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S U M M A R Y
When modelling satellite data to recover a global planetary magnetic or gravitational potential
field, the method of choice remains their analysis in terms of spherical harmonics. When only
regional data are available, or when data quality varies strongly with geographic location,
the inversion problem becomes severely ill-posed. In those cases, adopting explicitly local
methods is to be preferred over adapting global ones (e.g. by regularization). Here, we develop
the theory behind a procedure to invert for planetary potential fields from vector observations
collected within a spatially bounded region at varying satellite altitude. Our method relies
on the construction of spatiospectrally localized bases of functions that mitigate the noise
amplification caused by downward continuation (from the satellite altitude to the source)
while balancing the conflicting demands for spatial concentration and spectral limitation. The
‘altitude-cognizant’ gradient vector Slepian functions (AC-GVSF) enjoy a noise tolerance
under downward continuation that is much improved relative to the ‘classical’ gradient vector
Slepian functions (CL-GVSF), which do not factor satellite altitude into their construction.
Furthermore, venturing beyond the realm of their first application, published in a preceding
paper, in the present article we extend the theory to being able to handle both internal and exter-
nal potential-field estimation. Solving simultaneously for internal and external fields under the
limitation of regional data availability reduces internal-field artefacts introduced by downward-
continuing unmodelled external fields, as we show with numerical examples. We explain our
solution strategies on the basis of analytic expressions for the behaviour of the estimation bias
and variance of models for which signal and noise are uncorrelated, (essentially) space- and
band-limited, and spectrally (almost) white. The AC-GVSF are optimal linear combinations
of vector spherical harmonics. Their construction is not altogether very computationally de-
manding when the concentration domains (the regions of spatial concentration) have circular
symmetry, for example, on spherical caps or rings—even when the spherical-harmonic band-
width is large. Data inversion proceeds by solving for the expansion coefficients of truncated
function sequences, by least-squares analysis in a reduced-dimensional space. Hence, our
method brings high-resolution regional potential-field modelling from incomplete and noisy
vector-valued satellite data within reach of contemporary desktop machines.

Key words: Satellite gravity; Satellite magnetics; Fourier analysis; Inverse theory; Spatial
analysis.

1 I N T RO D U C T I O N

Potential fields such as gravity and magnetic fields provide indispensable information about planetary or lunar structure and evolution (Kaula
1968; Lambeck 1988; Langel & Hinze 1998; Merrill et al. 1998). At the scale of the globe for Earth and Moon, and more generally for
other planets and their moons, the vast majority of the data is derived from satellite missions (Connerney 2015; Wieczorek 2015). Recording
gravity and magnetic fields in space is an engineering problem of instrumentation. Mapping such fields from space down to the body of
interest, separately from any fields generated externally, is a problem of inversion (Plattner & Simons 2015b; Sabaka et al. 2015). Regional
modelling is predicated on the ability to include data collected at varying satellite altitude, alleviating noise amplification under ‘downward
continuation’, and, in particular in the case of magnetic field modelling, taking external fields into account. The full estimation problem
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as we consider it here consists in determining ‘best’ models—suitable for evaluation at the surface of the planetary body, and geological
interpretation as far as accuracy and resolution permit—of an internally generated field noisily observed at a scattered, areally limited set of
locations taken at varying satellite altitude, in the presence of an external field.

Beginning with Gauss (1839), the parameterization of the solution in terms of global basis functions, spherical (Backus et al. 1996)
or ellipsoidal (Bölling & Grafarend 2005) harmonics, remains today a popular practical approach (Sneeuw 1994). At the other end of the
modelling spectrum are local methods, specifically, those based on gridded sets of monopoles (e.g. O’Brien & Parker 1994), equivalent-source
dipoles (e.g. Langel & Hinze 1998) or point masses (e.g. Baur & Sneeuw 2011). In-between those extremes of spectral and spatial selectivity
(for a classification, see Freeden & Michel 1999; Freeden et al. 2017) lies a variety of methods that use functions such as radial basis functions
(e.g. Schmidt et al. 2007), mascons (e.g. Watkins et al. 2015), spherical cap harmonics (e.g. Thébault et al. 2006; Langlais et al. 2010),
spherical-harmonic splines (e.g. Shure et al. 1982; Amirbekyan et al. 2008) and wavelets (Holschneider et al. 2003; Mayer & Maier 2006;
Gerhards 2012). Among the constructively ‘spatio-spectrally localized’ spherical functions (e.g. Lesur 2006) features the general class of
‘Slepian functions’ (Simons et al. 2006; Plattner & Simons 2014; Simons & Plattner 2015) upon which we build our present work.

Building new bases (or ‘frames’, in a wider sense) by the judiciously weighted linear combination of spherical harmonics, which most of
the above localization methods have in common, provides a natural way to respect the harmonicity of the potential fields under study. When
the spherical-harmonic expansion coefficients of a potential field at a certain altitude are ‘known’, downward continuation to the zero height
of the planetary surface, usually approximated by a sphere, amounts to a simple re-evaluation via multiplication of the coefficients with factors
that depend on the radii of the measurement sphere and the planet (e.g. Blakely 1995; Backus et al. 1996; Dahlen & Tromp 1998). In the case
of imperfect knowledge, however, numerical and statistical stability limit the spatial resolution of the re-evaluated fields that can be obtained
in this way, depending on the relative altitude and the signal-to-noise ratios of the coefficients. Such difficulties are exacerbated if the source
of the uncertainty, fundamentally, lies in the original data being available over an incomplete portion of the measurement sphere (Kaula 1967;
Xu 1992; Trampert & Snieder 1996; Simons & Dahlen 2006; Schachtschneider et al. 2012). For such problems, inversion methods that rely
on spherical-harmonics based localized basis functions confer efficiency and stability, dimensional reduction, and the overall ease and ability
to produce and downward-continue regional potential-field models with less statistical a priori information or numerical regularization.

Satellite data coverage is far from being always ‘global’. Coverage may be only regional, as is the case over Mercury (Solomon et al.
2001, 2007), or data quality may vary due to spatial variations of signal-to-noise levels or satellite altitude, rendering a geographical restriction
of the area of interest desirable. Such was the situation for Mars (Albee et al. 2001), where Plattner & Simons (2015a) selected low-altitude
night-time magnetic-field data for inversion using the ‘altitude-cognizant gradient vector Slepian functions’ (AC-GVSF) that are the subject
of this paper, resulting in a new lithospheric magnetic-field model of the Martian South Pole. They subtracted an external-field model made
independently by Olsen et al. (2010a) from the data prior to inversion. In the present paper, we treat the estimation of internally and externally
generated fields as an inverse problem that considers both jointly.

Our method traces its history to the 1-D theory of ‘prolate spheroidal wave functions’ by Slepian & Pollak (1961), its applications in
signal processing (Slepian 1983), and especially its extensions to scalar spherical fields by Simons et al. (2006) and Simons & Dahlen (2006),
to spherical vector fields by Plattner & Simons (2014), and to gradient vector spherical functions (curl-free potential fields) by Plattner &
Simons (2015b). In the above cited works, satellite altitude, though explicitly considered within the context of the inverse problem, was
never a factor in the optimization construction of the Slepian functions, and so we will term them ‘canonical’ or ‘classical’. In particular, the
functions of Plattner & Simons (2015b) will hereafter be known as ‘classical gradient vector Slepian functions’ (CL-GVSF). In contrast, the
construction by Plattner & Simons (2015a), reformulated here, does incorporate satellite altitude directly, hence their designation AC-GVSF.
The CL-GVSF solve a spatial (surface) optimization problem for band-limited functions, while the AC-GVSF incorporate optimization under
downward continuation from satellite altitude. Using the AC-GVSF for satellite-data inversion is different than using the CL-GVSF basis.
In the latter case, vector-field measurements are first inverted for a best-fitting model at altitude, and the results are downward-continued
afterwards. As Plattner & Simons (2015b) already noted in their sections 7.1 and 7.2, in that case, the model at the planetary surface is
potentially biased by power in the high spherical-harmonic degrees leaking in through the downward continuation. This bias is a consequence
of using functions that solely optimize spatial concentration within a given region. The general method presented here aims at overcoming
these issues.

We construct a basis of functions from linear combinations of ‘gradient vector spherical harmonics’ by solving an optimization problem
that incorporates the satellite altitude at which the data are acquired. We present two versions of an inversion method that use different forms
of the AC-GVSF. In the first method we assume that external fields are not present, or have been removed from the data by prior analysis. In
our second method, we model external fields simultaneously while solving for the internal field. Only the first approach was used by Plattner &
Simons (2015a), and they did not present a complete mathematical analysis, as we do here. Notation and preliminary considerations can
be found Section 2. A statement of the problem that we solve is found in Section 3. The body of the paper is arranged around the three
questions ‘what?’, ‘how?’, and ‘why?’. Sections 4–8 cover the question ‘what’ and touch on the question ‘how?’. Sections 9 and 10 answer
the question ‘why?’. Finally, Appendix A focuses again on the question ‘how?’, in more detail. More precisely, in Section 4 we present the
purely ‘internal-field AC-GVSF’ that we will use in Section 6 to solve for a potential-field model from purely internal-field regional vector
data. Section 5 describes the construction of internal and external ‘full-field AC-GVSF’ that we use, in Section 7, to solve simultaneously
for the internal and external potential field from regional satellite data with varying altitude. We test both methods on a simulated data set in
Section 8 and investigate the effect of neglecting to account for an external field. In Sections 9 and 10, we provide a more in-depth analysis
of the relationship of our new Slepian functions to the general vector spherical Slepian functions presented by Plattner & Simons (2014)
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Figure 1. Schematic of the geometry considered in this paper (not to scale). The variable satellite locations r, with a representative value rs, lie between the
planetary surface approximated by the sphere of radius rp and an outer sphere of radius rq. The spherical shell � between rp and rq is assumed source-free.

and showcase their mathematical and statistical properties. We summarize our findings in Section 11 and explain methods to significantly
decrease the computational costs of high spherical-harmonic degree calculations in Appendix A.

We assume that the magnetic field that we solve for is static, in that we do not incorporate a direct time dependence. To avoid temporal
aliasing, the data should be binned into episodic clusters before inversion and then inverted individually using the same set of AC-GVSF.
Compared to other regional methods, the AC-GVSF approach has the overall advantage that all calculations happen within a space spanned
by band-limited spherical harmonics, the natural basis for source-free potential fields outside a sphere (Section 2.1). Our method can be
interpreted as a computationally tractable approximation to the truncated singular-value decomposition of the full spherical-harmonic global
problem focused on a chosen region. The AC-GVSF are easy to use, computationally efficient, and work with discrete data collected at
varying satellite altitude. A benchmark comparison test with other methods remains desirable but is beyond the scope of this article. Instead
we summarize where we discern the main differences with other regional methods. The popular Revised Spherical Cap Harmonic Analysis
(R-SCHA) method by Thébault et al. (2006) fits data using basis functions that solve Laplace’s equation inside a cone covering the chosen
region with appropriate boundary conditions. Our method allows for the separation of internal- and external fields (with bias, as we show in
eqs 146–149), which cannot be readily achieved using R-SCHA (Thébault et al. 2006). Potential fields obtained using AC-GVSF are naturally
expressed as a wavelength-dependent power spectrum, which is not as straightforward with R-SCHA (Thébault et al. 2006). The spherical
wavelet methods by Mayer & Maier (2006) and Gerhards (2011, 2012, 2014) provide another powerful regional approach. To the best of our
knowledge these methods assume that the satellite orbit is of constant altitude, which is not required in our method. Discrete-source methods
such as monopoles (O’Brien & Parker 1994), equivalent dipoles (Langel & Hinze 1998), or point-mass modelling (Baur & Sneeuw 2011)
require assigning effective depths (since a true depth cannot be constrained from potential-field measurements) to a finite set of infinitesimal
sources distributed over the surface. By solving for the uniquely constrained potential field itself, we obviate parameterizing or discretizing
the source altogether.

2 P R E L I M I NA RY C O N S I D E R AT I O N S

In this section we establish the mathematical building blocks and develop a consistent notation for the development in the rest of the paper.

2.1 Scalar spherical harmonics for potential fields

In a coordinate system originating at the planetary or lunar centre we define a spherical shell � = {r | rp ≤ ‖r‖ = r ≤ rq} between an inner
sphere with radius rp, an approximation of the planetary surface, and an outer sphere defined by the radius rq, outside of the satellite orbit rs.
Fig. 1 shows the relative location of the different radial positions considered as discussed in this section and beyond. Our goal is to ‘map’ a
magnetic or gravity measurement made at an altitude r − rp above the planet, rp < r < rq, onto a potential evaluated on the sphere of radius rp.
In the absence of field sources within the spherical shell �, the only sources lying either within the ball of radius rp or outside of the sphere
of radius rq, the true ‘full’ field inside � is the superposition of two scalar potentials: an ‘internal’ field V, and an ‘external’ field W. Both
fields are ‘harmonic’: they solve the spherical Laplace equation (Blakely 1995; Snieder 2004; Newman 2016)

∇2 [V (r r̂) + W (r r̂)] = 0, rp < r, rs < rq , (1)

where the usual Laplacian ∇2 = ∂2
r + 2r−1∂r + r−2∇2

1 , and surface Laplacian ∇2
1 = ∂2

θ + cot θ ∂θ + (sin θ )−2∂2
φ for colatitude 0 ≤ θ ≤ π

and longitude 0 ≤ φ < 2π . For a point r̂ on the surface of the unit sphere � = {r̂ | ‖r̂‖ = 1}, we define the orthonormal set of scalar
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spherical-harmonics as do Dahlen & Tromp (1998), Simons et al. (2006) and Plattner & Simons (2014, 2015a,b). These are given by

Ylm(r̂) = Ylm(θ, φ) =

⎧⎪⎨
⎪⎩

√
2Xl|m|(θ ) cos mφ if − l ≤ m < 0,

Xl0(θ ) if m = 0,√
2Xlm(θ ) sin mφ if 0 < m ≤ l,

(2)

Xlm(θ ) = (−1)m

(
2l + 1

4π

)1/2 [
(l − m)!

(l + m)!

]1/2 1

2l l!
(1 − μ2)m/2

(
d

dμ

)l+m

(μ2 − 1)l , (3)

where 0 ≤ l ≤ ∞ is the angular degree of the spherical harmonic, and −l ≤ m ≤ l its angular order. As shown by Backus (1986) and
Freeden & Schreiner (2009), among others, the general solution to eq. (1) involves linear combinations of the functions (2)–(3), the ‘inner’
solid harmonics rlYlm, and the ‘outer’ solid harmonics, r−l − 1Ylm. The outer harmonics extinguish at infinity and, therefore, are a suitable basis
for the functions V, generated by internal sources. The inner harmonics vanish at the centre of the coordinate system, and, therefore, form the
basis for the functions W, generated by external sources. Inside the shell �, the individual fields are represented as

V (r r̂) =
∞∑

l=0

l∑
m=−l

(
r

rp

)−l−1

v
r p
lmYlm(r̂), with v

r p
lm =

∫
�

V (rp r̂)Ylm(r̂) d�, (4)

W (r r̂) =
∞∑

l=1

l∑
m=−l

(
r

rq

)l

w
rq
lmYlm(r̂), with w

rq
lm =

∫
�

W (rq r̂)Ylm(r̂) d�. (5)

In eqs (4) and (5). we selected rp and rq as reference radii for the coefficients v
r p
lm and w

rq
lm , respectively. We collect band-limited subsets of the

spherical-harmonic coefficients v
r p
lm for the internal field in a vector v

r p
L , and a set of w

rq
lm for the external field in a vector w

rq
Lo

,

v
r p
L = (

v
r p
00 · · · v

r p
lm · · · v

r p
L L

)T
and w

rq
Lo

= (
w

rq
1 −1 · · · w

rq
lm · · · w

rq
Lo Lo

)T
. (6)

We assemble the scalar spherical harmonics Ylm into an infinite-dimensional column vector Y that we think of as consisting of two parts,

Y = (
YT

L YT
>L

)T = (
Y00 YT

Lo
YT

>Lo

)T
. (7)

As to the band-limited, (L + 1)2 and [(Lo + 1)2 − 1]-dimensional portions, we have

YL = (Y00 · · · Ylm · · · YL L )T and YLo = (
Y1 −1 · · · Ylm · · · YLo Lo

)T
. (8)

Similarly extending the vectors eq. (6) leads to an attractive shorthand for eqs (4) and (5) in the form

V (rp r̂) = YT
L v

r p
L + YT

>L v
r p
>L , with v

r p
L =

∫
�

V (rp r̂)YL d�, (9)

