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- Paleocene Eocene Thermal Maximum
(PETM)

e extreme global warming event about 55.9 Myr ago
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Eocene

- Paleocene Eocene Thermal Maximum
(PETM)

e extreme global warming event about 55.9 Myr ago
e closest rate of carbon emissions to present day (Cui et al. 2011)
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- Paleocene Eocene Thermal Maximum
(PETM)
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4 2L e extreme global warming event about 55.9 Myr ago
o § - e closest rate of carbon emissions to present day (Cui et al. 2011)
qwr e mass extinction of benthic foraminifera, largest mammalian
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turnover of Cenozoic (Mclnerny and Wing 2011)

Paleocene
£ 1

g gl aaaa l ey gl

0

4 8 12

Temperature (°C)
Image credit: Zachos et al. (2001)



- Paleocene Eocene Thermal Maximum
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4 2L e extreme global warming event about 55.9 Myr ago
o § - e closest rate of carbon emissions to present day (Cui et al. 2011)
qwr e mass extinction of benthic foraminifera, largest mammalian

70

turnover of Cenozoic (Mclnerny and Wing 2011)
e don’t know exactly how long ancient warming or extinction took
— study geologic record of this time period to find out for
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A Eccentricity: 400 ka and 100 ka

n_mw Orbital Components
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Orbital forcing of Earth’s climate

Changes in Earth’s orbital geometry
(eccentricity, tilt, precession)

!

Changes in the seascnal distribution of
Insolation (heat) as a function of latitude

l r‘ Amplified by other processes

Glacial-interglacial climate change‘ J

ice albedo feedback: cooling
leads to increased ice, increases
reflectivity (albedo), reduces solar
energy absorbed, increases
cooling and vice versa

Milutin Milankovitch (Serbian
mathematician, 1879-1958)
e studied Earth’s orbit while
imprisoned during WWI
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e limestone-marl couplets show cyclic variation of bioproductivity dependent on
orbital forcing (Batenburg et al. 2012)



e limestone-marl couplets show cyclic variation of bioproductivity dependent on
orbital forcing (Batenburg et al. 2012)

o warm periods - increased organic production (plankton)
m thicker limestone beds
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e limestone-marl couplets show cyclic variation of bioproductivity dependent on
orbital forcing (Batenburg et al. 2012)

o warm periods - increased organic production (plankton)
m thicker limestone beds
o cool periods - decreased organic production
m thin limestone beds
m accounts for adjacent marl layers - “crowded couplets”
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umaia

e each couplet represents
precessional cycle (~20kyr)

e bundles of five couplets represent
short eccentricity cycle (~100kyr)

e four bundles represent long
eccentricity cycle (~405kyr)

e used to decrease age uncertainties,
provide dates for planktonic events

umaia

1
1

I

1

fioo

: 125
|

FO R. fructicosat— I.

Image credit: Batenburg é;t al.
(2012)




New Methodology



New Methodology

1. Did not assume coupling
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New Methodology

1. Did not assume coupling 2. Removed turbidites
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New Methodology

1. Did not assume coupling 2. Removed turbidites 3. Did not tune data

- / marl beds

missing bases
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2012)
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Milankovitch cycles to begin with

o artificially increased signal



Tuning

( \ \ \ ( \ [ \( \
time time
1. Dbetter not to tune if signal-to-noise ratio is less than ~1 (Proistosescu et al
2012)
2. tuning was employed in previous work because data were defined as
Milankovitch cycles to begin with
o artificially increased signal

our data were too noisy for reliable tuning — did not tune



1. Did not assume coupling

New Methodology

2. Removed turbidites

/ marl beds

missing bases

signal
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Check percent marl per None, maybe
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Check percent marl per  None, maybe Apply wavelet analysis
meter for Milankovitch — some parts of " to look at power spectra

cycles using fast section were
Fourier transform noisier than others
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Check percent marl per  None, maybe Apply wavelet analysis No consistent
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meter for Milankovitch — some parts of ™ to look at power spectra frequencies

cycles using fast section were
Fourier transform noisier than others

1.

