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S U M M A R Y
We present a spectral-domain maximum-likelihood procedure to invert for the structure of
univariate random Gaussian fields parameterized using a Matérn covariance structure. Under
isotropy, the three parameters are the process variance, smoothness, and range. We treat dis-
cretization and edge effects for finite regions in simulation, parameter estimation via Whittle
likelihood maximization, and uncertainy quantification. As even the ‘best’ estimate may not be
’good enough’: we test whether the ‘model’ itself warrants rejection. Our results are relevant
for spatial interpolation or out-of-sample extension (e.g. kriging), machine learning and feature
detection, on geological data. We present procedural details and focus on high-level results that
have real-world implications for the study of Earth, planets, and moons.
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1 I N T R O D U C T I O N

What numbers, which statistical notions capture the “essence” of a patch of planetary topography? If it were a stationary, white, Gaussian
process, simply, mean and variance of the data would be sufficient. However, computed over differing baselines, or at varying resolution,
sample means and variances would fluctuate non-erratically, hence “whiteness” would prove immediately to be an untenable assumption. By
reporting statistics over changing baselines (e.g., Sharpton & Head 1985; Aharonson et al. 1998; Rosenburg et al. 2011), we have effectively
subscribed to the topography being given by a spatially correlated (stationary, Gaussian) process. Estimating the variance of the field (at a
point), with little bias and with a reasonable estimation variance, requires knowledge of the covariance (between pairs of points). We are led to
the estimation of (the parameters of) a spatial covariance function, or alternatively and equivalently, of a spectral density, from sampled data.
The first (spatial estimation) is notoriously noisy, since it requires finding data pairs at increasing offsets. The second (spectral estimation),
is notoriously affected by edge effects, Fourier-domain artifacts which lead to estimation bias, especially for multidimensional data sets.

Common choices for parameterized covariance functions of Gaussian random fields are exponential or squared-exponential (Gaussian),
defined by a variance and a correlation range. Both are special cases of the Matérn class of covariance function (Guttorp & Gneiting 2006),
with a specific smoothness or mean-squared differentiability, itself an inversion parameter of interest (Goff & Jordan 1989a,b). In this paper
we present a spectral-domain “Whittle” maximum-likelihood procedure that estimates the variance, smoothness, and range of an isotropic
Gaussian point process, from sampled data. We show how to obtain unbiased estimates for these size and shape parameters when the region
under study is not rectangular or circular, nor regularly sampled, and we calculated their estimation covariance, such that the results from
differently sized and sampled patches can be compared robustly.

Our results have widespread implications for the study of planetary topography in the solar system, and should be interpreted in the light
of our trying to derive “process” from “parameters”, the end goal being to be able to assign likely formation histories for the patches under
consideration. Our results should also be relevant for whomever needed to perform spatial interpolation or out-of-sample extension (e.g. via
kriging) on geological data (Stein 1999). They also carry implications for machine learning and feature detection (Rasmussen & Williams
2006). We will present procedural details but also focus on high-level results that have real-world implications for the study of Venus, Earth,
other planets, and moons. We illustrate our methodology on geologically mapped patches of Venus (assuming stationarity within patches that
have been selected via user interpretation).
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2 P R E L I M I N A R I E S

Readers wishing to come to terms with the geological, geophysical, and geodetic definitions of ‘relief’, ‘topography’, or ‘elevation’ are
directed to Lambeck (1988), Hofmann-Wellenhof & Moritz (2006), and Wieczorek (2015). To make the jump from geology and geophysics
to statistics, in particular in this context, we first and foremost recommend (re)reading Goff & Jordan (1988, 1989a), who also discuss
anisotropic processes. The material in this section is both an extension and a specialization of the multivariate results of Simons & Olhede
(2013), which is to be consulted for further details. Here, we use a more explicit notation, adapt some of the normalizations, and make a
number of modifications—but most importantly, we restrict our analysis to univariate two-dimensional Cartesian isotropic Gaussian fields.