W (rq r̂) = YT
Lo

w
rq
Lo

+ YT
>Lo

w
rq
>Lo

, with w
rq
Lo

=
∫

�

W (rq r̂)YLo d�. (10)

Finite identity matrices will be subscripted by their dimension, whereas the unadorned zero or identity matrices will simply stretch to be
as large as required. For example, the orthonormality of the spherical harmonics will be expressed as∫

�

Y YT d� = I,
∫

�

YLYT
L d� = I(L+1)2 and

∫
�

YLYT
>L d� = 0. (11)

2.2 Vector spherical harmonics for gradients of potential fields

Many satellite instruments do not measure the scalar potential fields V and W directly, but rather the vector field B (e.g. the magnetic field or
gravitational force) of their superposition, namely

B(r r̂) = ∇V (r r̂) + ∇W (r r̂). (12)

Using ∇ = r̂ ∂r + r−1∇1, and ∇1 = θ̂ ∂θ + φ̂ (sin θ )−1∂φ , we express the gradients of the potentials in eqs (4) and (5) in eq. (12) as

∇V (r r̂) =
∞∑

l=0

l∑
m=−l

−r−1
p

(
r

rp

)−l−2

v
r p
lm

[
r̂ (l + 1)Ylm(r̂) − ∇1Ylm(r̂)

]
, (13)

∇W (r r̂) =
∞∑

l=1

l∑
m=−l

r−1
q

(
r

rq

)l−1

w
rq
lm

[
r̂ lYlm(r̂) + ∇1Ylm(r̂)

]
. (14)

In eqs (13) and (14), the expressions in square brackets are vector spherical harmonics. We jointly orthonormalize them over the unit sphere
and refer to them as internal and external ‘gradient vector spherical harmonics’ (see Freeden & Schreiner 2009, their eqs 5.309 and 5.310),

Elm(r̂) = 1√
(l + 1)(2l + 1)

[
r̂ (l + 1)Ylm(r̂) − ∇1Ylm(r̂)

]
, (15)



Regional planetary potential-field estimation 5

Flm(r̂) = 1√
l(2l + 1)

[
r̂ lYlm(r̂) + ∇1Ylm(r̂)

]
. (16)

With the help of eqs (15) and (16) we rewrite eqs (13) and (14) succinctly in a form amenable to up- and downward continuation within the
shell �,

∇V (r r̂) =
∞∑

l=0

l∑
m=−l

Al (r ) v
r p
lm Elm(r̂), where Al (r ) = −r−1

p

√
(l + 1)(2l + 1)

(
r

rp

)−l−2

, (17)

∇W (r r̂) =
∞∑

l=1

l∑
m=−l

Ăl (r ) w
rq
lm Flm(r̂), where Ăl (r ) = r−1

q

√
l(2l + 1)

(
r

rq

)l−1

. (18)

None of our formulations used ‘toroidal’ vector harmonics, the C lm of Dahlen & Tromp (1998) or Plattner & Simons (2014, 2015b). These
do not result from potential-field gradients and cannot be analytically continued as the expressions containing Elm and Flm . Any of their
contributions to our data will be disregarded as unmodelable components. Where necessary we expand the degree-dependent harmonic
continuation operators Al(r) and Ăl (r ) to a ‘full’ form, defining ‘stretchable’ diagonal matrices, whose dimensions depend on the context,

A(r ) with elements Alm,l ′m′ (r ) = Al (r ) δll ′δmm′ , (19)

Ă(r ) with elements Ălm,l ′m′ (r ) = Ăl (r ) δll ′δmm′ , (20)

and when we suppress their argument, we shall mean r = rs, using the ‘silent’ notation

A with elements Alm,l ′m′ = Al (rs) δll ′δmm′ , (21)

Ă with elements Ălm,l ′m′ = Ăl (rs) δll ′δmm′ . (22)

As with eq. (7), we define the infinite-dimensional vectors E and F to comprise all functions Elm and Flm , but partition them into
band-limited subsets, E L and F Lo , and their infinite-dimensional complements, E>L and F>Lo ,

E =
(
ET

L ET
>L

)T
and F =

(
FT

Lo
FT

>Lo

)T
, (23)

where, as in eq. (8), we write out the pieces containing the Elm for 0 ≤ l ≤ L, and the Flm for 1 ≤ l ≤ Lo, as follows,

E L = (
E00 · · · Elm · · · EL L

)T
and F Lo = (

F1 −1 · · · Flm · · · FLo Lo

)T
. (24)

We arrive at the useful shorthand for eqs (17) and (18), evaluated at a common radius rs, in the form

∇V (rs r̂) = ET
L ATv

r p
L + ET

>L ATv
r p
>L , (25)

∇W (rs r̂) = ET
Lo

Ă
T
w

rq
Lo

+ FT
>Lo

Ă
T
w

rq
>Lo

. (26)

We use the symbol · to denote the inner products applied to each element pair of the vector or matrix of vector-valued functions, for
example,

E L · ET
L =

⎛
⎜⎜⎝

E00 · E00 · · · E00 · EL L

...
...

EL L · E00 · · · EL L · EL L

⎞
⎟⎟⎠ and E L · FT

Lo
=

⎛
⎜⎜⎝

E00 · F1 −1 · · · E00 · FLo Lo

...
...

EL L · F1 −1 · · · EL L · FLo Lo

⎞
⎟⎟⎠, (27)

and likewise for future combinations of E and F , subscripted or not. Hence, the joint orthonormality leads to expressions of the form∫
�

E · ET d� = I,
∫

�

F · FT d� = I, and
∫

�

E · FT d� = 0. (28)

3 S TAT E M E N T O F T H E P RO B L E M

When estimating planetary gravity or magnetic fields from sources within a planet we assume that the spherical shell � between the planetary
surface and the upper limit of our satellite data altitude is free of any field sources. This allows us to downward-continue the coefficients
for the potential fields at r onto the planetary surface rp, or upward-continue them to the outer range of the spherical shell rq, per eqs (17)
and (18).

The measured data are a superposition of the fields from internal and external sources, and contributions collected in a noise term,

d(r r̂) =
{

∇V (r r̂) + ∇W (r r̂) + n(r r̂) if r̂ ∈ R ⊂ �,

unknown if r̂ ∈ � \ R.
(29)
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Our goal is to obtain, from discrete satellite data collected within a confined region R at varying altitude above the planetary surface
approximated by a sphere of radius rp, the band-limited set of coefficients v

r p
lm ∈ v

r p
L , 0 ≤ l ≤ L, that describe V on the planetary surface. We

will discuss two versions of this problem. In the first, treated in Section 4, we remove the external field from consideration. In the second,
discussed in Section 5, we solve simultaneously also for the external-field coefficients that describe the potential W, recovering as best we can
the w

rq
lm ∈ w

rq
Lo

, 1 ≤ l ≤ Lo. As made explicit via eq. (6), we will be forming strictly band-limited estimates of the broad-band fields ∇V and
∇W in eqs (17) and (18), up to a certain L and Lo, not necessarily identical, for the internal and external fields, respectively. In Sections 9
and 10, we will be quantifying the broad-band bias that is the inevitable result of such choices.

In our formulation of the problem in eq. (29), we assume static data with any time variation collected in the noise term. To avoid temporal
aliasing the data might be binned by time stamp, and each bin inverted individually.

4 S O LU T I O N B Y T H E I N T E R NA L - F I E L D A LT I T U D E - C O G N I Z A N T G V S F M E T H O D

When we ignore the external field, either because it is deemed insignificant, or because we modelled and subtracted it from the data, the
term containing W in eq. (12) vanishes. For example, Plattner & Simons (2015a) subtracted a model of the external night-time field for Mars
obtained by Olsen et al. (2010a) and assumed no further external-field contribution. In this section we detail the Plattner & Simons (2015a)
construction of a Slepian basis of functions to serve as an effective lesser-dimensional alternative to the gradient vector spherical harmonics
for inverse modelling of the internal potential field V from vector data at satellite altitude. These internal-field altitude-cognizant gradient
vector Slepian functions (AC-GVSF) take into account the region of data availability R, the radial coordinate of data acquisition r, and the
resolvable spherical-harmonic bandwidth L. The present section is only concerned with the construction of the basis functions; the next
section deals with their usage in realistic data analysis settings.

4.1 Restatement of the inverse problem

For the construction of the localized function basis we assume that the data exist as a continuous function on the sphere of radius rs. Avoiding
for now the specification of discrete data locations, the only manner in which the new basis construction depends on the data is through
the boundary of their geographic region of availability, and the satellite altitude that is representative for them. For regions with rotational
symmetry the construction will then be computationally very efficient, as we discuss in Appendix A1. Within the region R the vector-valued
satellite data d(rs r̂) are the sum of the vector-valued gradient of the unknown scalar-potential internal field and a noise term,

d(rs r̂) =
{

∇V (rs r̂) + n(rs r̂) if r̂ ∈ R,

unknown if r̂ ∈ � \ R.
(30)

We will be using the ‘silent’ notation whereby d = d(rs r̂). As is clear from eq. (17), in terms of the unit-sphere harmonics Elm(r̂), the
coefficients v

r p
lm that describe the internal potential field on the planetary surface rp relate to the ones describing that same field at some

average satellite radius rs via an upward-continuation transformation that we write in terms of the diagonal matrix A defined in eq. (21). In
the notation developed in Section 2, this allows us to rewrite the band-limited portion of the vector field that we attempt to recover, for a fixed
average satellite orbital radius rs, in terms of the vector spherical harmonic basis functions AE L , and with that, we define a solution as the
least-squares minimizer

ṽ
r p
L = arg min

v
r p
L

{∫
R

(ET
L ATv

r p
L − d

)2
d�

}
. (31)

We solve eq. (31) by calculating the derivative with respect to the coefficient vector v
r p
L and setting the result equal to zero to obtain

A

(∫
R
E L · ET

L d�

)
ATṽ

r p
L = A

∫
R
E L · d d�. (32)

In the dot product notation of eq. (27),

E L · d = (E00 · d · · · Elm · d · · · EL L · d)
T
. (33)

4.2 A Slepian approach to the internal-field problem

Eq. (32) is linear in the data. As did Plattner & Simons (2015a), we define the symmetric positive-definite matrix

K = A

(∫
R
E L · ET

L d�

)
AT. (34)

At large bandwidths L and for high satellite altitudes rs, the (L + 1)2 × (L + 1)2-dimensional matrix K is poorly conditioned, and solving
the system (32) via matrix inversion to obtain ṽ

r p
L requires regularization. Under a Tikhonov numerical scheme we would add a suitably

regular matrix to K prior to inversion, which, in a Bayesian interpretation is akin to supplying a priori information (Aster et al. 2013).
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Approaching the problem via singular-value decomposition (SVD), we focus on solving for the well-conditioned components of
problem (32). Working from the eigenvector decomposition of K we will rewrite the solution in terms of those eigenvectors that have
relatively large eigenvalues, and then we will solve for their expansion coefficients. When the region R is an arbitrary geographical domain,
and when L is large, the eigendecomposition will be costly, but in Appendix A1 we show that for regions with special symmetry, K can be
transformed into a block-diagonal matrix with a maximal block size of (L + 1) × (L + 1), which significantly reduces its diagonalization
cost.

The eigenvectors of the real symmetric positive-definite matrix K are orthogonal. We orthonormalize the eigenvectors, hence we write

KG = G�, where GTG = I(L+1)2 = GGT, (35)

where � is the diagonal matrix of sorted real-valued eigenvalues 1 > λ1 ≥ λ2 ≥ · · · ≥ λ(L+1)2 > 0, and I the identity. The columns of the
(L + 1)2 × (L + 1)2-dimensional matrix G are the eigenvectors of K. The matrix GJ is the (L + 1)2 × J-dimensional restriction to its first
J columns, thus the untruncated G = G(L+1)2 , and G>J will be the complement to GJ . We note right away that

KGJ = GJ �J , where GT
J GJ = IJ , but

(
GJ GT

J

)n = GJ GT
J �= I(L+1)2 , (36)

for any positive integer n, is a non-invertible projection except for R = �. We do note that GJ GT
J + G>J GT

>J = I(L+1)2 . Each of the columns
of G, which we denote gα and arrange as

G = (g1 · · · gα · · · g(L+1)2 ) = (GJ G>J ), where GJ = (g1 · · · gα · · · gJ ), (37)

contains a spherical-harmonic coefficient set gα = (g00,α · · · glm,α · · · gL L ,α)
T

, with a power spectrum or mean-squared value

Gα(l) = 1

2l + 1

l∑
m=−l

g2
lm,α. (38)

In what follows we take pains to distinguish ‘light’ and ‘bold’, uncapitalized and capitalized, roman (g, G), italicized (g, G, G), calligraphic
(G, G) or script (G ) fonts, depending on whether the quantity of interest is a column vector or a matrix, a scalar value or a scalar function or
a vector function, a column vector of scalar functions or of vector functions, or a power spectrum, respectively, as in Section 2, where we had
already encountered v, A, v, V, E, Y , and E , for example. We will furthermore see that glm,α ∈ gα ⊂ G, Gα ∈ G, Gα ∈ G, and so on.

We use the internal-field altitude-cognizant Slepian transform in three distinct ways.
(1) Expanded in scalar spherical harmonics in the coordinates of the unit sphere, we define an altitude-cognizant scalar Slepian function,

Gα(r̂) =
L∑

l=0

l∑
m=−l

glm,αYlm(r̂). (39)

With the help of eq. (8), we use eqs (37) and (39) to define the column vector containing such functions Gα(r̂) = YT
L gα ,

GJ = (G1 · · · Gα · · · G J )
T = GT

JYL , with 1 ≤ J ≤ (L + 1)2. (40)

We partition the full set as G = G(L+1)2 = (GT
J GT

>J )T , whereby GT G = GT
J GJ + GT

>JG>J = YT
L YL .

(2) When expanded into the gradient vector spherical-harmonic basis on the planetary sphere of radius rp, every eigenvector gα yields
an AC-GVSF,

Gα(rp r̂) =
L∑

l=0

l∑
m=−l

Al (rp) glm,α Elm(r̂). (41)

In the same vein as eq. (40), using eqs (24), (37) and (41), we write the vector containing those functions Gα(rp r̂) = ET
L A(rp) gα ,

G J =
(

G1 · · · Gα · · · G J

)T
= GT

J A(rp) E L , with 1 ≤ J ≤ (L + 1)2, (42)

again partitioned as G = G(L+1)2 = (GT
J GT

>J )T .
(3) At satellite altitude rs, we define a vector of upward-continued AC-GVSF in the ‘silent’ notation G↑α(rs r̂) = ET

L A gα ,

G↑J =
(

G↑1 · · · G↑α · · · G↑J

)T
= GT

J A E L , with 1 ≤ J ≤ (L + 1)2. (43)

We maintain the usual partition G↑ = G↑(L+1)2 = (GT
↑J GT

↑>J )T .
Whatever the region of concentration R, owing to the orthogonality of the transformation (35) and (40), the entire J = (L + 1)2-

dimensional untruncated set of scalar Slepian functions remains a complete basis for band-limited internal-potential functions. On the
planetary surface rp,

YT
L v

r p
L = YT

L

(
GGT

)
v

r p
L = (

GTYL

)T (
GTv

r p
L

) = GT s. (44)
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Figure 2. The best-concentrated (highest-eigenvalue) internal-field altitude-cognizant gradient vector Slepian function (AC-GVSF) G1, as from eq. (41), for
region R = North America, rp = 6371 km, rs = 6671 km (i.e. at 300 km satellite altitude), and bandwidth L = 100. Top row: vector (radial, colatitudinal and
longitudinal) components of the AC-GVSF evaluated on the planetary surface. Bottom panel: the power spectrum G1, from eq. (38).