Define couplets and

2. checking them for
cyclicity using fast
Fourier transform
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Fourier transform
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noisy data



Check percent marl per  None, maybe Apply wavelet analysis No consistent

—>

1. meter for Milankovitch — some parts of " to look at power spectra frequencies
cycles using fast section were
Fourier transform noisier than others
Define couplets and Found 19/22 Try to improve: Milankovitch cycles no
2. checkingthemfor — . kyrpeaks — Rer:ove turbidit(.es — longer appear in fast
cyclicity using fast (precession) Fourier transform
Fourier transform
No tuning: better with /
noisy data




Check percent marl per  None, maybe Apply wavelet analysis No consistent

—>

1. meter for Milankovitch — some parts of " to look at power spectra frequencies
cycles using fast section were
Fourier transform noisier than others
Define couplets and Found 19/22 Try to improve: Milankovitch cycles no
2. checkingthemfor — . kyrpeaks — Rer:ove turbidit(.es — longer appear in fast
cyclicity using fast (precession) Fourier transform
Fourier transform
No tuning: better with /
noisy data




Check percent marl per  None, maybe Apply wavelet analysis No consistent

—>

1. meter for Milankovitch — some parts of " to look at power spectra frequencies

cycles using fast section were
Fourier transform noisier than others

Define couplets and Found 19/22 Trvto i _ Milankovitch cycles no
2. checking them for . kyr peaks — yIo |mpr9v§. — longer appear in fast
cyclicity using fast (precession) Remove turbidites Fourier transform
Fourier transform
No tuning: better with /
noisy data

y v

Limestone-marl couplets
are not caused by
precession and eccentricity




Check percent marl per  None, maybe Apply wavelet analysis No consistent

—>

1, meter for Milankovitch — some parts of " to look at power spectra frequencies
cycles using fast section were
Fourier transform noisier than others
Define couplets and Found 19/22 Try to improve: Milankovitch cycles no
2. checkingthemfor — . yrpeaks — Rer:\love turbidit(.es —  longer appear in fast
cyclicity using fast (precession) Fourier transform
Fourier transform
No tuning: better with /
noisy data
Turbidites are ¢ v

periodic
Limestone-marl couplets
are not caused by

precession and eccentricity




Check percent marl per  None, maybe Apply wavelet analysis No consistent

—>

1, meter for Milankovitch — some parts of " to look at power spectra frequencies
cycles using fast section were
Fourier transform noisier than others
Define couplets and Found 19/22 Try to improve: Milankovitch cycles no
2. checkingthemfor — . yrpeaks — Rer:\love turbidit.es —  longer appear in fast
cyclicity using fast (precession) Fourier transform
Fourier transform
No tuning: better with /
noisy data
)
Turbidites are ¢ v

periodic
Limestone-marl couplets
are not caused by

precession and eccentricity




Check percent marl per  None, maybe Apply wavelet analysis No consistent

—>

1, meter for Milankovitch — some parts of " to look at power spectra frequencies
cycles using fast section were
Fourier transform noisier than others
Define couplets and Found 19/22 Try to improve: Milankovitch cycles no
2. checkingthemfor — . kyrpeaks — Rerr{ove turbidit(.es — longer appear in fast
cyclicity using fast (precession) Fourier transform
Fourier transform
No tuning: better with /
noisy data
)
Turbidites are ¢ v

periodic
Limestone-marl couplets
are not caused by

precession and eccentricity




Check percent marl per

None, maybe

1. meter for Milankovitch — some parts of

cycles using fast
Fourier transform

Define couplets and
2. checking them for
cyclicity using fast
Fourier transform

section were
noisier than others

Found 19/22
— kyr peaks
(precession)

—

Turbidites are

periodic \

Remove turbidites

No consistent
frequencies

Apply wavelet analysis
to look at power spectra

—>

Milankovitch cycles no
longer appear in fast
Fourier transform

No tuning: better with /

noisy data

Try to improve:

—

y v

Limestone-marl couplets
are not caused by
precession and eccentricity




Check percent marl per

None, maybe

1. meter for Milankovitch — some parts of

cycles using fast
Fourier transform

Define couplets and
2. checking them for
cyclicity using fast
Fourier transform

section were
noisier than others

Found 19/22
— kyr peaks
(precession)

—

Remove turbidites

Turbidites are

periodic \

No consistent
frequencies

Apply wavelet analysis
to look at power spectra

—>

Milankovitch cycles no
longer appear in fast
Fourier transform

No tuning: better with /

noisy data

Try to improve:

