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END OF MERMAID PRELUDE
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• Autonomous Surface Vessel (ASV)
• 4 GPS receivers with ~2 cm  

precise point positioning uncertainty
• Trajectory covered by ASV with 

acoustic pulses emitted at 1 Hz 

• Continuously operating deep ocean 
geodetic sensor (C-DOG)

• Modem to transport arrival time 
data from seafloor to surface

• Locating the C-DOG is the objective
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• Sphere rated for depths of 6000 m
• Extremely low power nanosecond 

chip-scale atomic clock (CSAC)
• Hydrophone and correlator unit to 

detect encoded pulses and time-tag 
them to an uncertainty of 20 µs

• Modem to transport arrival time 
data from seafloor to surface

• Battery capable of powering long-
term deployments

• C-DOG can be put to sleep to 
lengthen lifespan – decades 
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An experiment in 5000 m water
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C-DOG Data Collected in Situ

• Experiment performed in 5000 m water 

• Time series of acoustic data observed by hydrophone on C-DOG 

• On-board correlator time-stamps arrivals against the CSAC atomic clock 

• Timing uncertainty of ~20 µs
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(III) Gauss-Newton Inversion

• An iterative Gauss-Newton method hones in 
on the seafloor C-DOG 

• Works in conjunction with the alignment and 
simulated annealing algorithms 

• Requires reasonable initial guesses for 
transponder offset, alignment timing offset, 
and C-DOG position (otherwise it diverges)
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~0.2 cm from the actual location

• Next: Varying ocean sound speed in the synthetic

• Next: Real data analysis
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THE END
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