The expansion coefficients of a band-limited potential field at rp, for example, v
r p
lm in the scalar spherical-harmonic basis Ylm(r̂), transform to

the coefficients of a scalar Slepian basis Gα(r̂), designed with the same bandwidth L but for whichever region R, as

sα =
∫

�

V (rp r̂) Gα(r̂) d� =
L∑

l=0

l∑
m=−l

glm,α v
r p
lm or, in vector form, (45)

sJ =
∫

�

V (rp r̂)GJ (r̂) d� = GT
J v

r p
L , with 1 ≤ J ≤ (L + 1)2. (46)

The crux of our inversion method will rely on the property that a J < (L + 1)2-dimensional truncated subset of high-eigenvalue Slepian
functions will remain an approximate basis for functions considered over a confined geographical domain R, if it matches the region for which
the Slepian functions were designed, and for the same band limit L, in the sense that

∫
R(GT

J sJ − GT s)2 d� will be small for suitable J.
Fig. 2 shows the radial, colatitudinal, and longitudinal components of the highest-eigenvalue internal-field AC-GVSF for a planetary

radius rp = 6371 km, a satellite radius rs = 6671 km, region R = North America, and maximum spherical-harmonic degree L = 100. Shown
are the vector components G1 · r̂ , G1 · θ̂ , and G1 · φ̂, with their power spectrum G1. Even though the function G1 has a bandwidth L = 100,
the spatial pattern in Fig. 2 is consistent with an effective bandwidth that is much lower, as also seen in the power spectrum. Herein lies the
difference of the AC-GVSF, first developed by Plattner & Simons (2015a), with the CL-GVSF of Plattner & Simons (2015b), which did not
incorporate the upward-continuation operators A of eq. (21) into the optimization solution of eq. (32), which now leads to the diagonalization
of the matrix K in eq. (34). The eigenvector with the largest eigenvalue in eq. (35) displays only small but non-zero coefficients at the highest
spherical-harmonic degrees. Since information at those degrees is more sensitive to noise amplification under downward-continuation,
this was to be expected. It is furthermore reflected in the power spectrum in Fig. 2, where the spherical-harmonic degrees higher than
l ≈ 40 are characterized by very low power.

Fig. 3 shows the three components of the 100th best-concentrated internal-field AC-GVSF for the same parameters as in Fig. 2. The
function values of G100 reveal much finer-scale structures than those of G1 in Fig. 2, and the spectrum G100 manifests more power at the higher
spherical-harmonic degrees than did G1 in Fig. 2. The increased power at the higher spherical-harmonic degrees of the lower-eigenvalue
AC-GVSF is in principle accompanied by the ability to resolve finer spatial details. However, in the data analysis these functions might also
be more prone than the lower-ranked internal-field AC-GVSF to fitting noise rather than signal.

4.3 Continuous solution by internal-field AC-GVSF

With the help of eqs (34) and (35) and the orthogonality of the matrix G, the problem (32) is rewritten as

K ṽ
r p
L = G�GTṽ

r p
L = A

∫
R
E L · d d�. (47)
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Figure 3. The 100th-best concentrated internal-field AC-GVSF, G100, and its power spectrum, G100, for the same parameters and layout as in Fig. 2.

We implement the truncated-SVD approach in using the first J columns of the matrix G, hence, using the formalism of eqs (36) and (46),

GJ �J s̃J = A
∫

R
E L · d d�, (48)

where GJ is as in eq. (37), and �J is the diagonal matrix consisting of the J largest eigenvalues λ1 ≥ ··· ≥ λJ > 0 of K. The new version,
eq. (48), is not identical to the original problem, eq. (47), given eq. (36), and s̃J is a truncated Slepian-transform estimator. The value for the
regularization parameter J remains to be chosen. If we select J such that all eigenvalues λα are similar in magnitude, the system (48) will be
well conditioned, and can be solved by the left-inverse of GJ �J , which is �−1GT

J , per eq. (36). This defines a solution, using eq. (43),

s̃J = �−1
J

∫
R
G↑J · d d�. (49)

The J-dimensional vector of coefficients s̃J can be back-projected into the (L + 1)2-dimensional space of internal-field vector spherical-
harmonic coefficients by multiplying it with the (L + 1)2 × J-dimensional matrix GJ . We can expand the estimated potential field on the
planetary surface from this back-projection, with the help of eq. (40), to form the space-domain estimate

ṼJ (rp r̂) =
J∑

α=1

s̃α Gα(r̂) = YT
L GJ s̃J = GT

J s̃J . (50)

We note emphatically that the estimator in eq. (50) is different than the one proposed by Plattner & Simons (2015b), their eq. (161), and
also briefly discussed by Plattner & Simons (2015a) in their section 2.2. It is, however, the estimator used by Plattner & Simons (2015a) and
discussed in their section 2.3. The current paper contains the full rationale behind their doing so. The key to the difference is that we use
eigenvectors of eq. (34), which takes the effects of the altitude of the observation into account at the optimization stage.

In this section we described the construction of band-limited internal-field AC-GVSF, concentrated in a certain region and optimized for
a representative satellite altitude. In the following section we expand our method to being able to consider both internal- and external fields.

5 S O LU T I O N B Y T H E F U L L - F I E L D A LT I T U D E - C O G N I Z A N T G V S F M E T H O D

Modelling both the internal and external fields, that is, the ‘full’ field from both V and W in eq. (12), with a similar spatio-spectrally localized
inversion approach as described in Section 4, requires Slepian functions that contain both internal-field and external-field components.

5.1 Restatement of the inverse problem

As for eq. (30) we assume that the data are a linear combination of a modelled component (signal) and noise, with the signal now containing
both the internally and externally generated vector fields,

d(rs r̂) =
{

∇V (rs r̂) + ∇W (rs r̂) + n(rs r̂) if r̂ ∈ R,

unknown if r̂ ∈ � \ R.
(51)
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Complementing the matrix A that serves to upward-continue the internal-field spherical harmonics, eq. (21), we use the external-field
matrix Ă from eq. (22) to augment eq. (31) to take both fields into account. The internal field is expanded as a linear combination of upward-
continued internal-field vector spherical harmonics AE L , with coefficients v

r p
L . The external field is a linear combination of analytically

continued external-field vector spherical harmonics ĂF Lo , with coefficients w
rq
Lo

. The external-field bandwidth, Lo, can be different from the
internal-field bandwidth, L. We seek a least-squares solution⎛
⎜⎝ ṽ

r p
L

w̃
rq
Lo

⎞
⎟⎠ = arg min

v
r p
L ,w

rq
Lo

{∫
R

(
ET

L ATv
r p
L + FT

Lo
Ă

T
w

rq
Lo

− d
)2

d�

}
. (52)

We solve optimization problem (52) by taking its derivative with respect to the vector
(

v
r p

T

L w
rq

T

Lo

)T
and setting it to zero. This yields

⎛
⎜⎜⎜⎝

A
∫

R
E L · ET

L d� AT A
∫

R
E L · FT

Lo
d� Ă

T

Ă
∫

R
F Lo · ET

L d� AT Ă
∫

R
F Lo · FT

Lo
d� Ă

T

⎞
⎟⎟⎟⎠

⎛
⎜⎝ ṽ

r p
L

w̃
rq
Lo

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

A
∫

R
E L · d d�

Ă
∫

R
F Lo · d d�

⎞
⎟⎟⎟⎠. (53)

Substituting F Lo for E L , the same dot-product notation as in eqs (27) and (33) is used.

5.2 A Slepian approach to the full-field problem

As with eq. (34) we proceed to regularizing the poorly conditioned linear system (53) by diagonalization of the combined kernel matrix

K̊ =

⎛
⎜⎜⎜⎝

A
∫

R
E L · ET

L d� AT A
∫

R
E L · FT

Lo
d� Ă

T

Ă
∫

R
F Lo · ET

L d� AT Ă
∫

R
F Lo · FT

Lo
d� Ă

T

⎞
⎟⎟⎟⎠, (54)

which is square, of dimension [(L + 1)2 + (Lo + 1)2 − 1] × [(L + 1)2 + (Lo + 1)2 − 1], and generally fully populated. In Appendix A2, we
show that for symmetric regions the columns and rows of K̊ can be reordered to a block-diagonal form with the largest block dimension
(L + Lo + 1) × (L + Lo + 1). In the orthogonal eigenvector decomposition of this symmetric positive definite matrix,

K̊G̊ = G̊�̊, where G̊TG̊ = I(L+1)2+(Lo+1)2−1 = G̊G̊T, (55)

the diagonal matrix of eigenvalues λ̊1 ≥ λ̊2 ≥ · · · ≥ λ̊(L+1)2+(Lo+1)2−1 > 0 is �̊, and G̊ contains the eigenvectors g̊α in the arrangement

G̊ = (g̊1 · · · g̊α · · · g̊(L+1)2+(Lo+1)2−1) = (G̊J G̊>J ) where G̊J = (g̊1 · · · g̊α · · · g̊J ) . (56)

Again it is to be noted that the relations involving the column restrictions are, for 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1 and for any n ∈ N,

K̊G̊J = G̊J �̊J , where G̊T
J G̊J = IJ , but

(
G̊J G̊T

J

)n = G̊J G̊T
J �= I(L+1)2+(Lo+1)2−1. (57)

Each of the column vectors in G̊ contains coefficients for the internal and the external fields, and G̊ = G̊(L+1)2+(Lo+1)2−1, to avoid
notational clutter. The first (L + 1)2 coefficients of each vector g̊α multiply the internal-field vector spherical harmonics E L while the last
(Lo + 1)2 − 1 coefficients expand the external-field vector harmonics F Lo . Thus, each vector g̊α decomposes into internal and external parts
g̊α = (g̊i 00,α · · · g̊i lm,α · · · g̊i L L ,α g̊o 1 −1,α · · · g̊o lm,α · · · g̊o Lo Lo,α)T = (g̊T

iα g̊T
oα)T. We baptize G̊i the matrix with the

first (L + 1)2, and G̊o the matrix with the last (Lo + 1)2 − 1 rows of G̊, possibly restricted to their first J columns, as follows,

G̊ =
(

G̊i

G̊o

)
or G̊J =

(
G̊i J

G̊oJ

)
, with 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1. (58)

As a consequence of eqs (57) and (58), we can see that for all 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1,

G̊T
i J G̊i J + G̊T

oJ G̊oJ = IJ , (59)

where the individual terms that sum to the identity are rank-deficient and singular, and we have the pairwise orthogonality relationships

G̊i G̊
T
i = I(L+1)2 , G̊oG̊T

o = I(Lo+1)2−1, G̊i G̊
T
o = 0, and G̊oG̊T

i = 0, (60)

none of which, as in (36), apply to their truncated brethren, and where the latter two matrices have dimensions (L + 1)2 × [(Lo + 1)2 − 1]
and [(Lo + 1)2 − 1] × (L + 1)2, respectively. The power spectra are constructed as in eq. (38), for the appropriate field terms.
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As with the internal-field transform, we use the building blocks of the full-field Slepian transform in, now four, different ways.
(1) We define the scalar internal- and external altitude-cognizant Slepian functions on the unit sphere as in eq. (39),

G̊iα(r̂) =
L∑

l=0

l∑
m=−l

g̊i lm,αYlm(r̂), (61)

G̊oα(r̂) =
Lo∑

l=1

l∑
m=−l

g̊o lm,αYlm(r̂). (62)

As in eq. (40) we vectorize the sets of internal- and external-field altitude-cognizant scalar functions G̊iα = YT
L g̊iα and G̊oα = YT

Lo
g̊oα ,

G̊i J = (G̊i1 · · · G̊i J )T = G̊T
i JYL , with 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1, (63)

G̊oJ = (G̊o1 · · · G̊oJ )T = G̊T
oJYLo , with 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1, (64)

under the partitions G̊i = G̊i (L+1)2+(Lo+1)2−1 = (G̊T
i J G̊T

i>J )T and G̊o = G̊o (L+1)2+(Lo+1)2−1 = (G̊T
oJ G̊T

o>J )T .
(2) To evaluate gradients of potential fields on the planetary surface of radius rp or on the outer sphere of radius rq, we multiply the

coefficients with the appropriate continuation factors and the corresponding vector spherical harmonics, as in eq. (41),

G̊iα(rp r̂) =
L∑

l=0

l∑
m=−l

Al (rp) g̊i lm,α Elm(r̂), (65)

G̊oα(rq r̂) =
Lo∑

l=1

l∑
m=−l

Ăl (rq ) g̊o lm,α Flm(r̂). (66)

As in eq. (42) we write the vectors containing the functions G̊iα(rp r̂) = ET
L A(rp) g̊iα and G̊oα(rq r̂) = FT

Lo
Ă(rq ) g̊oα ,

G̊i J = (G̊i1 · · · G̊iα · · · G̊i J )
T = G̊T

i J A(rp) E L , with 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1, (67)

GoJ = (G̊o1 · · · G̊oα · · · G̊oJ )
T = G̊T

oJ Ă(rq ) F Lo , with 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1, (68)

again partitioned as G̊i = G̊i (L+1)2+(Lo+1)2−1 = (G̊T
i J G̊T

i>J )T and G̊o = G̊o (L+1)2+(Lo+1)2−1 = (G̊T
oJ G̊T

o>J )T .
(3) As in eq. (43), at the common satellite altitude rs, the vectors of AC-GVSF G̊i↑α(rs r̂) = ET

L A g̊iα and G̊o↑α(rs r̂) = FT
Lo

Ă g̊oα ,

G̊i↑J = ( (G̊i↑1 · · · G̊i↑α · · · G̊i↑J )
T = G̊T

i J A E L , with 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1, (69)

G̊o↑J = (G̊o↑1 · · · G̊o↑α · · · G̊o↑J )
T = G̊T

oJ Ă F Lo , with 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1, (70)

as usual partitioned as G̊i↑ = G̊i↑(L+1)2+(Lo+1)2−1 = (G̊T
i↑J G̊T

i↑>J )T and G̊o↑ = G̊o↑(L+1)2+(Lo+1)2−1 = (G̊T
o↑J G̊T

o↑>J )T .

(4) We finally combine the internal and external AC-GVSF at rs, as G̊↑α(rs r̂) = G̊i↑α + G̊o↑α =
(

ET
L A FT

Lo
Ă

)(
g̊T

iα g̊T
oα

)T
,

G̊↑J = (G̊↑1 · · · G̊↑α · · · G̊↑J )
T = G̊T

J

(
AE L

ĂF Lo

)
=

(
G̊T

i J G̊T
oJ

)(
AE L

ĂF Lo

)
= G̊i↑J + G̊o↑J . (71)

The properties of the transformation (55) and (64) cause the (L + 1)2 + (Lo + 1)2 − 1-dimensional sets of internal and external scalar
Slepian functions to constitute frames for band-limited spherical surface functions. On rp and rq, respectively,

YT
L v

r p
L = YT

L

(
G̊i G̊

T
i

)
v

r p
L = (

G̊T
i YL

)T (
G̊T

i v
r p
L

) = G̊T
i s̊i , (72)

YT
Lo

w
rq
Lo

= YT
Lo

(
G̊oG̊T

o

)
w

rq
Lo

= (
G̊T

oYLo

)T (
G̊T

o w
rq
Lo

) = G̊T
o s̊o. (73)

The coefficients v
r p
lm and w

rq
lm that expand band-limited potential fields in the scalar spherical-harmonic basis Ylm(r̂) at rp and rq transform

to the coefficients of any scalar Slepian basis pair G̊iα(r̂) and G̊oα(r̂) designed with the appropriate bandwidths L and Lo, as

s̊iα =
∫

�

V (rp r̂) G̊iα(r̂) d� =
L∑

l=0

l∑
m=−l

g̊i lm,α v
r p
lm or, in vector form, (74)

s̊i J =
∫

�

V (rp r̂) G̊i J (r̂) d� = G̊T
i J v

r p
L , with 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1, (75)
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Figure 4. The highest-eigenvalue full-field altitude-cognizant gradient vector Slepian function, internal-field G̊i1 and external-field G̊o1 for region R = North
America and rp = 6371 km, rq = 6771 km, rs = 6671 km, L = 100, Lo = 10. Upper panels: internal-field part of the function evaluated on the planetary
surface defined by rp. From left to right: radial component, colatitudinal component, longitudinal component. Middle panels: external-field part of the function
evaluated at the outer radius rq. From left to right: radial, colatitudinal, longitudinal component. Bottom panels: power spectra of the internal-field (bottom
left) and external-field functions (bottom right).

s̊oα =
∫

�

W (rq r̂) G̊oα(r̂) d� =
Lo∑

l=1

l∑
m=−l

g̊o lm,α w
rq
lm or, in vector form, (76)

s̊oJ =
∫

�

W (rq r̂) G̊oJ (r̂) d� = G̊T
oJ w

rq
Lo

, with 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1, (77)

mimicking what we wrote as eq. (46). As we will see in eq. (80), we are generally unable to estimate s̊iα or s̊oα independently, but their sum

tα = s̊iα + s̊oα or, in vector form, tJ = s̊i J + s̊oJ = G̊T
J

(
v

r p
L

w
rq
Lo

)
=

(
G̊T

i J G̊T
oJ

)(
v

r p
L

w
rq
Lo

)
, (78)

can be estimated as the combined vector of expansion coefficients for band-limited potential gradients of the outer and inner types in relation
to their original spherical-harmonic expansion coefficients.