2.1 Continuous framework

Here we draw most heavily on Sections 2.1 and 4.1 of Simons & Olhede (2013). Referring furthermore to Percival & Walden (1993), Stein
(1999), and Vanmarcke (2010) for additional considerations and terminology, to Abramowitz & Stegun (1965) and Gradshteyn & Ryzhik
(2000) for properties of special functions, we begin by defining the particular quantities of interest in the spatial and the spectral domains.

2.1.1 Stationarity

Planetary topography H(x) is considered to be a zero-mean, finite-variance, stationary, two-dimensional random field. Under what is known
as the Cramér (1942) representation, there exists a continuous spectral increment process, dH(k), according to which the spatial field

H(x) =

∫∫
eik·x dH(k). (1)

The integration is over the space containing all wave vectors k. In the case of strict band-limitation or very fast spectral decay we may restrict
the computations to the Nyquist plane [−π, π]× [−π, π]. The expectation of dH(k) over many realizations,

⟨dH(k)⟩ = 0, (2)

and its variance, in the absence of co-variance between wavenumbers, defines a power-spectral density, S(k), in the form of the expectation

⟨dH(k)dH∗(k′)⟩ = S(k) dk dk′ δ(k,k′), (3)

where δ(k,k′) is the Dirac delta function. When eqs (1)–(3) hold, the spatial auto-covariance, C(x,x′), betrays stationarity by being depen-
dent on separation, x− x′, only, since in that case we can write for the expectation of the two-point spatial-domain products

⟨H(x)H∗(x′)⟩ =
∫∫

eik·(x−x′)S(k) dk = C(x− x′). (4)

The spectral variance (at the wave vectors k) and the spatial covariance (in the lag variables x) form a Wiener-Khintchine Fourier pair,

C(x) =
∫∫

eik·xS(k) dk, (5)

S(k) = 1

(2π)2

∫∫
C(x) e−ik·x dx. (6)

The zero-wavenumber intercept of the spectral density is the zeroth moment of the spatial covariance:

S(0) = 1

(2π)2

∫∫
C(x) dx. (7)

2.1.2 Isotropy

Under isotropy, S(k) = S(k), depending only on the scalar wavenumber k = ∥k∥. Integrating over the polar angles to bring out J0, the
Bessel function of the first kind and of order zero, the spatial covariance,

⟨H(x)H∗(x′)⟩ = 2π

∫
J0(k∥x− x′∥)S(k) k dk = C(∥x− x′∥), (8)

is dependent only on distance, ∥x− x′∥, not direction. Since J0(0) = 1, the isotropic spatial variance is then given by

⟨H(x)H∗(x)⟩ = 2π

∫
S(k) k dk = C(0) = σ2. (9)

Introducing the distance variable r, we rewrite eq. (7) as

S(0) = 1

2π

∫
C(r) r dr. (10)

We follow Vanmarcke (2010) in adopting the term ‘fluctuation scale’ for S(0)/σ2, a moment of the spatial correlation function C(r)/σ2.
Isotropy remains a restrictive—but testable—assumption, which we will be relaxing in future work.
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2.1.3 Matérnity

We further specify planetary topography as a member of the Matérn class (Stein 1999), which is very general and widely applicable (Ras-
mussen & Williams 2006). The isotropic d-dimensional Matérn spectral density Sd

θ(k) assumes the parameterized form

Sd
θ(k) =

Γ(ν + d/2)

Γ(ν)

σ2

πd/2

(
4ν

π2ρ2

)ν (
4ν

π2ρ2
+ k2

)−ν−d/2

, (11)

where Γ is the gamma function, and which, in two dimensions, d = 2, as we subsumed earlier and maintain from now on, specifies to

Sθ(k) = σ2 πρ
2

4

(
4ν

π2ρ2

)ν+1(
4ν

π2ρ2
+ k2

)−ν−1

. (12)

With this model, our principal unknowns are its three strictly positive parameters, denoted generically as θ > 0, which we collect in the set

θ = [σ2 ν ρ ]T . (13)

The ‘variance’, σ2, indeed satisfies eq. (9) upon substitution with eq. (12). At short wavelengths, when k is large, the spectrum Sθ(k) decays
at a rate that depends on the ‘smoothness’, ν, which expresses the ⌈ν − 1⌉ times (mean-squared) ‘differentiability’ of the process (Handcock
& Stein 1993). The behavior at the longest wavelengths, for k small, is controlled by the combined efffect of σ2 and ρ. The fluctuation scale