—

y v

Limestone-marl couplets
are not caused by
precession and eccentricity




Check percent marl per  None, maybe Apply wavelet analysis No consistent

—>

1, meter for Milankovitch — some parts of " to look at power spectra frequencies
cycles using fast section were
Fourier transform noisier than others
Define couplets and Found 19/22 Try to improve: Milankovitch cycles no
2. checkingthemfor — . kyrpeaks — Rerr{ove turbidités — longer appear in fast
cyclicity using fast (precession) Fourier transform
Fourier transform
No tuning: better with /
noisy data
Turbidites are
' Y

periodic
Limestone-marl couplets
|
are not caused by

precession and eccentricity




Check percent marl per  None, maybe Apply wavelet analysis No consistent

—>

1, meter for Milankovitch — some parts of " to look at power spectra frequencies
cycles using fast section were
Fourier transform noisier than others
Define couplets and Found 19/22 Try to improve: Milankovitch cycles no
2. checkingthemfor — . yrpeaks — Rer:\love turbidit(.es —  longer appear in fast
cyclicity using fast (precession) Fourier transform
Fourier transform
No tuning: better with /
noisy data
)
Turbidites are ¢ v

periodic
_ Limestone-marl couplets
are not caused by

precession and eccentricity




Check percent marl per  None, maybe Apply wavelet analysis No consistent

—>

1, meter for Milankovitch — some parts of " to look at power spectra frequencies
cycles using fast section were
Fourier transform noisier than others
Define couplets and Found 19/22 Try to improve: Milankovitch cycles no
2. checkingthemfor — . yrpeaks — Rer:\love turbidit.es —  longer appear in fast
cyclicity using fast (precession) Fourier transform
Fourier transform
No tuning: better with /
noisy data
Turbidites are ¢ v

periodic
Limestone-marl couplets
are not caused by

. . /
Everything is a precession and eccentricity
turbidite




Check percent marl per  None, maybe Apply wavelet analysis No consistent

1. meter for Milankovitch — some parts of to look at power spectra frequencies
cycles using fast section were
Fourier transform noisier than others
Define couplets and Found 19/22 Try to improve: Milankovitch cycles no
2. checkingthemfor — . yrpeaks — Remove turbidit(.es — longer appear in fast
cyclicity using fast (precession) Fourier transform
Fourier transform
S No tuning: better with /
Clay
Laminated clay and silt \
Cross-laminated coarse gl
silt to very fine sand . e
e Sk Sul L O Turbidites are ¢ |
S e > missing periodic :
________________ bases Limestone-marl couplets
) Sg:g:?sgesgir:]‘;n E th i / al"e nOt caused by
Gdln bt verything 1s a precession and eccentricity
e ) turbidite




Check percent marl per  None, maybe Apply wavelet analysis No consistent

—>

1. meter for Milankovitch  — some parts of " to look at power spectra frequencies
cycles using fast section were
Fourier transform noisier than others
Define couplets and Found 19/22 Try to improve: Milankovitch cycles no
2. checkingthemfor — . kyrpeaks — Rerr{ove turbidités — longer appear in fast
cyclicity using fast (precession) Fourier transform
Fourier transform
No tuning: better with /
noisy data
Turbidites are
periodic ¢ y
Limestone-marl couplets
ﬂ Clay . P are not caused by
————————— Everything is a precession and eccentricity
turbidite




Check percent marl per None, maybe Apply wavelet analysis No consistent

—>

1. meter for Milankovitch — some parts of " to look at power spectra frequencies

cycles using fast section were
Fourier transform noisier than others

Define couplets and Found 19/22 Trvto i _ Milankovitch cycles no
2. checking them for . kyr peaks — yIo |mpr9v§. — longer appear in fast
cyclicity using fast (precession) Remove turbidites Fourier transform
Fourier transform
No tuning: better with /
noisy data

S R e S T W Turbidites are ¢ |
— Cross-laminated coarse pe rl Od |C
LS sittoveyfinesand \ Limestone-marl couplets
Clay . P are not caused by
””””” Everythmg 5@ precession and eccentricity
turbidite




Check percent marl per  None, maybe Apply wavelet analysis No consistent

—>

1 meter for Milankovitch — some parts of o look at power spectra frequencies

cycles using fast section were
Fourier transform noisier than others

Define couplets and Found 19/22 Try to improve: Milankovitch cycles no
2. checkingthemfor — . yrpeaks — Rerr{ove turbidit(.es — longer appear in fast
cyclicity using fast (precession) Fourier transform
Fourier transform
2N No tuning: better with /
"""""""""" noisy data
Laminated clay and silt
Clay
Laminated clay and silt Lo
. N ST L & Turbidites are ¢ v
3 Cross-laminated coarse pe rl Od IC
S e el b ot Limestone-marl couplets
Clay . P are not caused by
———————— Everything is a precession and eccentricity
turbidite




Summary

1. Previous scientists started too high level: defined couplets in field, tuned



Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the
layers of sediment in Zumaia



Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the

layers of sediment in Zumaia
2.1. Percent marl per meter — found no Milankovitch cycles



Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the

layers of sediment in Zumaia

2.1. Percent marl per meter — found no Milankovitch cycles
2.2. Tried refining with couplet thickness — found peaks at 19/22 kyr



Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the

layers of sediment in Zumaia

2.1. Percent marl per meter — found no Milankovitch cycles
2.2. Tried refining with couplet thickness — found peaks at 19/22 kyr

2.3. Removed turbidites (noise) to amplify those peaks and find others — actually lost those cycles
altogether



Summary

1. Previous scientists started too high level: defined couplets in field, tuned
2. We took a step back: unbiased approach to test for Milankovitch cycles in the

layers of sediment in Zumaia

2.1. Percent marl per meter — found no Milankovitch cycles
2.2. Tried refining with couplet thickness — found peaks at 19/22 kyr

2.3. Removed turbidites (noise) to amplify those peaks and find others — actually lost those cycles
altogether

3. Conclusion: Environmental change 60 Ma in Zumaia, Spain was not paced by
periodic changes in Earth’s orbit



Summary

1. Previous scientists started too high level: defined couplets in field, tuned

2. We took a step back: unbiased approach to test for Milankovitch cycles in the

layers of sediment in Zumaia

2.1. Percent marl per meter — found no Milankovitch cycles
2.2. Tried refining with couplet thickness — found peaks at 19/22 kyr

2.3. Removed turbidites (noise) to amplify those peaks and find others — actually lost those cycles
altogether

3. Conclusion: Environmental change 60 Ma in Zumaia, Spain was not paced by
periodic changes in Earth’s orbit
4. Possible explanations:



Summary

1. Previous scientists started too high level: defined couplets in field, tuned

2. We took a step back: unbiased approach to test for Milankovitch cycles in the

layers of sediment in Zumaia

2.1. Percent marl per meter — found no Milankovitch cycles
2.2. Tried refining with couplet thickness — found peaks at 19/22 kyr

2.3. Removed turbidites (noise) to amplify those peaks and find others — actually lost those cycles
altogether

3. Conclusion: Environmental change 60 Ma in Zumaia, Spain was not paced by
periodic changes in Earth’s orbit
4. Possible explanations
4.1. Turbidites themselves are periodic



Summary

1. Previous scientists started too high level: defined couplets in field, tuned

2. We took a step back: unbiased approach to test for Milankovitch cycles in the

layers of sediment in Zumaia

2.1. Percent marl per meter — found no Milankovitch cycles
2.2. Tried refining with couplet thickness — found peaks at 19/22 kyr

2.3. Removed turbidites (noise) to amplify those peaks and find others — actually lost those cycles
altogether

3. Conclusion: Environmental change 60 Ma in Zumaia, Spain was not paced by
periodic changes in Earth’s orbit
4. Possible explanations
4.1. Turbidites themselves are periodic
4.2. Everything is part of a turbidite



Summary

1. Previous scientists started too high level: defined couplets in field, tuned

2. We took a step back: unbiased approach to test for Milankovitch cycles in the

layers of sediment in Zumaia

2.1. Percent marl per meter — found no Milankovitch cycles
2.2. Tried refining with couplet thickness — found peaks at 19/22 kyr

2.3. Removed turbidites (noise) to amplify those peaks and find others — actually lost those cycles
altogether

3. Conclusion: Environmental change 60 Ma in Zumaia, Spain was not paced by
periodic changes in Earth’s orbit
4. Possible explanations
4.1. Turbidites themselves are periodic

4.2. Everything is part of a turbidite QUeStIOnS7



Bibliography

Batenburg, S. I., Sprovieri, M., Gale, A., Hilgen, F,, Husing, S., Laskar, J., Liebrand, D., Lirer, F,, Orue-Etxebarria, X.,
Pelosi, N. & Smit, 1., 2012. Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at Zumaia (Basque
country, Northern Spain), Earth and Planetary Science Letters, 359-360, 264-278.

Gawenda, P., Winkler, W., Schmitz, B. & Adatte, T., 1999, Climate and Bioproductivity Control on Carbonate Turbidite
Sedimentation (Paleocene to Earliest Eocene, Gulf of Biscay, Zumaia, Spain), Journal of Sedimentary Research, 69,
1253-1261.

Proistosescu, C., Huybers, P. & Maloof, A. C,, 2012. To tune or not to tune: Detecting orbital variability in oligo-miocene
climate records, Earth and Planetary Science Letters, 325-326, 100-107.

Zachos, 1., Pagani, M., Sloan, L., Thomas, E. & Billups, K., 2001, Trends, Rhythms, and Aberrations in Global Climate
65 Ma to Present, Science, 292(5517), 6B6-693.