Figs 4 and 5 show the best, and the 500th best internal- and external-field AC-GVSF for North America, G̊i1, G̊o1, G̊i500 and G̊o500, with
rp = 6371 km, rs = 6671 km and L = 100 identical to the values in Section 4.2, for comparison with Figs 2 and 3. We set the outer sphere
radius rq = 6771 km and the external-field bandwidth Lo = 10. In both figures the internal-field functions are better concentrated within
the region than the external-field functions, a direct consequence of L � Lo. The spatial patterns of the highest-eigenvalue internal-field
AC-GVSF shown in Fig. 4 are more consistent with an effective bandwidth of about 30 than the nominal bandwidth L = 100 would suggest.
As discussed in Section 4.2, herein lies the difference with the CL-GVSF of Plattner & Simons (2015b), which were only focused on
concentrating their energy within the region, but disregarded the radial distance over which they ultimately have to be downward-continued.
Since the higher-degree coefficients are most sensitive to noise amplification under downward-continuation, the resulting best-suited function
has its energy concentrated over the degrees as shown in the bottom left panel of Fig. 4. The second-best and third-best, functions, and so on,
contain an increasing proportion of their energy at higher degrees. The bottom left panel of Fig. 5 shows the power spectrum of the 500th
best internal-field AC-GVSF, which has most power toward the tail of the bandwidth.
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Figure 5. Same layout as Fig. 4 but showing the 500th best-suited internal- and external-field altitude-cognizant gradient vector Slepian function, internal-field
G̊i500 and external-field G̊o500 for region R = North America and rp = 6371 km, rq = 6771 km, rs = 6671 km, L = 100, Lo = 10.

Figure 6. The first 1000 eigenvalues λα for the internal-field only altitude-cognizant gradient vector Slepian functions Gα , and the first 1000 eigenvalues λ̊α

for the internal- and external-field altitude-cognizant gradient vector Slepian functions G̊α .

In Fig. 6, we compare the eigenvalues � and �̊, obtained from eqs (35) and (55), for this parameter set. The two eigenvalue spectra are
similar in character, with few relatively large eigenvalues and most eigenvalues close to zero. The eigenvalue spectra for all the different types
of classical Slepian functions presented by Simons et al. (2006) and Plattner & Simons (2014, 2015b) typically contained few eigenvalues
close to 1 and most eigenvalues close to 0 (the precise numbers depending on the area of the concentration region). Here, even the largest
eigenvalues drop below 10−5. This is because the eigenvalues for the AC-GVSF also include the effects of harmonic continuation: the vector
spherical harmonics in eqs (34) and (54) are multiplied by some very small numbers—see eqs (19) and (20).

5.3 Continuous solution by full-field AC-GVSF

Using eqs (54) and (55), we apply the truncated singular value approach to solving eq. (52), as we did in Section 4.3, and obtain

K̊

⎛
⎜⎝ v

r p
L

w
rq
Lo

⎞
⎟⎠ = G̊�̊G̊T

⎛
⎜⎝ v

r p
L

w
rq
Lo

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

A
∫

R
E L · d d�

Ă
∫

R
F Lo · d d�

⎞
⎟⎟⎟⎠. (79)
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Since again we only aim to solve eq. (52) for the J best-suited full-field AC-GVSF, we use eqs (57) and (78) to write

G̊J �̊J t̃J =

⎛
⎜⎜⎜⎝

A
∫

R
E L · d d�

Ă
∫

R
F Lo · d d�

⎞
⎟⎟⎟⎠, (80)

with the tilde again distinguishing the truncated solution of eq. (80) from the original statement (79). The matrix G̊J is as in eq. (58), and �̊J

is the J-dimensional version of �̊. As previously in eq. (49), a regularized solution of eq. (80) then follows in a form that uses eq. (71),

t̃J = �̊
−1

J

∫
R
G̊↑J · d d�. (81)

From the back-projected solution coefficients G̊J t̃J we can now individually formulate estimates for the internal potential field at
radius rp, and for the external potential field at radius rq, via eqs (63) and (64),

ṼJ (rp r̂) =
J∑

α=1

t̃α G̊iα(r̂) = YT
L G̊i J t̃J = G̊T

i J t̃J , (82)

W̃J (rq r̂) =
J∑

α=1

t̃α G̊oα(r̂) = YT
Lo

G̊oJ t̃J = G̊T
oJ t̃J . (83)

6 I M P L E M E N TAT I O N O F T H E I N T E R NA L - F I E L D A C - G V S F M E T H O D

In Sections 4 and 5, we constructed altitude-aware spatio-spectrally concentrated ‘Slepian’ function bases that can be used as alternatives
to vector spherical harmonics to parameterize and solve for potential fields from continuous data. Of course, instrumental data are always
collected at a discrete set of points. Thus, in this section we describe how to use the internal-field AC-GVSF of Section 4 to solve for an
internal potential field from discrete data at varying satellite altitude. In Section 7, we will use the full-field AC-GVSF of Section 5 to solve
for internal- and external potential fields simultaneously.

The continuous problem stated in eqs (30) and (31), after Slepian basis transformation to (47), was solved approximately, analytically,
in the truncated form of eq. (49). In the present paper, so far, we have not offered any guidance on how to choose the parameter J, nor have
we shown that solutions of the general type are actually... any good. Reassuringly, Plattner & Simons (2015a) showed that they are, and a
statistical analysis confirms this in Section 9. Hence, in this section, we simply furnish the details of a method suitable for practical use.

Let the data be a discrete set of vector-valued measurements obtained at k satellite locations r1 r̂1, . . . , rk r̂k in the manner of eq. (30),
densely distributed within a subregion R of the unit sphere �, at the radial positions rp < ri < rq clustered about a representative average rs. We
evaluate the gradient vector spherical-harmonics Elm at the data locations r̂1, . . . , r̂k on the unit sphere, multiply them by the corresponding
upward-continuation terms Al(ri), and collect the results in a (L + 1)2 × 3k-dimensional matrix E⇑. Using the index c for r, θ or φ for the
radial, colatitudinal, and longitudinal vector components, and ĉ for r̂, θ̂ or φ̂ for the unit vectors, we assemble the pieces

[E⇑lm,i ]c = Al (ri )Elm(r̂ i ) · ĉ and [E⇑]c =

⎛
⎜⎜⎝

[E⇑00,1]c · · · [E⇑00,k]c

...
...

[E⇑L L ,1]c · · · [E⇑L L ,k]c

⎞
⎟⎟⎠ into E⇑ =

(
[E⇑]r [E⇑]θ [E⇑]φ

)
. (84)

Using the Slepian transformation for the region R and the average satellite altitude rs, we construct the matrix of J internal-field AC-GVSF
(compare with eq. 42) evaluated at the actual satellite altitudes ri, by multiplying E⇑ with the truncated eigenvector matrix GJ of eq. (37),

G⇑J = GT
J E⇑. (85)

Broadly speaking, the success of truncation in the Slepian basis as an effective means of regularization owes to the eigenvectors of the ‘normal’
or ‘Gramian’ matrix (34) having relatively easily computable numerical properties and an attractive eigenvalue structure. Thus, rather than
discretizing eq. (32) and constructing a truncated-SVD solution for what would amount to a discretized equivalent of eqs (34) and (35), we
rely on the data sampling the region of interest R relatively densely, around a relatively stable altitude rs, and therefore, eq. (85) uses the same,
continuously derived, eigenfunctions as in eq. (43), except that they are evaluated at the exact, individual, data altitudes ri.

The 3k-dimensional vector of vector-valued data will be d. Note that we have now introduced a sans-serif (d,E,G) to our lineup of fonts.
Using an 
2-norm notation (compare with eq. 31), we restate the inverse problem in the discrete truncated AC-GVSF basis (85) in terms of
its unknown expansion coefficients ŝα , α = 1, . . . , J, collecting them in the vector ŝJ (notationally distinct from eqs 46 and 49), as

arg min
ŝJ

∥∥∥GT
⇑J ŝJ − d

∥∥∥2
or, equivalently,

(
G⇑J G

T
⇑J

)
ŝJ = G⇑J d. (86)

Eq. (86) defines a symmetric positive-definite J × J-dimensional system of equations whose condition number depends on the choice of
number of Slepian functions J in virtually the same fashion, given our assumptions, as the conditioning of eq. (49) depended on the inverse
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eigenvalues of the continuous problem. Using the evaluated continuous-problem eigenfunctions is computationally efficient for the inversion,
and understanding the behaviour of the solutions is promoted through the analysis of their eigenvalues.

However eq. (86) is solved in numerical practice, we advocate following up with the iteratively reweighted residual approach of
Farquharson & Oldenburg (1998). We define the 3k-dimensional vector of residuals r as

r = GT
⇑J ŝJ − d, (87)

and the 3k × 3k-dimensional matrix R as the diagonal matrix initialized by the identity but in subsequent iterations populated with the
absolute values of the entries r on the diagonal, or a threshold value to avoid division by small numbers for well-fitted data points. Then, we
solve the updated linear problem, repeatedly until convergence, by satisfying(
G⇑J R

−2GT
⇑J

)
ŝJ = G⇑J R

−2d. (88)

From the ŝJ in eq. (86) or (88) we obtain the estimate V̂J for the potential field on the planetary surface using eq. (39) as in eq. (50),

V̂J (rp r̂) =
J∑

α=1

ŝαGα(r̂) = YT
L GJ ŝJ = GT

J ŝJ . (89)

To evaluate the vector field for the internal potential at a radius within the shell rp ≤ r ≤ rq, we expand the coefficients ŝJ in the Slepian basis
evaluated at a different altitude, using eq. (19), and with, as compared to eq. (43), G↑J (r r̂) = GT

J A(r ) E L (r̂),

∇V̂J (r r̂) = GT
↑J (r r̂) ŝJ . (90)

7 I M P L E M E N TAT I O N O F T H E F U L L - F I E L D A C - G V S F M E T H O D

In this section, we start from data collected in the manner of eq. (51) and use the full-field AC-GVSF of Section 5 to solve for the internal
field on the planetary surface rp, and an external field on the outer sphere of radius rq. Adding to the material developed in Section 6 we now
need to build the [(Lo + 1)2 − 1] × 3k-dimensional matrix F⇑ of external-field gradient vector spherical harmonics Flm evaluated at the
individual data locations r1 r̂1, . . . , rk r̂k . The matrix entries are defined analogously to eq. (84), namely,

[F⇑lm,i ]c = Ăl (ri ) Flm(r̂ i ) · ĉ, [F⇑]c =

⎛
⎜⎜⎝

[F⇑1 −1,1]c · · · [F⇑1 −1,k]c

...
...

[F⇑Lo Lo,1]c · · · [F⇑Lo Lo,k]c

⎞
⎟⎟⎠ and F⇑ =

(
[F⇑]r [F⇑]θ [F⇑]φ

)
. (91)

Since the truncated full-field AC-GVSF coefficient matrix G̊J in eq. (56) contains coefficients pertaining to both internal- and external-
field gradient vector spherical harmonics, we can assemble the matrix of J full-field altitude cognizant gradient vector Slepian functions
evaluated at the varying satellite locations by multiplying the combined matrices E⇑ and F⇑ with the Slepian coefficient matrix G̊J ,

G̊⇑J = G̊T
J

(
E⇑
F⇑

)
. (92)

Compared to eq. (86), the least-squares formulation for the full-field problem in the discrete basis (92) is now in terms of the unknown t̂J ,

arg min
t̃J

∥∥∥G̊
T
⇑J t̂J − d

∥∥∥2
or, equivalently,

(
G̊⇑J G̊

T
⇑J

)
t̂J = G̊⇑J d. (93)

As for the purely internal-field solution, we utilize an iteratively reweighted residual approach (Farquharson & Oldenburg 1998), with(
G̊⇑J R̊

−2
G̊

T
⇑J

)
t̂J = G̊⇑J R̊

−2
d, (94)

and where, in the first iteration, the diagonal weighting matrix R is the identity and, in later iterations, has on its diagonal the absolute values
of r̊, or a threshold value for small entries of r̊, where

r̊ = G̊
T
⇑J t̂J − d, (95)

the 3k-dimensional vector of residuals at the individual data locations.
From the obtained coefficient vector t̂J we construct estimates of the internal potential V̂J (rp r̂) and the external potential ŴJ (rq r̂) at rp

and rq, respectively, using eqs (61) and (62) as in eqs (82) and (83), which leads to

V̂J (rp r̂) =
J∑

α=1

t̂αG̊iα(r̂) = YT
L G̊i J t̂J = G̊T

i J t̂J , (96)

ŴJ (rq r̂) =
J∑

α=1

t̂αG̊oα(r̂) = YT
Lo

G̊oJ t̂J = G̊T
oJ t̂J . (97)
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To obtain estimates of the internal and external vector fields at rp < r < rq, we expand t̃J in the analytically continued internal-field or
external-field basis. Using eq. (20) and, instead of eqs (69) and (70), G̊i↑J (r r̂) = G̊T

i J A(r ) E L (r̂) and G̊o↑J (r r̂) = G̊T
oJ Ă(r ) F Lo (r̂),

∇V̂J (r r̂) = G̊T
i↑J (r r̂) t̂J , (98)

∇ŴJ (r r̂) = G̊T
o↑J (r r̂) t̂J , (99)

or indeed, the complete estimate of the full field in eq. (12),

B̂ J (r r̂) = G̊T
↑J (r r̂) t̂J , (100)

where the equivalent to eq. (71) now takes the form

G̊↑J (r r̂) =
(

G̊T
i J G̊T

oJ

)(
A(r ) E L (r̂)

Ă(r ) F Lo (r̂)

)
= G̊i↑J (r r̂) + G̊o↑J (r r̂). (101)

8 E X A M P L E : C RU S TA L M A G N E T I C F I E L D R E C O N S T RU C T I O N

We test the internal-field method of Section 6 and the full-field method of Section 7 on a synthetic data set generated as the sum of the
internal-field model NGDC-720 V3 (Maus 2010), truncated at spherical-harmonic degree L = 100, and an external field simulated from a
flat power spectrum with maximum spherical-harmonic degree Lo = 10. We normalize the external-field coefficients such that the resulting
field has 10 per cent of the average absolute value of the internal field at the average satellite radial position rs = 6671 km. Such values
seem to be within a realistic range, see for example Langel & Estes (1985) and Olsen et al. (2010b). We evaluate both fields at 15 000
uniformly distributed data locations within North America at a set of satellite altitudes uniformly distributed between 250 and 350 km above
the planetary radius rp = 6371 km. We add zero-mean uncorrelated Gaussian noise with standard deviation of 1 per cent of the mean absolute
value of the combined internal and external fields to the data.

To determine the optimal number Jopt of Slepian functions we use the procedure described by Plattner & Simons (2015b). We invert
for the crustal magnetic field for a series of values J of Slepian functions and compare each result to the original field. We select Jopt as the
number of functions that leads to the smallest mean-squared error within the region R = North America. Such a procedure would not be
applicable without knowing the original field. In that case we need to resort to an indirect strategy, as for example the approach described
by Plattner & Simons (2015a), or via subsampling methods (e.g. Davison & Hinkley 1997). For the full-field AC-GVSF method, our best
number of Slepian functions was Jopt = 900. For the internal-field AC-GVSF, Jopt = 800, though we note that we achieved a similarly low
mean-squared error over North America when J = 600.

Fig. 7 summarizes the results. We show the radial component of the original NGDC-720 V3 internal field on the planetary surface (top,
labelled ‘true’), together with the models resulting from our full-field approach using Jopt = 900 (middle, labelled ‘i+e’), and the result from
the internal-field approach using Jopt = 800 and J = 600 (middle, labelled ‘i’). The bottom row shows the differences between the true model
and the inversion results. The results for the full-field method for Jopt = 900 and for the internal-field method when J = 600 show little model
strength outside of the North American region R, whereas the result from the internal-field method when J = 800 shows significant ringing
off the coast of North America. This ringing results from the increased model variance caused by functions that have significant energy
outside North America, where they are unconstrained by data. For larger numbers J of Slepian functions this variance will also affect the
model within the region of North America. In Fig. 7, we framed the original model, the panels representing our ‘optimal’ solution, and the
difference between the two. The panels with the original field and the best model will reappear for comparison later.

The full-field AC-GVSF solution shown Fig. 7 (middle left) faithfully represents the original model (top), a finding that is substantiated
by their difference (bottom left). At first glance, the purely internal-field AC-GVSF solutions (panels labelled ‘i’) also do appear representative
within North America. Upon closer inspection, shown in Fig. 8, both J = 800 and J = 600 internal-field solutions contain similar artefacts
which may lead to misinterpretation, in particular since they persist for different numbers of Slepian functions, and because they are of smaller
length scale than supported by the bandwidth Lo = 10 of the external field for which we did not account in those inversions.