Sθ(0)

σ2
=

πρ2

4
. (14)

The isotropic Matérn spatial covariance Cθ(r) is unlike its spectral counterpart (11) in requiring no dimensional specification,

Cθ(r) = σ2 2
1−ν

Γ(ν)

(
2ν

1
2

πρ
r

)ν

Kν

(
2ν

1
2

πρ
r

)
, (15)

with Kν the modified Bessel function of the second kind. The asymptotic behavior Kν(z) → Γ(ν) (z/2)−ν/2 for small z, verifies that
Cθ(0) = σ2 as in eq. (9). For low values of ν, furthermore, Cθ(πρ) ≈ σ2/3. In other words, spatial correlations generally die down by a
factor of about two-thirds at distances beyond r ≈ πρ, hence the name for the third parameter, the ‘correlation length’ or ‘range’, ρ.

The power accumulated over a certain wavenumber interval, counting from the origin, is given by the distribution function

Pθ(k) = 2π

∫ k

0

Sθ(k
′) k′ dk′ = σ2

[
1−

(
4ν

π2ρ2

)ν (
4ν

π2ρ2
+ k2

)−ν
]
. (16)

As expected Pθ(0) = 0 and Pθ(∞) = σ2. We define the wavenumbers kα at which the power reaches 100× α per cent of the total,

Pθ(kα) = ασ2, (17)

which, from eq. (16), is solved analytically by

kα =
2ν

1
2

πρ

[
(1− α)−1/ν − 1

] 1
2
. (18)

It can be readily verified that k0 = 0 and k1 = ∞. For convenience, we express the equivalent wavelengths in the notation λ100α = 2π/kα.
The extreme generality of the Matérn class is appreciated by evaluating the correlation functions for special values of ν. Notably, when

ν = 1/2, the correlation function decays exponentially, and when ν → ∞, as a Gaussian—a squared exponential. Other examples include the
Von Kármán (ν = 1/3), Whittle (ν = 1), and second-order (ν = 3/2) and third-order (ν = 5/2) autoregressive correlation models (Guttorp
& Gneiting 2006). Despite all of its generality, it is important to not identify our conceptual point of departure with fractal, scale-invariant,
self-affine, or self-similar behavior (see, e.g. Mareschal 1989; Herzfeld et al. 1995), about which we make no claims.

Fig. 1 provides intuitive insight into the role that the three parameters σ2, ν, and ρ play in the spatial behavior of Matérn random fields,
synthesized by the procedure outlined in the next section.

2.2 Lattice framework

Here we rely mostly on sections 2.1, 4.2, and A6 of Simons & Olhede (2013). The properties of the finite and sampled, i.e., windowed discrete
processes, as will be experienced in computational data analysis, differ markedly from the behavior of the idealized, infinite, continuous
models discussed in the previous section, and those two viewpoints need to be explicitly reconciled.

2.2.1 Discretization

For simplicity x maps out a rectangular M ×N grid given by

x =
{
(m∆x, n∆y)

}
, for m = 0, . . . ,M − 1 and n = 0, . . . , N − 1. (19)
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Figure 1. Random fields generated from stationary isotropic Matérn models with variances σ2, differentiabilities ν, and correlation lengths ρ, as indicated.
(Top:) Normalized spectral densities, Sθ(k)/Sθ(0), from eq. (12). The vertical black lines identify the wavenumbers kα at which the power reaches 100×α

per cent of the variance, from eq. (18), in wavelengths λ100α = 2π/kα, as labeled. (Middle:) Correlations, the normalized spatial covariances, Cθ(r)/σ2,
from eq. (15). The vertical blue lines are drawn at the values πρ, the distances at which the correlations die down to approximately one third of the variance
(Bottom:) Field realizations. The blue circles have radii πρ, drawn for visual guidance. In the titles, m and s identify the sample means and standard deviations.

