s modulus and ν Poisson’s ratio. Both depend on the
elastic moduli µ and λ.

Let’s consider a periodic load due to topography hwith maximum amplitude
h0 and wavelength λ: h = h0 sin(2πx/λ). The corresponding load is then
given by

V (x) = ρcgh0 sin
(

2πx
λ

)
. (6.29)
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so that the flexure equation, in the absence of any horizontal (tectonic)
forces, becomes, in standard form,

d4w

dx4
+
ρm − ρc
D

gw =
ρcgh0

D
sin
(

2πx
λ

)
. (6.30)

This fourth-order differential equation is easy to solve. Here’s a walk-
through. Replacing k = 2π/λ, representing the differential operator as D,
and introducing the constants A and B we can represent eq. 6.30 as:

(D4 +A)w = B sin(kx). (6.31)

Exponentials of the general form ekx are eigenfunctions of the D4 with
eigenvalue k4, because D4ekx = k4ekx. This leads to the condition on k

that k4 = −A, which has four complex roots ki=1→4. The function

wH =
4∑
i=1

Cie
kix (6.32)

solves the homogeneous equation (D4 + A)wH = 0 for four undetermined
coefficients C1→4 and the general solution wH +wP = 0 will solve the entire
equation 6.31 if (D4 +A)wP = B sin(kx). With wP of the same form as the
right-hand side of the original equation, i.e., wP = C5 sin(kx),

C5(k4 sin(kx) +A sin(kx) = B sin(kx)) (6.33)

must hold†. Therefore, C5 is given by

C5 =
B

k4 +A
. (6.34)

Hence, the general solution is obtained as

w = wH + wP =
4∑
i=1

Cie
kix +

B

k4 +A
sin(kx). (6.35)

† We’ve just illustrated the general fact that for non-homogeneous ordinary differential equations,
the general solution is given by a combination of the solution to the homogeneous equation and
one particular solution
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Note that the determination of C5 has nothing to do with the boundary con-
ditions of the equation, but eq. 6.35 needs to be adjusted so the boundary condi-
tions are valid‡. Since the loading is periodic in x, its is clear that the response
pr deflection of the lithosphere will also vary sinusoidally in x with the same
wavelength as the topography. Therefore, C1→4 = 0, and the solution is given
by:

w(x) =
ρcgh0

Dk4 + ∆ρg
sin(kx). (6.36)

The amplitude of the deflection can be rewritten as follows:

w0 =
h0

ρm
ρc
− 1 + D

ρcg

(
2π
λ

)4 . (6.37)

In the short wavelength range

λ� 2π
(
D

ρcg

)1/4

, (6.38)

the denominator of eq. 6.37 becomes dominant, and the deflecton w0 � h0.
The same happens for very a large flexural rigidity D (or very large elastic
thickness h of the plate). In other words, short-wavelength loads cause virtu-
ally no deformation of the lithosphere. In contrast, for very long wavelengths
(λ � 2π(D/ρcg)1/4) or for a very weak (or thin) plate the maximum depres-
sion becomes

w = w0∞ ≈
ρch0

ρm − ρc
, (6.39)

which is the same as for a completely compensated mass (see Eq. ??). In
other words, the plate “has no strength” for long wavelength loads: the topog-
raphy is fully compensated. The degree of compensation can be defined as the
ratio of the deflection to the maximum hydrostatic deflection in the Airy-case.
In function of the wavelength of the topography, this is plotted for varying
elastic thicknesses in Fig. 6.1.

The importance of this formulation is evident if you realize that topogra-
phy can be described by a Fourier series of periodic functions with different

‡ We are in fact, developing the method of undetermined coefficients. It works when the right-
hand side of the differential equation itself (in our case, sin(kx)) is a solution to a homogeneous
linear equation with constant coefficients, that is, of the general form f(x) = xlerx.
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Fig. 6.1. Degree of compensation for varying elastic thicknesses.

wavelengths. One can thus use Fourier analysis to investigate the depression
or compensation of any shape of load.

6.6 How strong is the crust?
Now we need to relate the last chapter to the first! And we’ve already used the
middle ones!



7
Afterlude

This has been a story of differential geometry and what it’s used for. Div,
grad, curl, and all that! And of differential equations. Heat (parabolic, re-
member the quadratic geotherm!), ut = u+ xx. Wave (hyperbolic, remember
the MOVEOUT curve!), utt = uxx and Laplaces’ (elliptic, remember the el-
lipsoid!), uxx + uyy . We talked about boundary conditions more than about
initial conditions, and about steady state more than about time dependence.

In that case we really should solve, at least once, 1/ Laplace’s equation,
perhaps like Kaula, short and to the poit. 2/ The wave equation (did that). 3/
The heat equation (we did that).

Every chapter to conclude with what the “Fundamental thing” was. For
gravity, the fundamental theorem of geodesy, and how whole books are written
about that. (Hoffman etc). For magnetism, the magnetic induction equation,
and whole books! Hollerbach paper? For heat, the heat diffusion equation.
(Carlslaw?)

Take a good look at Davies’ bookS. Relook at Anderson Theory of the Earth.
Alternative table of contents: The vector calculs you apply learn. The dif-

ferential equations that you learn.
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