When selecting the optimal number Jopt of Slepian functions we aim to minimize the mean-squared error of the resulting model. With
increasing J the model bias decreases, whereas its variance increases. While we postpone a more formal statistical analysis for the internal-field
method to Section 9, and for the full-field method to Section 10, this behaviour can be understood on the basis of elementary considerations
(Simons & Dahlen 2006; Plattner & Simons 2015b; Freeden et al. 2017). Up to a point, modelling using more Slepian functions implies that
less ‘signal’ is being missed over the target region, but also that more ‘noise’ is being captured. We calculate the spatial manifestation of the
model bias (the difference between the known truth and the average estimated model), and its variance (the average of the squared difference
between the estimated models and their average) in our numerical examples for three different numbers J of Slepian functions, based on
individual inversions for each of km = 10 realizations of our synthetic data set, which differ only in the realizations of the added noise. Bias
and standard deviation for the full-field approach are shown in Fig. 9, for the cases J = 500 (too few Slepian functions), Jopt = 900 (our
selected solution), and J = 1200 (too many Slepian functions). The top row of Fig. 9 shows the bias, the bottom row shows the corresponding
standard deviation.
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Figure 7. Performance of the methods developed in this paper, carried out on a synthetic data set. All panels show the radial component of magnetic fields.
For the inversion results, J identifies the number of Slepian functions used. Top: the ‘true’ field, composed of internally and externally generated sources,
with noise added. Middle left: inversion result using full-field altitude-cognizant gradient vector Slepian functions (AC-GVSF). Middle: inversion result using
internal-field AC-GVSF, with J = 800. Middle right: inversion result using internal-field AC-GVSF, with J = 600. Bottom: difference between the true field
and the inversion results. The boxed panels are reference cases that reappear in subsequent figures.

Figure 8. Performance of the methods developed in this paper. Close-up over Mexico of the results shown in Fig. 7, identifiable by their labels. While the
solutions generally look very similar there are differences, in particular around longitude −102◦ and latitude 20◦. A seemingly continuous ‘stripe’ in both
internal-field solutions, J = 600 and J = 800, is not continuous in the true field nor in the ‘best’ solution that uses J = 900 full-field altitude-cognizant gradient
vector Slepian functions.

With increasing number J of functions the bias decreases, but the standard deviation increases. Selecting too few (J = 500) functions
(left-hand column), a low standard deviation is achieved at the expense of a large bias within the North American target region R. If, on
the other hand, we use too many (J = 1200) functions (right-hand column), a small bias within the region comes at the expense of a large
standard deviation. Only the right number (Jopt = 900) of functions (middle column) has both low bias and a small standard deviation within
the region. The framed panels correspond to the reference solutions shown in Fig. 7.
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Figure 9. Performance of the methods developed in this paper. Bias and standard deviation of the inversion results for a sequence of km = 10 realizations of the
data set as shown in Fig. 7, conducted using various J full-field altitude-cognizant gradient vector Slepian functions. From these experiments we determined the
bias (top row) and the standard deviation (bottom row). Left-hand column: J = 500: significant bias within the North American target region but low variance.
Right-hand column: J = 1200: low bias, high variance. Middle column: Jopt = 900: low bias and low variance within the region.

To illustrate the effects of upward-continuing the estimated internal field, as described by eq. (98), Fig. 10 shows the original model
(leftmost column), the full-field inversion result (second from left), bias (third from left), and standard deviation (rightmost column) for
different evaluation altitudes. The framed panels in the top row show the original field, resulting model, bias, and standard deviation on the
planetary surface, as they appeared in Figs 7 and 9. The second through fourth rows of Fig. 10 show the original field and results reevaluated
at different altitudes, together with their bias and standard deviation. A single colour bar serves all panels, with the colour limits listed in the
upper right corner of each panel. For radial position r = 6471 km, 100 km altitude, and for radial position r = 6671 km, corresponding to the
average satellite altitude of the simulated data, both bias and standard deviation are low within the North American target region.

Upward continuation beyond the satellite altitude, up to 1000 km above the planetary surface, inflates the standard deviation within the
region, where it reaches up to 3 per cent of the maximum values of the field. Outside of the target region the model is not well resolved.
This leads to a strong dependence on noise which is greatest close to the region where the selected Slepian functions still have relatively high
energy but are not well constrained by the data. Further away from the region, the Slepian functions have less power, and the resulting model
power and, with it, the standard deviation, are weaker.

9 A NA LY S I S O F T H E I N T E R NA L - F I E L D A C - G V S F M E T H O D

In the previous sections we discussed how our methods work, while the results of Plattner & Simons (2015a) showed that, indeed, they do
work. In this section, we show why. To this end we introduce some more notation. We take inspiration from eq. (43) to define the vectors of
(truncated) downward-continued AC-GVSF, namely

G↓ = GTA−1E L and G↓J = GT
J A−1E L , (102)

as well as the complement G↑>J , the vector with the remaining (L + 1)2 − J altitude-cognizant gradient vector Slepian functions. With these
expressions we state the important relationships

GT
↑ G↓ = GT

↓ G↑ = ET
L A−TGGTA E L = ET

L E L . (103)

With the above we can now rewrite the infinitely wide-band eq. (17), at satellite altitude, in the following equivalent forms,

∇V = ET
L

∫
�

E L · ∇V d� + ET
>L

∫
�

E>L · ∇V d� (104)

= GT
↑

∫
�

G↓ · ∇V d� + ET
>L

∫
�

E>L · ∇V d� (105)

= ET
L Av

r p
L + ET

>L

∫
�

E>L · ∇V d�. (106)
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Figure 10. The effect of upward continuation of the estimated model. The known model (‘true’), internal-field results of a full-field inversion (‘result’),
difference between the true model and the average of the inversion results (‘bias’), and standard deviation of the model results (‘std’), over km = 10 inversions.
All models are evaluated on the planetary surface (first row), between the planetary surface and the satellite (at 100 km altitude, second row), at average satellite
altitude 300 km (third row) and at 1000 km above the planet (fourth row). The ±limits of the colour bar (where we mark them collectively as ‘±lim’) are
indicated by the numbers in the top right of each panel.

9.1 Relationship to classical spherical Slepian functions

The optimization problem in eq. (31) led to the diagonalization of the matrix K in eq. (34) via eq. (35). The coefficients G in eq. (37) also
solve an energy concentration maximization problem in the space of band-limited upward-continued vector spherical-harmonic functions, as
we can see through the formalism in eqs (40) and (43), given the equivalency

λ = gTK g

gTg
=

∫
R

(
gTA E L

) · (ET
L ATg

)
d�∫

�

(
gTYL

) (
YT

L g
)

d�

=

∫
R

G2
↑ d�∫

�

G2 d�

= maximum. (107)

Appearing without the factor A of eq. (21) in the numerator, eq. (107) is a ‘classical’ (gradient) vector spherical-harmonic concentration
problem in the style of Maniar & Mitra (2005), Plattner & Simons (2014, 2015b) and Jahn & Bokor (2014), much as these authors generalized
the ‘classical’ scalar problem of Albertella et al. (1999), Simons et al. (2006), Simons & Dahlen (2006) and others—see also Eshagh
(2009). Among all band-limited upward-continued gradient vector functions that are linear combinations of the basis set A E L , the first
altitude-cognizant gradient vector Slepian function, G↑1, is the best-concentrated in the sense of eq. (107). The concentration factor λ1 is the
first eigenvalue associated with the diagonalization problem (35). The second-best concentrated AC-GVSF, G↑2, and its corresponding λ2, is
the next best function in the sense (107) that is orthogonal to G↑1, and so on.
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Evaluated at satellite altitude, the internal-field AC-GVSF G↑α of eq. (43) are mutually orthogonal over the region R but not over the
sphere �. On the planetary surface, the corresponding scalar functions Gα of eq. (40) are orthogonal over the entire sphere but not over R.
With � the eigenvalue matrix as in eq. (35) and I the identity, it is straightforward to verify that∫

R
G↑ · GT

↑ d� = � and
∫

�

G↑ · GT
↑ d� = GTAATG, (108)

∫
�

G GT d� = I, and
∫

R
G GT d� = GT

(∫
R
YLYT

L d�

)
G. (109)

For truncated Slepian bases we also have the corresponding projective relationships∫
R
G↑J · GT

↑ d� = (
�J 0

)
and

∫
�

GJ GT d� = (
IJ 0

)
. (110)

The ‘localization’ matrix
∫

R YLYT
L d� in eq. (109) is one that appears in the construction of the classical scalar Slepian functions (Simons &

Dahlen 2006; Simons et al. 2006). Its eigenvectors lead to spherical functions that are orthogonal over the region R, but also over the entire
sphere �. Incorporating the upward-continuation into the construction of the Slepian functions has induced a loss of orthogonality over the
region R on the planetary surface (eq. 109)—but we gained orthogonality within R at satellite altitude (eq. 108).

9.2 Spatially restricted, spectrally concentrated internal-field Slepian functions

As shown by Simons et al. (2006), band-limited spatially concentrated Slepian functions have broad-band relatives that are space-limited but
spectrally concentrated. As shown by Simons & Dahlen (2006) such functions play an important role in the analysis of inversion problems
like the one that we are treating in this paper. Space-limited vector Slepian functions were introduced by Plattner & Simons (2014), and
space-limited gradient vector Slepian functions by Plattner & Simons (2015b). As to the space-limited altitude-cognizant gradient vector
Slepian functions that we will be needing here, we define the vector with the first J of the H↑α,>L = hT

↑α,>LE>L ,

H↑J,>L =
(

H↑1,>L · · · H↑α,>L · · · H↑J,>L

)T
=

(∫
R
G↑J · ET

>L d�

)
E>L , (111)

where the infinite-dimensional vector h↑α that contains the expansion coefficients in the full basis set Elm , 0 < l < ∞, −l < m < l, of the
band-limited AC-GVSF G↑α after spatial truncation to the region R, and the infinite vector h↑α, >L containing only those components at the
degrees l > L, respectively, for each α = 1, . . . , (L + 1)2, are, from eq. (43),

h↑α =
∫

R
E · G↑α d� =

(∫
R
E · ET

L d�

)
ATgα and h↑α,>L =

∫
R
E>L · G↑α d� =

(∫
R
E>L · ET

L d�

)
ATgα. (112)

The coefficient sets h↑α and h↑α, >L relate to the set of coefficients ATgα of the band-limited functions G↑α via broad-band extensions of the
localization matrix

∫
R E L · ET

L d� in eq. (32), in the same manner as did their equivalents in the scalar and vector cases discussed above.

9.3 Statistical analysis of the internal-field method

We now return to the issue we mentioned in Section 3, namely, how spherical-harmonic model band limitation affects the estimate made from
data that have, per eq. (17), in principle, infinite bandwidth. What are we missing? And, what is the effect of truncation of the Slepian basis?

We begin by rewriting the band-limited portion of the internal potential (4) in terms of the internal-field altitude-cognizant scalar Slepian
functions of eq. (40), which, owing to their orthogonality (109), remain a complete basis for band-limited functions on the sphere, see eqs
(44)–(46). To the Slepian expansion we add the broad-band components,

V (rp r̂) = GT
J

∫
�

GJ V (rp r̂) d� + GT
>J

∫
�

G>J V (rp r̂) d� + YT
>L

∫
�

Y>L V (rp r̂) d�. (113)

Next, we rewrite eq. (30) in terms of the AC-GVSF with the help of eq. (105). The continuous data representation is then given by

d = GT
↑

∫
�

G↓ · ∇V d� + ET
>L

∫
�

E>L · ∇V d� + n. (114)

Finally, we return to the form of the band-limited truncated internal-field AC-GVSF estimator in eqs (49) and (50), restated as

ṼJ (rp r̂) = GT
J �−1

J

∫
R
G↑J · d d�. (115)

As noted before, the estimator (115) is the one used by Plattner & Simons (2015a), which is rather radically different from its counterpart
discussed by Plattner & Simons (2015b). However, and issues of notation cast aside, the derivations below retain the full character of the
material presented by Plattner & Simons (2015b)—or, mutatis mutandis, by Simons & Dahlen (2006)—hence our abridged treatment here.
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Inserting eq. (114) into eq. (115), we use eqs (110) and (111), and subsequently using eqs (106), (102), the orthonormality (11) of the E ,
and, at last, eqs (44)–(46), we obtain the expression

ṼJ (rp r̂) = GT
J

∫
�

GJ V (rp r̂) d� + GT
J �−1

J

(∫
�

H↑J,>L · ∇V d� +
∫

R
G↑J · n d�

)
. (116)

Spherical-harmonic band-limitation, Slepian-function truncation and noise are the three ingredients necessary to understand the quality of our
estimates. A direct comparison between the estimate in eq. (116) and the unknown truth in eq. (113) reveals that the band-limited estimate Ṽ
of the internal potential field V does not only depend on the band-limited part of the true field but also on its broad-band portion, and the
noise. Band-limitation introduces a direct bias term, whether the estimate uses a truncated Slepian basis or not. The latter two terms in
eq. (116) are amplified by the inverse eigenvalues, which typically become large for increasing J, which is the primary reason for truncating
the Slepian expansions. The more Slepian functions we use to estimate the internal potential field, the more leakage contributions we pick up
from the neglected broad-band components, and from the noise. On the other hand, if we use too few Slepian functions, we cannot solve for
enough details of the band-limited internal field.

If we now make the defensible assumptions that the noise term has zero mean, and that the noise is uncorrelated with the signal, we can
obtain palatable expressions for the bias, variance, and mean-squared error of our estimates in terms of the power-spectral densities of both
signal and noise. Again, we follow the recipes outlined by Simons & Dahlen (2006) or Plattner & Simons (2015b), with the modifications
appropriate to our case at hand. The estimation bias, the difference between the expected value of the estimator (116) and the truth (113), is

b = −GT
>J

∫
�

G>J V (rp r̂) d� − YT
>L

∫
�

Y>L V (rp r̂) d� + GT
J �−1

J

∫
�

H↑J,>L · ∇V d�. (117)

It is clear from eq. (117) that ‘bias’ is caused by ‘missing’ and ‘mismapped’ signal, from the combination of spherical-harmonic band-
limitation and Slepian truncation. A key feature of the Slepian function apparatus, however, is that because the AC-GVSF are spatially
concentrated within the target region R, with the concentration measured by the usually rapidly diminishing ranked eigenvalues, the bias from
neglecting low-ranked eigenfunctions will mostly affect the regions that are not of interest or where no data were collected. Certainly, care
should be taken to define the optimal truncation level Jopt, but in Section 8 we outlined a procedure precisely for doing so.

To avoid complicating matters from now on, we drop broad-band terms (the second term in eq. 116, and the last two terms in eq. 117),
as without a priori modelling of what we truly do not know: the signal at the unmodelled spherical-harmonic degrees, we are in no position
to remediate the broad-band bias nor its leakage into the band-limited estimate. We now consider both the true signal and the noise to be
realizations of a time-independent random process that can be characterized by a power-spectral density, or, equivalently, a certain covariance
function, in the scalar and vector forms

V (rp r̂, rp r̂ ′) = 〈
V (rp r̂) V (rp r̂ ′)

〉
, (118)

N (rs r̂, rs r̂ ′) = 〈
n(rs r̂) · n(rs r̂ ′)

〉
. (119)

Upon doing so, the mean-squared estimation error will be given by the expression

mse = GT
J �−1

J

(∫
R

∫
R
G↑J · N (rs r̂, rs r̂ ′) · GT

↑J d� d�′
)

�−1
J GJ + GT

>J

(∫
�

∫
�

G>J V (rp r̂, rp r̂ ′)GT
>J d� d�′

)
G>J , (120)

where the first term is the estimation variance, readily computed from the difference between the expectation of the square of eq. (116) and
its squared expectation, and the second the expected value of the squared estimation bias in eq. (117), see Cox & Hinkley (1974).

It is a most welcome feature of the Slepian framework that truncation of the basis neatly separates the effects of variance and bias,
by projection onto different basis functions altogether. But of course it remains a feature common to all inverse problems that diminishing
variance comes at the price of increasing bias, and that solutions that minimize the mean-squared estimation error are accessible only after
experimentation and iteration, as determined by the signal-to-noise ratio of what, ultimately, should turn out to be signal, and what, noise.
Disregarding the ultimate complexity of what, practically, needs to be achieved to perform statistically efficient internal-field estimation,
eq. (120) shows the ‘knobs’ of the system: a region R, a bandwidth L, an accompanying satellite-altitude-cognizant Slepian basis that is
driving the mean-squared error through its eigenvalue structure �, and a truncation level J that remains to be judiciously chosen.

