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e _Autonomous Surface Vessel (ASV)

* 4 GPS receivers with ~2 cm
precise point positioning uncertainty

* Trajectory covered by ASV with
acoustic pulses emitted at 1 Hz

e Continuously operating deep ocean
geodetic sensor (C-DOG)

* Modem to transport arrival time
data from seafloor to surface

* Locating the C-DOG is the objective
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Sphere rated for depths of 6000 m

* Extremely low power nanosecond
chip-scale atomic clock (CSAC)

* Hydrophone and correlator unit to
detect encoded pulses and time-tag
them to an uncertainty of 20 ps

* Modem to transport arrival time
data from seafloor to surface

e Battery capable of powering long-
term deployments

e C-DOG can be put to sleep to

lengthen lifespan — decades
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An experiment in 5000 m water
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* Experiment performed in 5000 m water
* Time series of acoustic data observed by hydrophone on C-DOG
* On-board correlator time-stamps arrivals against the CSAC atomic clock

* Timing uncertainty of ~20 ps

Terance Schuh, 2023 Master’s Thesis, Princeton University Q) ’
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Problems

The C-DOG position is unknown and the parameter of interest.

C-DOG data may contain dropped observations, can be offset in time from the GPS clock,

and the arrival timings have around 20 us timing uncertainty.

GPS positions are not co-located with the transducer (need to solve for spatial offset)

and have around 2 cm position uncertainty.

Spatial and temporal variability in the sound speed profile of the ocean (raytracing!)

Solutions

An iterative alignment algorithm (l) accounts for timing offset and missing data points.
Plane fitting and simulated annealing algorithm (ll) determine the offset between GPS and transducer.
A Gauss-Newton inversion algorithm (lll) locates the C-DOG on the seafloor.

Current workflow solves for three parameters: spatial offset, timing offset, and C-DOG position
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* An iterative Gauss-Newton method hones in
on the seafloor C-DOG

* Works in conjunction with the alignment and

simulated annealing algorithms

* Requires reasonable initial guesses for
transponder offset, alignment timing offset,
and C-DOG position (otherwise it diverges)
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*~With synthetic inputs:

e 20,000 surface emissions along a 10 km trajectory
in the shape of an X

e 2 cm surface GPS position error
o 20 ps time-tagging error

» Random timing offset and data drops
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* 20,000 surface emissions along a 10 km trajectory
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e 2 cm surface GPS position error
o 20 ps time-tagging error

» Random timing offset and data drops

* The model estimates the C-DOG to a position
~0.2 cm from the actual location
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*~With synthetic inputs:

e 20,000 surface emissions along a 10 km trajectory
in the shape of an X

e 2 cm surface GPS position error
o 20 ps time-tagging error

» Random timing offset and data drops

* The model estimates the C-DOG to a position
~0.2 cm from the actual location
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*~With synthetic inputs:

e 20,000 surface emissions along a 10 km trajectory
in the shape of an X

e 2 cm surface GPS position error
o 20 ps time-tagging error
» Random timing offset and data drops

* The model estimates the C-DOG to a position
~0.2 cm from the actual location

* Next: Varying ocean sound speed in the synthetic

* Next: Real data analysis
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