9.4 Case study I: band-limited and spectrally flat signal and noise

Under the admittedly unrealistic if not mathematically impossible scenario where both the signal and the noise should be band-limited (to the
same degree L as the Slepian functions used) and ‘white’ (uncorrelated between any two different space points), with the signal and the noise
completely uncorrelated, and with signal power V and noise power N , respectively, the expression for the mean-squared error in eq. (120)
would assume a simple form derived from the identities in eq. (108), namely,

mse = N GT
J �−1

J GJ + V GT
>J G>J . (121)
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Figure 11. Statistical performance of the truncated Slepian-function solution to the internal-field inversion problem, as computed via eq. (121). Mean-squared
error and its constituents, estimation variance and squared bias, all relative to the untruncated values. The optimal number of Slepian functions Jopt = 556 and
the corresponding relative mean-squared error (0.1).

Eq. (121) is decidedly more palatable when contrasted with the equivalent result (their eq. 174) of Plattner & Simons (2015b), and thus
illustrates the benefits of using altitude-cognizant functions as advocated here. Moreover, we recover eq. (146) from Simons & Dahlen (2006),
where it only applied to the zero-altitude case.

The mean-squared error (121) is a function of all of space �. To obtain the relative mean-squared error over the target region R we
calculate its integral over the region and normalize it by the integral over R of the signal power V , for an example similar to the one described
in Section 8.

We set L = 100, rp = 6371 km, rs = 6671 km and R = North America. As per eqs (118) and (119) the signal power V = V (rp) is given
on the planetary surface, while the noise power N = N (rs) is at satellite altitude. To calculate the relative mean-squared error for a realistic
signal-to-noise level, we need to calculate the signal power on the planetary surface, V (rp), as a function of that at satellite altitude, V (rs).
Because the signal is white on the surface we distribute the power evenly over the degrees such that each degree contributes V (rp)/(L + 1).
We then upward-continue to the satellite altitude by multiplying the values at each degree by the corresponding factor A2

lm,l ′m′ of eq. (19),
and obtain the signal power at satellite altitude by summing those to obtain V (rs). For the values for L, rs, and rp that we chose, we obtain
V (rp) ≈ 1.1 × 106 V (rs). Fig. 11 shows the region-average relative mean-squared error as it depends on the number J of internal-field
AC-GVSF used, together with the relative squared bias and variance. In this example we set V (rs) = 1 and N (rs) = 0.01. The optimal
number of Slepian functions Jopt = 556, with a relative mean-squared error of 0.1.

1 0 A NA LY S I S O F T H E F U L L - F I E L D A C - G V S F M E T H O D

To understand the effect of band-limitation and Slepian truncation on the full-field solution, we begin by defining the vectors of (truncated)
analytically continued AC-GVSF inspired by eqs (69) and (70), namely,

G̊i↓ = G̊T
i A−1E L and G̊i↓J = G̊T

i J A−1E L , (122)

G̊o↓ = G̊T
o Ă

−1F Lo and G̊o↓J = G̊T
oJ Ă

−1F Lo , (123)

for 1 ≤ J ≤ (L + 1)2 + (Lo + 1)2 − 1, and their complements, G̊i↓>J and G̊o↓>J . From the above definitions and together with eq. (71) and
eq. (60), we obtain relationships similar to the ones we have for the purely internal-field AC-GVSF in eq. (103),

G̊T
↑ G̊i↓ = G̊T

i↑G̊i↓ = G̊T
i↓G̊i↑ = ET

L A−TG̊i G̊
T
i A E L = ET

L E L , (124)

G̊T
↑ G̊o↓ = G̊T

o↑G̊o↓ = G̊T
o↓G̊o↑ = FT

Lo
Ă

−T
G̊oG̊T

o Ă F Lo = FT
Lo

F Lo . (125)

With these, we rewrite the wide-band eqs (17) and (18) in the following equivalent forms,

∇V = G̊T
i↑

∫
�

G̊i↓ · ∇V d� + ET
>L

∫
�

E>L · ∇V d� (126)

= ET
L Av

r p
L + ET

>L

∫
�

E>L · ∇V d�, (127)

∇W = G̊T
o↑

∫
�

G̊o↓ · ∇W d� + FT
>Lo

∫
�

F>Lo · ∇W d� (128)

= FT
Lo

Aw
rq
Lo

+ FT
>Lo

∫
�

F>Lo · ∇W d�. (129)

10.1 Relationship to classical spherical Slepian functions

We obtained the full-field altitude-cognizant gradient vector Slepian functions from solving misfit-minimization problem eq. (52) and
diagonalizing the matrix K̊ in eq. (54) via eq. (55). The coefficients G̊ in eq. (56) can alternatively be obtained by solving an energy



Regional planetary potential-field estimation 23

maximization problem, as were, for example, the classical vector Slepian functions of Plattner & Simons (2014). In Section 9.1, we
maximized the energy over the target region of the analytically continued function relative to its scalar incarnation on the planetary surface.
Here, we have the additional complication that we have two scalar fields inhabiting two different radial positions, rp and rq. Using eqs (58),
(63), (64) and (71), we write

λ̊ = g̊TK̊ g̊

g̊Tg̊
=

(
g̊T

i g̊T
o

)
K̊

(
g̊T

i g̊T
o

)T

g̊T
i g̊i + g̊T

o g̊o

=

∫
R

(
g̊T

i A E L + g̊T
o ĂF Lo

) ·
(
ET

L ATg̊i + FT
Lo

Ă
T
g̊o

)
d�∫

�

(
g̊T

i YL

) (
YT

L g̊i

)
d� +

∫
�

(
g̊T

oYLo

) (
YT

Lo
g̊o

)
d�

(130)

=

∫
R

G̊
2

↑ d�∫
�

G̊2
i d� +

∫
�

G̊2
o d�

= maximum. (131)

Among all band-limited analytically continued gradient vector functions that are linear combinations of the basis sets A E L and ĂF Lo ,
the first AC-GVSF, G̊↑1, is the best-concentrated in the sense (130). The concentration factor λ̊1 is the first eigenvalue associated with the
diagonalization problem (55). The second-best concentrated AC-GVSF, G̊↑2, and its corresponding λ̊2, is the next best function in the sense
(130) that is orthogonal to G̊↑1, and so on.

The full-field AC-GVSF G̊↑α of eq. (71) obey the same orthogonality relations as their purely internal-field siblings described in
Section 9.1. Their gradient vector incarnations at average satellite altitude are orthogonal over the region R but not over the entire sphere �,
and the full-field scalar functions of eqs (63) and (64) are orthogonal over � but not over R at the construction altitudes. With �̊ the eigenvalue
matrix as in eq. (55) and I the identity, we have relations equivalent to eqs (108) and (109), namely,∫

R
G̊↑ · G̊T

↑ d� = �̊ and
∫

�

G̊↑ · G̊T
↑ d� = G̊T

(
AAT 0

0 ĂĂ
T

)
G̊, (132)

∫
�

(
G̊i G̊T

i + G̊oG̊T
o

)
d� = I and

∫
R

(
G̊i G̊T

i + G̊oG̊T
o

)
d� = G̊T

i

(∫
R
YLYT

L d�

)
G̊i + G̊T

o

(∫
R
YLoYT

Lo
d�

)
G̊o. (133)

In eq. (133), as we recall from eq. (58), the matrix G̊i is of dimension (L + 1)2 × [(L + 1)2 + (Lo + 1)2 − 1], whereas the matrix G̊o is of
size [(Lo + 1)2 − 1] × [(L + 1)2 + (Lo + 1)2 − 1]. Both G̊T

i G̊i and G̊T
o G̊o are [(L + 1)2 + (Lo + 1)2 − 1] × [(L + 1)2 + (Lo + 1)2 − 1], and

they are both singular. Their sum is a unit matrix, see eq. (59).
As it did in eq. (110), basis truncation to the first J vectors leads to the appropriately resized subscripted relations∫

R
G̊↑J · G̊T

↑ d� = (�̊J 0) and
∫

�

(
G̊i J G̊T

i + G̊oJ G̊T
o

)
d� = (IJ 0). (134)

10.2 Spatially restricted, spectrally concentrated full-field Slepian functions

As we did in eq. (111) we define specific sets of exactly space-limited, broad-band full-field altitude-cognizant gradient vector Slepian
functions obtained, respectively, as H̊

E
↑α,>L = (

h̊E
↑α,>L

)TE>L and H̊
F
↑α,>Lo

= (
h̊F

↑α,>Lo

)TF>Lo , in the truncated vectors

H̊E
↑J,>L =

(
H̊

E
↑1,>L · · · H̊

E
↑α,>L · · · H̊

E
↑J,>L

)T
=

(∫
R
G̊↑J · ET

>L d�

)
E>L , (135)

H̊F
↑J,>Lo

=
(

H̊
F
↑1,>Lo

· · · H̊
F
↑α,>Lo

· · · H̊
F
↑J,>Lo

)T
=

(∫
R
G̊↑J · FT

>Lo
d�

)
F>Lo . (136)

The infinite vector of coefficients h̊E
↑α,>L contains the Elm-components at the spherical-harmonic degrees exceeding L, and the infinite

vector h̊F
↑α,>Lo

contains the Flm-components at the degrees above Lo, of the hard spatial truncation of the band-limited AC-GVSF G̊↑α to the
region R. As for the internal-field case in eq. (112), we can obtain these coefficients directly from the full-field AC-GVSF coefficients g̊α by
multiplication with the appropriate broad-band localization kernel extensions, for each α = 1, . . . , (L + 1)2 + (Lo + 1)2 − 1, respectively,

h̊E
↑α,>L =

∫
R
E>L · G̊↑α d� =

(∫
R
E>L · ET

L d�

)
ATg̊iα +

(∫
R
E>L · FT

Lo
d�

)
Ă

T
g̊oα, (137)

h̊F
↑α,>Lo

=
∫

R
F>Lo · G̊↑α d� =

(∫
R
F>Lo · ET

L d�

)
ATg̊iα +

(∫
R
F>Lo · FT

Lo
d�

)
Ă

T
g̊oα. (138)

The above relations are easily derived from eq. (71).

10.3 Statistical analysis of the full-field method

As in Section 9.3, we recall the infinitely broad-band target field as composed of the pieces in eqs (17) and (18). We decompose the internal-
field and external-field potentials (4) and (5) in terms of the full-field altitude-cognizant scalar Slepian functions of eqs (63) and (64) into a
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band-limited part, for which we use eqs (72)–(77), and a broad-band complement,

V (rp r̂) = G̊T
i J

∫
�

G̊i J V (rp r̂) d� + G̊T
i>J

∫
�

G̊i>J V (rp r̂) d� + YT
>L

∫
�

Y>L V (rp r̂) d�, (139)

W (rq r̂) = G̊T
oJ

∫
�

G̊oJ W (rq r̂) d� + G̊T
o>J

∫
�

G̊o>J W (rq r̂) d� + YT
>Lo

∫
�

Y>Lo W (rq r̂) d�. (140)

The data in eq. (51) are broken down in terms of the contributions by the AC-GVSF with the help of eqs (124) and (125), (126) and (128),

d = G̊T
↑

∫
�

G̊i↓ · ∇V d� + G̊T
↑

∫
�

G̊o↓ · ∇W d� + ET
>L

∫
�

E>L · ∇V d� + FT
>Lo

∫
�

F>Lo · ∇W d� + n. (141)

The band-limited truncated full-field AC-GVSF estimator described in eqs (81) through (83) is the sum of two terms,

ṼJ (rp r̂) = G̊T
i J �̊

−1

J

∫
R
G̊↑J · d d�, (142)

W̃J (rq r̂) = G̊T
oJ �̊

−1

J

∫
R
G̊↑J · d d�. (143)

Inserting eq. (141) into eqs (142) and (143) and using eqs (134)–(136), and then eqs (127), (129), (122) and (123), the orthonormality
(28) of the E and the F , and, finally, eqs (72)–(77), we obtain

ṼJ (rp r̂) = G̊T
i J

∫
�

G̊i J V (rp r̂) d� + G̊T
i J

∫
�

G̊oJ W (rq r̂) d�

+ G̊T
i J �̊

−1

J

(∫
�

H̊E
↑J,>L · ∇V d� +

∫
�

H̊F
↑J,>Lo

· ∇W d� +
∫

R
G̊↑J · n d�

)
, (144)

W̃J (rq r̂) = G̊T
oJ

∫
�

G̊oJ W (rq r̂) d� + G̊T
oJ

∫
�

G̊i J V (rp r̂) d�

+ G̊T
oJ �̊

−1

J

(∫
�

H̊E
↑J,>L · ∇V d� +

∫
�

H̊F
↑J,>Lo

· ∇W d� +
∫

R
G̊↑J · n d�

)
. (145)

The first right-hand side term in eq. (144) describes the component of the estimated band-limited internal potential field V that stems from the
band-limited internal vector field ∇V . From the second term in eq. (144) we learn that our estimation of V includes leakage from the external
field also. This leakage stems from Slepian truncation, decreases with increasing J, and vanishes when J = (L + 1)2 + (Lo + 1)2 − 1, due
to eq. (60), which does not hold for J < (L + 1)2 + (Lo + 1)2 − 1. The next terms describe leakage from the broad-band components of
the internal and external vector fields, and from the noise. These last components are multiplied with the inverse of the eigenvalues λ̊α from
eq. (55), which approach zero for large J. Hence, broad-band and noise leakage increases with increasing J. Equivalent considerations apply
to the interpretation of eq. (145).

Under the assumption of zero-mean, uncorrelated noise, the difference between the expected values of eqs (144) and (145) and the truths
in eqs (139) and (140) yields the estimation bias terms

bV = −G̊T
i>J

∫
�

G̊i>J V (rp r̂) d� − YT
>L

∫
�

Y>L V (rp r̂) d� + G̊T
i J

∫
�

G̊oJ W (rq r̂) d�, (146)

bW = −G̊T
o>J

∫
�

G̊o>J W (rq r̂) d� − YT
>Lo

∫
�

Y>Lo W (rq r̂) d� + G̊T
oJ

∫
�

G̊i J V (rp r̂) d�, (147)

bV W = G̊T
oJ �̊

−1

J

(∫
�

H̊E
↑J,>L · ∇V d� +

∫
�

H̊F
↑J,>Lo

· ∇W d�

)
, (148)

bW V = G̊T
i J �̊

−1

J

(∫
�

H̊E
↑J,>L · ∇V d� +

∫
�

H̊F
↑J,>Lo

· ∇W d�

)
, (149)

where the bias of the internal-field estimate is given by bV + bVW and the bias of the external-field estimate is given by bW + bWV. In the
absence of Slepian-function truncation, when J = (L + 1)2 + (Lo + 1)2 − 1, the terms that are subscripted >J are ‘squeezed’ to vanish
altogether, as are the terms that then involve G̊T

i J G̊oJ = G̊T
i G̊o = 0 and G̊T

oJ G̊i J = G̊T
o G̊i = 0, again by virtue of eqs (63), (64) and (60). What

is then left are the bias terms that arise from forming band-limited estimates of broad-band fields, which we deem unavoidable.
If the internal and external fields and the noise are thought of as mutually uncorrelated random processes with two-point covariances

V (rp r̂, rp r̂ ′) = 〈
V (rp r̂) V (rp r̂ ′)

〉
, (150)

W (rq r̂, rq r̂ ′) = 〈
W (rq r̂) W (rq r̂ ′)

〉
, (151)

N (rs r̂, rs r̂ ′) = 〈
n(rs r̂) · n(rs r̂ ′)

〉
, (152)
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Figure 12. Statistical performance of the truncated Slepian-function internal-field solution to the full-field inversion problem, as computed via eq. (155). The
optimal number of Slepian functions Jopt = 568 and the corresponding relative mean-squared error (0.1) are indicated. Layout is as in Fig. 11.

and removing all the essentially unknowable broad-band terms from consideration, the mean-squared estimation errors will be given by

mseV = G̊T
i J �̊

−1

J

(∫
R

∫
R
G̊↑J · N (rs r̂, rs r̂ ′) · G̊T

↑J d� d�′
)

�̊
−1

J G̊i J + G̊T
i>J

(∫
�

∫
�

G̊i>J V (rp r̂, rp r̂ ′) G̊T
i>J d� d�′

)
G̊i>J

+ G̊T
i J

(∫
�

∫
�

G̊oW (rq r̂, rq r̂ ′) G̊T
o d� d�′

)
G̊i J , (153)

mseW = G̊T
oJ �̊

−1

J

(∫
R

∫
R
G̊↑J · N (rs r̂, rs r̂ ′) · G̊T

↑J d� d�′
)

�̊
−1

J G̊oJ + G̊T
o>J

(∫
�

∫
�

G̊o>J W (rq r̂, rq r̂ ′) G̊T
o>J d� d�′

)
G̊o>J

+ G̊T
oJ

(∫
�

∫
�

G̊iV (rp r̂, rp r̂ ′) G̊T
i d� d�′

)
G̊oJ . (154)

Again, the first terms in eqs (153) and (154) are due variance, and the remaining terms due to bias squared (Cox & Hinkley 1974). As to the
former, the less we truncate (at high J) the solution, the more we pick up data noise. As to the latter, the more we truncate (at low J), the more
signal we leave unaccounted for. Between the two effects, we recognize the customary trade-off, as we remarked with eq. (120).

10.4 Case study II: band-limited and spectrally flat signal and noise

If the internal field is band-limited with the same bandwidth L as the internal-field Slepian functions, with a ‘whitish’ spectrum on the
planetary surface with power V , and if the external field is band-limited with the same bandwidth Lo as the external-field Slepian functions,
and with a white spectrum on the outer sphere with power W , eqs (153) and (154) simplify through eq. (132) to the rather digestible forms

mseV = NG̊T
i J �̊

−1

J G̊i J + V G̊T
i>J

(
G̊T

i>J G̊i>J

)
G̊i>J + W G̊T

i J

(
G̊T

oJ G̊oJ

)
G̊i J , (155)

mseW = NG̊T
oJ �̊

−1

J G̊oJ + W G̊T
o>J

(
G̊T

o>J G̊o>J

)
G̊o>J + V G̊T

oJ

(
G̊T

i J G̊i J

)
G̊oJ . (156)

To observe the behaviour of mseV depending on the truncation number of Slepian functions J for a case similar to the one considered in
Section 8, we set L = 100, Lo = 10, rp = 6371 km, rs = 6671 km, rq = 6771 km, and R = North America. To obtain a realistic signal-to-noise
ratio at satellite altitude we apply the same principle as earlier to the internal-field power V and, similarly, to the external-field power W . We
obtain V (rp) = 1.1 × 106 V (rs) and W (rq ) = 1.5 × 106 W (rs). For the example presented in Fig. 12 we chose V (rs) = 1, W (rs) = 0.1, and
N = 0.01. As for the internal-field case described in Section 9.4, we calculate the regional integral of the mean-squared error and normalize
it by the regional integral of the signal power. Fig. 12 shows how the bias term decreases with increasing number J of Slepian functions.
On the other hand, the variance term increases with increasing J. Together, the variance and bias lead to an optimal number Jopt = 568 that
minimizes the mean-squared error at 0.1.

1 1 C O N C LU S I O N S

We presented two methods to invert for a regional representation of potential fields on a planetary or lunar surface from discrete, regionally
available, vector data collected at varying radial positions. The first method only considers internal fields, whereas the second simultaneously
inverts for internal and external fields. Both methods are based on systems of functions that arise from solving optimization problems that
take the region of data availability and the ensuing downward continuation of the field into account. In our numerical tests we observed
that under favourable noise conditions, the estimated internal field faithfully represents the true field within the region of data availability.
Our tests also revealed some of the dangers of not considering external fields when they are present and are not removed by other means.
When large-scale external fields were left unaccounted for, the solution contained erroneous small-scale features. Plattner & Simons (2015a)
previously applied the internal-field method described in this paper to map the South Polar crustal magnetic field of Mars, after subtracting an
external-field model from the data before solving for the internal field. We provided a detailed statistical analysis of both methods, highlighting,
in particular, the leakage induced by unmodelled data components. For a contrived special case of spectrally flat and band-limited data, we
derived simple analytic expressions for the bias, variance, and mean-squared error of the estimates, which allows us to predict the solution



26 A. Plattner and F.J. Simons

error, which is dominantly controlled by the number of altitude-cognizant gradient vector Slepian functions used in the truncated model
expansion. These methods are constructed to maximize the numerical conditioning of the solution under downward continuation from an
average satellite altitude. In principle the harmonic continuation matrices could be replaced with any other invertible matrix, such as a noise
covariance, and the solution optimized to counteract the influence of noisy measurements, downward continuation, or both. The construction
of altitude-cognizant gradient vector Slepian functions necessitates solving an eigenvalue problem which, at large bandwidths, may become
computationally expensive. However, for symmetric regions, such as spherical caps, belts or rings, the original eigenvalue problem can be
simplified into a set of smaller eigenvalue problems, which can be solved in parallel, dramatically reducing the computational cost.
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Albertella, A., Sansò, F. & Sneeuw, N., 1999. Band-limited functions on a
bounded spherical domain: the Slepian problem on the sphere, J. Geod.,
73, 436–447.

Amirbekyan, A., Michel, V. & Simons, F.J., 2008. Parameterizing surface-
wave tomographic models with harmonic spherical splines, Geophys. J.
Int., 174(2), 617–628.

Aster, R.C., Borchers, B. & Thurber, C.H., 2013. Parameter Estimation and
Inverse Problems, Elsevier Academic Press.

Backus, G., 1986. Poloidal and toroidal fields in geomagnetic field modeling,
Rev. Geophys., 24(1), 75–109.

Backus, G.E., Parker, R.L. & Constable, C.G., 1996. Foundations of Geo-
magnetism, Cambridge Univ. Press.

Bates, A., Khalid, Z. & Kennedy, R., 2017. Efficient computation of Slepian
functions for arbitrary regions on the sphere, IEEE Trans. Signal Process.,
65(16), 4379–4393.

Baur, O. & Sneeuw, N., 2011. Assessing Greenland ice mass loss by means
of point-mass modeling: a viable methodology, J. Geod., 85(9), 607–615.

Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications,
Cambridge Univ. Press.
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A P P E N D I X A : C O M P U TAT I O NA L C O N S I D E R AT I O N S

In our construction of the AC-GVSF in Sections 4.2 and 5.2 we calculated the eigenvectors of the matrices K and K̊, which are of dimensions
(L + 1)2 × (L + 1)2 and [(L + 1)2 + (Lo + 1)2 − 1] × [(L + 1)2 + (Lo + 1)2 − 1], respectively. For large L, or large Lo, numerical
computations may become prohibitively expensive. Fortunately, for symmetric regions such as rings, belts or caps, we can reorder the matrices
K and K̊ into block-diagonal form, with blocks of maximum size [L + 1] × [L + 1], or [L + Lo + 1] × [L + Lo + 1]. Considering
that a full eigenvalue decomposition of an n × n matrix has a numerical complexity of O(n3), the block-diagonal reordering significantly
reduces the computational costs and allows us to construct altitude-cognizant gradient vector Slepian functions with otherwise prohibitively
high maximum spherical-harmonic degrees. For example, a fully populated matrix for internal-field band limit L = 500 and external-field
band limit Lo = 10 containing double-precision floating point numbers would require (5012 + 62 − 1)2 · 8 bytes ≈ 470 GB of memory.
Calculating the eigenvalue distribution of such a large matrix would be unmanageably computationally demanding. On the other hand, the
largest block-matrix for the symmetric region has dimensions [L + Lo + 1] × [L + Lo + 1], which only requires (500 + 5 + 1)2 · 8 bytes ≈
2 MB. Eigenvalue decompositions for such matrices are feasible even on small computers. The overall memory required for all block-diagonal
matrices is

∑max(L ,Lo)
m=0 [(L + 1 − m)+ + (Lo + 1 − max(m, 1))+]2, where (a)+ is a for a ≥ 0 and 0 otherwise. For L = 500 and Lo = 5, this

amounts to ≈320 MB, less than 0.1 per cent of the full matrix requirement. Besides, the eigenvalue decompositions only need to be performed
on the much smaller (< 2 MB) block matrices. Recently, Bates et al. (2017) proposed a method to calculate approximate classical scalar
Slepian functions for arbitrary regions by first obtaining a basis of Slepian functions for a spherical cap covering the target region and then,
in a second step, calculating the Slepian functions for the region of interest in terms of the Slepian functions for the spherical cap. Their
approach greatly reduces the computational costs. A similar procedure may be implemented for the AC-GVSF.

In Fig. A1, we show examples for high-maximum-spherical-harmonic internal- and external-field AC-GVSF constructed for a spherical
cap of opening angle 1◦ centred on the first author’s favourite pub, with internal-field bandwidth L = 500, external-field bandwidth Lo =
10, and planetary and satellite radii, and external-field radius as discussed in the legend. The left column shows the radial component of
the internal field of the best-suited function for this setting, above, and its power spectral density, below. The right column shows the radial
component of the internal field of the 48th-best-suited function, above, and, below, its power spectral density. We constructed these functions
on an off-the-shelf desktop computer. We describe our block-diagonalization approaches in Appendices A1 and A2.
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Figure A1. Full-field altitude-cognizant gradient vector Slepian function for a polar cap of opening angle 1◦ centred over Peeve’s Public House in Fresno,
California with bandwidths L = 500, and Lo = 10, rp = 6371 km, rq = 6771 km, rs = 6671 km. Top left: radial component of highest-eigenvalue internal-field
function. Bottom left: power spectral density of that function. Top right: 48th best internal-field and its power spectral density, bottom right.

A1 Internal-field altitude-cognizant gradient vector Slepian functions

To reorder the kernel matrix K of eq. (34) when the region R is a spherical cap, we follow the derivations of Plattner & Simons (2014). As
they do, we define � as the half opening angle of the spherical cap. We can describe our internal-field gradient vector spherical harmonics
Elm as linear combinations of the radial and tangential vector spherical harmonics, P lm and Blm , defined by Dahlen & Tromp (1998) as

P lm(r̂) = r̂ Ylm(r̂) and Blm(r̂) = ∇1Ylm(r̂)√
l(l + 1)

, (A1)

for 1 ≤ l ≤ L and l ≤ m ≤ l. For l = m = 0 we set P00(r̂) = r̂ . Owing to the pointwise orthogonality between P lm and Blm , the regional
integrals over products of Elm are linear combinations of integrals of products of P lm and Blm with the same spherical-harmonic degrees and
orders as the Elm ,

∫
R

Elm · El ′m′ d� =
√

(l + 1)(l ′ + 1)

(2l + 1)(2l ′ + 1)

∫
R

P lm · P l ′m′ d� +
√

l l ′

(2l + 1)(2l ′ + 1)

∫
R

Blm · Bl ′m′ d�. (A2)

Plattner & Simons (2014), in their eqs (70)–(76), derived the relationships, using a prime on X to denote differentiation with respect to θ ,∫
R

P lm · P l ′m′ d� = 2π δmm′

∫ �

0
Xlm Xl ′m sin θ dθ, (A3)

∫
R

Blm · Bl ′m′ d� =
2π δmm′

∫ �

0

[
X ′

lm X ′
l ′m + m2(sin θ )−2 Xlm Xl ′m

]
sin θ dθ√

l(l + 1)l ′(l ′ + 1)
. (A4)

Eqs (A3) and (A4) imply that for m �= m′, the regional integral over Blm · P l ′m′ is zero, which amounts to the bulk of the entries of matrix K in
eq. (34). We rearrange the non-zero elements using an orthogonal permutation matrix Q such that, for each m, all the corresponding l, l′ ≥ m
entries of matrix K are within one block of size L − m + 1 and the blocks are collected in a block diagonal matrix QKQT. The eigenvectors
of QKQT are the permutations Qg of the eigenvectors g defined in eq. (37) with the same eigenvalues, thanks to

(QKQT)(QG) = QKG = (QG)�. (A5)
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For the case or R = polar caps, the entries in each block

Km =

⎛
⎜⎜⎝

K m
mm · · · K m

mL
...

...
K m

Lm · · · K m
L L

⎞
⎟⎟⎠ (A6)

have analytic expressions that can be obtained from

K m
ll ′ = rp

−2
√

(l + 1)(l ′ + 1)(2l + 1)(2l ′ + 1)

(
rs

rp

)−l−l ′−4 ∫
R

Elm · El ′m d�, (A7)

together with eqs (A2)–(A4) and the derivations by Simons & Dahlen (2006) and Plattner & Simons (2014). To calculate internal-field
AC-GVSF for spherical caps not centred on the North Pole, we can again make use of relationship (A5) with Q defined as the orthogonal
spherical-harmonic rotation matrix using the appropriate Euler angles (Dahlen & Tromp 1998). We first calculate the eigenvectors for a
north-polar cap region with our chosen angle � and then rotate these using the matrix Q. To obtain internal-field AC-GVSF for ring-shaped
regions we subtract the kernel matrix for an inner cap from that of an outer cap.

A2 Full-field altitude-cognizant gradient vector Slepian functions

To reorder matrix K̊ in eq. (54) in a similar fashion as in Appendix A1 we need to also consider the non-vanishing integrals over products of
Elm and Flm . The following equations describe the relationships between products of Flm and Em , and products of P lm and Blm ,

∫
R

Flm · Fl ′m′ d� =
√

ll ′

(2l + 1)(2l ′ + 1)

∫
R

P lm · P l ′m′ d� +
√

(l + 1)(l ′ + 1)

(2l + 1)(2l ′ + 1)

∫
R

Blm · Bl ′m′ d�, (A8)

and

∫
R

Elm · Fl ′m′ d� =
√

(l + 1)l ′

(2l + 1)(2l ′ + 1)

∫
R

P lm · P l ′m′ d� −
√

l(l ′ + 1)

(2l + 1)(2l ′ + 1)

∫
R

Blm · Bl ′m′ d�. (A9)

These integrals are zero unless m = m′, rendering the matrix K̊ sparse. To make optimal use of this sparsity and save computational resources
in the calculation of its eigenvectors, we reorder the matrix elements into block-diagonal shape using orthogonal transformation. The resulting
eigenvectors can be translated back into eigenvectors of the original matrix K̊ by reordering the vector entries as is explained in eq. (A5). To
define the individual blocks, we reuse the definition of the matrix entries in eq. (A7) and set K im

ll ′ = K m
ll ′ . We also define

K om
ll ′ = rq

−2
√

l l ′(2l + 1)(2l ′ + 1)

(
rs

rq

)l+l ′−2 ∫
R

Flm · Fl ′m d�, (A10)

and

K iom
ll ′ = (rprq )−1

√
l(l ′ + 1)(2l + 1)(2l ′ + 1)

(
rs

rp

)−l−2 (
rs

rq

)l ′−1 ∫
R

Elm · Fl ′m d�, (A11)

and assemble these elements in the matrices

Ko
m =

⎛
⎜⎜⎝

K om
mm · · · K om

mLo

...
...

K om
Lom · · · K om

Lo Lo

⎞
⎟⎟⎠ and Kio

m =

⎛
⎜⎜⎝

K iom
mm · · · K iom

mLo

...
...

K iom
Lm · · · K iom

L Lo

⎞
⎟⎟⎠. (A12)

Note that the matrix Ko
m is of dimension [Lo + 1 − max (m, 1)] × [Lo + 1 − max (m, 1)] while matrix Kio

m is of dimension [L + 1 − m] ×
[Lo + 1 − max (m, 1)]. We collect these matrices in the single block

K̊m =
(

Km Kio
m

(Kio
m )T Ko

m

)
. (A13)

If we elect to calculate full-field altitude-cognizant gradient vector Slepian functions for spherical caps not centred at the North Pole,
we can transform the resulting eigenvectors from the north-polar caps into eigenvectors of spherical caps centred at any other point using
orthonormal spherical-harmonic rotation matrices. To obtain full-field altitude-cognizant gradient vector Slepian functions for spherical-ring
regions, we subtract the matrices K̊m for the polar cap constituting the inner gap of the ring from the matrices K̊m for the larger polar cap. We
then transform the resulting eigenvectors using orthonormal spherical-harmonic rotation matrices.
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A P P E N D I X B : TA B L E O F S Y M B O L S

Symbol Definition, description, usage eq.

V (scalar) internal-source potential field, a quantity that we attempt to estimate from the data (1)
W (scalar) external-source potential field, a quantity that we attempt to estimate from the data (1)
rp outer boundary radius for the internal-source field V; Earth, planetary or lunar radius (1)
rs (average) radial position of the measurement satellite (1)
rq inner boundary radius for the external-source field W (1)
� unit sphere, a sphere of unit radius (1)
r, θ , φ radial, colatitudinal, and longitudinal coordinates (1)
r̂, θ̂ , φ̂ radial, colatitudinal, and longitudinal unit vectors (12)
Ylm scalar surface spherical-harmonic; an orthonormal basis function for the potential fields V or W (2)
l, m spherical-harmonic degree, l ≥ 0 and order −l ≤ m ≤ l (2)
v

r p
lm expansion coefficients of the internal-source potential V (rp r̂) in the basis Ylm (r̂) (4)

w
rq
lm expansion coefficients of the external-source potential W (rq r̂) in the basis Ylm (r̂) (5)

L maximum spherical-harmonic degree (bandwidth) of the internal-source field V being modelled (6)
Lo maximum spherical-harmonic degree (bandwidth) of the external field W being modelled (6)
v

r p
L (L + 1)2-dimensional vector of expansion coefficients v

r p
lm , for 0 ≤ l ≤ L (6)

w
rq
Lo

[(Lo + 1)2 − 1]-dimensional vector of expansion coefficients w
rq
lm , for 1 ≤ l ≤ Lo (6)

Y infinite-dimensional vector of all scalar spherical harmonics Ylm, for 0 ≤ l ≤ ∞ (7)
YL (L + 1)2-dimensional vector of the scalar spherical harmonics Ylm for 0 ≤ l ≤ L (8)
Y>L infinite-dimensional vector of the scalar spherical harmonics Ylm for l ≥ L + 1 (8)
YLo [(Lo + 1)2 − 1]-dimensional vector of the scalar spherical harmonics Ylm for 1 ≤ l ≤ Lo (8)
Y>Lo infinite-dimensional vector of all scalar spherical harmonics Ylm for l ≥ Lo + 1 (8)

B vector-field superposition of the gradients of the internal- and external-source potentials, ∇V + ∇W (12)
Elm vector spherical-harmonic; orthonormal internal-source basis function for ∇V , for 0 ≤ l, −l ≤ m ≤ l (15)
Flm vector spherical-harmonic; orthonormal external-source basis function for ∇W , for 1 ≤ l and −l ≤ m ≤ l (16)
E, F infinite-dimensional vector of all vector spherical-harmonics Elm for 0 ≤ l ≤ ∞, or Flm for 1 ≤ l ≤ ∞ (23)
EL (L + 1)2-dimensional vector of the internal-source vector spherical-harmonics Elm for 0 ≤ l ≤ L (24)
E>L infinite-dimensional vector of the internal-source vector spherical-harmonics Elm for l ≥ L + 1 (23)
F Lo [(Lo + 1)2 − 1]-dimensional vector of the external-source vector spherical-harmonics Flm for 1 ≤ l ≤ Lo (24)
F>Lo infinite-dimensional vector of the external-source vector spherical-harmonics Flm for l ≥ Lo + 1 (23)
Al(r) harmonic continuation factor for internal-source fields, from planetary surface rp up to r, for l ≥ 0 (17)
Ăl (r ) harmonic continuation factor for external-source fields, from inner boundary rq down to r, for l ≥ 1 (18)
A(r ) diagonal matrix containing the Al(r), for a context-dependent range of l ≥ 0 (19)
Ă(r ) diagonal matrix containing the Ăl (r ), for a context-dependent range of l ≥ 1 (20)
A silent notation, whereby is meant A(rs ), evaluated at the (radial average of the) satellite position (21)
Ă silent notation, whereby is meant Ă(rs ), evaluated at the (radial average of the) satellite position (22)

d(r r̂) vector-valued function with the data collected by the satellite (29)
n(r r̂) vector-valued function with observational noise contaminating the data (29)
d, n shorthand for the data and noise functions at average satellite altitude, d = d(rs r̂) and n = n(rs r̂) (30)
R region of data availability on the unit sphere �; target region for Slepian-function concentration; model domain (29)
ṽ

r p
L estimated internal-source coefficient vector; minimizer of internal-source least-squares data functional on R (31)

w̃
rq
Lo

estimated external-source coefficient vector; minimizer of internal/external data misfit functional over R (52)

K inner-product (over R, hence ‘localization’) matrix of upward-continued inner-source vector harmonics AEL (34)
K̊ inner-product matrix of analytically continued internal/external-source vector harmonics AEL and ĂF Lo (54)
� diagonal matrix containing the (L + 1)2 eigenvalues of K: the ‘optimization’ or ‘concentration’ factors λα (35)
�̊ diagonal matrix containing the [(L + 1)2 + (Lo + 1)2 − 1] eigenvalues of K̊: the optimization factors λ̊α (55)
�J diagonal matrix containing the J largest eigenvalues λα of K; J × J-dimensional truncation of � (36)
�̊J diagonal matrix containing the J largest eigenvalues λ̊α of K̊; J × J-dimensional truncation of �̊ (57)
G eigenvector matrix of K; columns gα contain the Ylm-expansion coefficients glm, α of scalar functions Gα (35)
G̊ eigenvector matrix of K̊; columns g̊α with Ylm-coefficients g̊i lm,α and go lm, α of scalar G̊iα and G̊oα (55)
GJ (L + 1)2 × J matrix with the J best eigenvectors of K; restriction of G to its first J columns (36)
G̊J [(L + 1)2 + (Lo + 1)2 − 1] × J matrix with the J best eigenvectors of K̊; column-restriction of G̊ (56)

G̊i (L + 1)2 × [(L + 1)2 + (Lo + 1)2 − 1]-dimensional matrix of columns g̊iα with coefficients g̊i lm,α of G̊iα (58)
G̊o [(Lo + 1)2 − 1] × [(L + 1)2 + (Lo + 1)2 − 1]-dimensional matrix of columns g̊oα with the go lm, α of G̊oα (58)
G̊i J , G̊oJ restrictions of G̊i and G̊o to their first J columns (58)
λα eigenvalues of K, in descending order, for 1 ≤ α ≤ (L + 1)2; the diagonal elements of � (35)
λ̊α eigenvalues of K̊, in descending order, for 1 ≤ α ≤ [(L + 1)2 + (Lo + 1)2 − 1]; the diagonal elements of �̊ (55)
gα (L + 1)2-dimensional column vector, the α-th column of G; contains the glm, α (37)
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Symbol Definition, description, usage eq.

g̊α [(L + 1)2 + (Lo + 1)2 − 1]-dimensional column vector, the α-th column of G̊; also g̊α = (
g̊T

iα g̊T
oα

)T
(56)

g̊iα (L + 1)2-dimensional column vector, the (L + 1)2 first elements of g̊α ; contains the g̊i lm,α (58)
g̊oα [(Lo + 1)2 − 1]-dimensional column vector, the (Lo + 1)2 − 1 last elements of g̊α ; contains the g̊o lm,α (58)
glm, α spherical-harmonic expansion coefficients of the Gα : the elements of gα (38)
g̊i lm,α spherical-harmonic expansion coefficients of the G̊iα : first (L + 1)2 scalar elements of g̊α ; the elements of g̊iα (58)
g̊o lm,α spherical-harmonic expansion coefficients of the G̊oα : last (Lo + 1)2 − 1 elements of g̊α ; the elements of g̊oα (58)
AC-GVSF abbreviation of ‘altitude-cognizant gradient vector Slepian functions’ in their various forms passim
Gα(l) spherical-harmonic power spectrum of Gα(r̂) at the degree l; mean-squared value of the coefficients glm, α (38)
Gα scalar AC-GVSF; spherical-harmonic expansions of the eigenvectors of the internal-source matrix K (39)
G̊iα scalar internal-source AC-GVSF; expansions of internal-source eigenvectors G̊i of the full-field matrix K̊ (61)
G̊oα scalar external-source AC-GVSF; expansions of external-source eigenfunctions G̊o of the full-field matrix K̊ (62)
Gα vector internal-source AC-GVSF for the internal-source matrix K, evaluated on the planetary surface rp (41)
G̊iα vector internal-source AC-GVSF for the full-field matrix K̊, evaluated on the planetary surface rp (65)
G̊oα vector external-source AC-GVSF for the full-field matrix K̊, at inner boundary of the external field rq (66)
G↑α vector internal-source AC-GVSF: the Gα after harmonic continuation from rp to average satellite altitude rs (43)
G̊i↑α vector internal-source AC-GVSF: the G̊iα after harmonic continuation from rp to average satellite altitude rs (69)
G̊o↑α vector external-source AC-GVSF: the G̊oα after harmonic continuation from rq to average satellite altitude rs (70)
G̊↑α vector full-field AC-GVSF, the summed G̊iα and G̊oα , evaluated at average satellite altitude rs (71)
G,GJ vectors with the Gα for 1 ≤ α ≤ (L + 1)2 or 1 ≤ α ≤ J; their complement is G>J (40)
G̊i , G̊i J vectors with the G̊iα for 1 ≤ α ≤ (L + 1)2 + (Lo + 1)2 − 1 or 1 ≤ α ≤ J; their complement is G̊i>J (63)
G̊o, G̊oJ vectors with the G̊oα for 1 ≤ α ≤ (L + 1)2 + (Lo + 1)2 − 1 or 1 ≤ α ≤ J; their complement is G̊o>J (64)
G, G J vectors with the Gα for 1 ≤ α ≤ (L + 1)2 or 1 ≤ α ≤ J, complemented by G>J (42)
G̊i , G̊i J vectors with the G̊iα for 1 ≤ α ≤ (L + 1)2 + (Lo + 1)2 − 1 or 1 ≤ α ≤ J, complemented by G̊i>J (67)
G̊o, G̊oJ vectors with the G̊oα for 1 ≤ α ≤ (L + 1)2 + (Lo + 1)2 − 1 or 1 ≤ α ≤ J, complemented by G̊o>J (68)
G↑, G↑J vectors with the G↑α for 1 ≤ α ≤ (L + 1)2 or 1 ≤ α ≤ J, complemented by G↑>J (43)
G̊i↑, G̊i↑J vectors with the G̊i↑α for 1 ≤ α ≤ (L + 1)2 + (Lo + 1)2 − 1 or 1 ≤ α ≤ J, complemented by G̊i↑>J (69)
G̊o↑, G̊o↑J vectors with the G̊o↑α for 1 ≤ α ≤ (L + 1)2 + (Lo + 1)2 − 1 or 1 ≤ α ≤ J, complemented by G̊o↑>J (70)
G↓, G↓J vectors containing analytically continued vector internal-source AC-GVSF (102)
G̊i↓, G̊i↓J vectors containing analytically continued internal-source functions from the set of full-field AC-GVSF (122)
G̊o↓, G̊o↓J vectors containing analytically continued external-source functions from the set of full-field AC-GVSF (123)

sα expansion coefficients of internal-source potential V (rp r̂) in the scalar AC-GVSF basis Gα(r̂) (45)
s̊iα expansion coefficients of internal-source potential V (rp r̂) in the scalar AC-GVSF basis G̊iα(r̂) (74)
s̊oα expansion coefficients of external-source potential W (rq r̂) in the scalar AC-GVSF basis G̊oα(r̂) (76)
tα sum of the coefficients s̊iα and s̊oα (78)
s (L + 1)2-dimensional vector of expansion coefficients sα , for 1 ≤ α ≤ (L + 1)2 (44)
s̊i [(L + 1)2 + (Lo + 1)2 − 1]-dimensional vector of coefficients s̊iα , for 1 ≤ α ≤ (L + 1)2 + (Lo + 1)2 − 1 (72)
s̊o [(L + 1)2 + (Lo + 1)2 − 1]-dimensional vector of coefficients s̊oα , for 1 ≤ α ≤ (L + 1)2 + (Lo + 1)2 − 1 (73)
t [(L + 1)2 + (Lo + 1)2 − 1]-dimensional vector of coefficients s̊iα + s̊oα (78)
sJ vector containing the coefficients sα for 1 ≤ α ≤ J, approximating V (rp r̂) over R ⊂ � (46)
s̊i J vector containing the coefficients s̊iα for 1 ≤ α ≤ J, approximating V (rp r̂) over R ⊂ � (75)
s̊oJ vector containing the coefficients s̊oα for 1 ≤ α ≤ J, approximating W (rq r̂) over R ⊂ � (77)
tJ vector containing the coefficients tα for 1 ≤ α ≤ J (78)
s̃J truncated estimator of the J first terms in the coefficient vector s, using J terms of the inner-source AC-GVSF (48)
t̃J truncated estimator of the J first terms in the coefficient vector t, using J terms of the full-field AC-GVSF (80)
s̃α an element of s̃J ; expansion coefficient of the truncated estimate ṼJ (rp r̂) in the AC-GVSF basis Gα(r̂) (50)
t̃α an element of t̃J ; expansion coefficient of the estimate ṼJ (rp r̂) in the internal-source AC-GVSF basis G̊iα(r̂); (82)

also: expansion coefficient of the estimate W̃J (rq r̂) in the external-source AC-GVSF basis G̊oα(r̂) (83)
ṼJ (rp r̂) estimate of the internal-source field V, in the truncated AC-GVSF basis, considering internal-source fields; (50)

estimate of the internal-source field V, in the truncated AC-GVSF basis, considering internal/external fields (82)
W̃J (rq r̂) estimate of the external field W, in the truncated AC-GVSF basis, considering internal and external fields (83)

k number of vector-valued observations available: a discrete data set on R ⊂�; for a total of 3k components (84)
d vector with the three spherical vector components of the field observed at each of the positions ri r̂ i , 1 ≤ i ≤ k (86)
E⇑ [(L + 1)2 × 3k]-dimensional matrix with the analytically continued Elm harmonics evaluated at the data (84)
F⇑ [(L + 1)2 × 3k]-dimensional matrix with the analytically continued Flm harmonics at the data locations (91)
G⇑J [J × 3k]-dimensional matrix containing the internal-source AC-GVSF G↑J evaluated at the data locations (85)
G̊⇑J [J × 3k]-dimensional matrix containing the full-field AC-GVSF G̊↑J evaluated at the data locations (92)
ŝJ discrete-data truncated estimator of the J first terms in the coefficient vector s; the ŝα for 1 ≤ α ≤ J (86)
t̂J discrete-data truncated estimator of the J first terms in the coefficient vector t; the t̂α for 1 ≤ α ≤ J (93)
ŝα an element of ŝJ ; expansion coefficient of V̂J (rp r̂) in the AC-GVSF basis Gα(r̂) (89)
t̂α an element of t̂J ; expansion coefficient of V̂J (rp r̂) and ŴJ (rq r̂) in the AC-GVSF basis G̊iα(r̂) and G̊oα(r̂) (97)
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Symbol Definition, description, usage eq.

r vector with data residuals obtained after comparison with predictions derived from the truncated estimator ŝJ (87)
r̊ vector with data residuals obtained after comparison with predictions derived from the truncated estimator t̂J (95)
R [3k × 3k]-dimensional diagonal matrix containing (thresholded) residuals r (88)
R̊ [3k × 3k]-dimensional diagonal matrix containing (thresholded) residuals r̊ (94)
V̂J (rp r̂) truncated-AC-GVSF estimate of the internal-source field V, variable-altitude discrete data, inner-source fields; (89)

truncated-AC-GVSF estimate of internal-source field V, variable-altitude discrete data, internal/external fields (96)
ŴJ (rq r̂) truncated-AC-GVSF estimate of external field W, from variable-altitude discrete data, internal/external fields (97)

H↑α,>L space-limited, infinitely wide-band AC-GVSF made from the degrees l > L after truncation of the G↑α to R (111)
H↑J,>L vector collecting the H↑α,>L for 1 ≤ α ≤ J (111)
h↑α, >L vector containing the Elm expansion coefficients of the space-limited H↑α J,>L (112)

H̊
E
↑α,>L space-limited, wide-band AC-GVSF made from the Elm components, for l > L, of the G̊↑α truncated to R (135)

H̊E
↑J,>L vector collecting the H̊

E
↑α,>L for 1 ≤ α ≤ J (135)

h̊E
↑α,>L vector containing the Elm expansion coefficients of the space-limited H̊

E
↑α J,>L (137)

H̊
F
↑α,>Lo

space-limited, wide-band AC-GVSF made from the Flm components, for l > L, of the G̊↑α truncated to R (136)

H̊F
↑J,>Lo

vector collecting the H̊
F
↑α,>Lo

for 1 ≤ α ≤ J (136)

h̊F
↑α,>Lo

vector containing the Flm expansion coefficients of the space-limited H̊
F
↑α J,>L (138)

b spatial bias of the truncated AC-GVSF estimator ṼJ (rp r̂) considering internal-source fields only (117)
bV first portion of the spatial bias of the truncated AC-GVSF estimator ṼJ (rp r̂) solving the full-field problem (146)
bVW second portion of the spatial bias of the truncated AC-GVSF estimator ṼJ (rp r̂) solving the full-field problem (148)
bW first portion of the spatial bias of the truncated AC-GVSF estimator W̃J (rq r̂) solving the full-field problem (147)
bWV second portion of the spatial bias of the truncated AC-GVSF estimator W̃J (rq r̂) solving the full-field problem (149)
V spatial two-point covariance of the scalar internal-source signal V (rp r̂) (118)
W spatial two-point covariance of the scalar external-source signal W (rq r̂) (151)
N spatial two-point covariance of the vector-valued data noise n(rs r̂) (119)
mse mean-squared estimation error of the truncated AC-GVSF estimate ṼJ (rp r̂) for the internal-source field (120)
mseV mean-squared error of the truncated AC-GVSF internal-source estimate ṼJ (rp r̂) solving the full-field problem (153)
mseW mean-squared error of the truncated AC-GVSF external-source estimate W̃J (rq r̂) solving full-field problem (154)