We write the discrete Fourier transform of the measurements of H(x) obtained after sampling as

H(k) ≡ 1

2π

(
∆x∆y

MN

) 1
2 ∑

x

H(x)e−ik·x. (20)

Sampled in spectral space, the wave vectors are, with m and n as in eq. (19),

k =

{(
2π

M∆x

[
−
⌊
M

2

⌋
+m

]
,

2π

N∆y

[
−
⌊
N

2

⌋
+ n

])}
, (21)

and on this complete Nyquist grid we identify eq. (1), consistently with eq. (20), with

H(x) ≡ 2π

(MN∆x∆y)
1
2

∑
k

eik·xH(k). (22)

2.2.2 Blurring

Obtaining space-domain realizations from a population of random fields specified by a certain spectral density, e.g., eq. (12), is possible by
generating Fourier coefficients H(k), as in eq. (20), directly on the spectral grid (21), and by inverse Fourier transformation, as in eq. (22),
onto the spatial grid (19). These H(k) should be drawn from a zero-mean complex proper Gaussian distribution, with expectation zero,
⟨H(k)⟩ = 0, and with a covariance ⟨H(k)H∗(k)⟩ that will be influenced by the chosen size, shape and discretization of the region under
consideration; i.e., it will be different from the theoretical quantity ⟨dH(k)dH∗(k′)⟩ of eq. (3), which involved a true quantity Sθ(k) and
showed no correlations between wavenumbers. Simons & Olhede (2013) showed (for multivariate fields) that the covariance of a finite
set of gridded Fourier coefficients can at best offer a blurred and correlated version of the true spectral variance (their eq. 9), and they



Statistical analysis of planetary topography 5

simulated fields by incorporating the blurring but ignoring the correlation (their eq. 83). They carried out the blurring computationally, and
approximately, via grid refinement, convolution, and subsampling (their eq. 89).

Guillaumin et al. (2022) (their Lemmata 1 and 2) showed how to incorporate the spectral blurring effect of applying arbitrary data
windows, including irregular boundaries and incomplete sampling, exactly, and at a much reduced computational cost. We rewrite the
discrete Fourier transform in eqs (19) and (20) to incorporate an arbitrary unit-normalized data window, w(x),

H(k) ≡ 1

2π

(
∆x∆y

MN

) 1
2 ∑

x

w(x)H(x)e−ik·x. (23)

Using the definition in eq (4), the sample variance of the Fourier coefficients is

var {H(k)} =
1

(2π)2

(
∆x∆y

MN

)∑
x

∑
x′

w(x)w(x′)Cθ

(
x− x′) e−ik·(x−x′), (24)

=
1

(2π)2

(
∆x∆y

MN

)∑
y

( ∑
x−y∩x

w(x)w(x− y)

)
Cθ (y) e

−ik·y, (25)

following a change of variables and a change in the order of summation, noting that the first sum is over the separation grid

y =
{
(m′∆x, n′∆y)

}
, with the mirrored index sets m′ = −M + 1, . . . ,M − 1 and n′ = −N + 1, . . . , N − 1, (26)

and the second sum, for each element of y, over the subset of x − y that belongs to the original grid x, so as to stay within the original
integration domain. Our manipulations allow us to isolate and sum out the interior term, which we rewrite more explicitly as

W (y) =
∑

max(x−y,|y|)

w(x)w(x− |y|) =
∑

min(x−y,|y|)

w(x)w(x+ |y|). (27)

Reviewing what this implies for the variance of the Fourier coefficient of a windowed and sampled field H(x), we rewrite eqs (24)–(25) as

var {H(k)} =
1

(2π)2

(
∆x∆y

MN

)∑
y

W (y)Cθ (y) e
−ik·y = S̄θ(k), (28)

the exact version, valid for arbitrary data windows, of what Simons & Olhede (2013) (in their eq. 89) implemented approximately and only
for rectangular windows, by discrete convolution of the underlying spectral density Sθ(k) with the Fejér kernel. In that special case of a
unitary window function, that is, for complete observations on a rectangular grid, eq. (27) evaluates to

W (y) = (M − |m′|)(N − |n′|). (29)

Used as a basis for simulation, generating Fourier coefficients H(k) from the Cholesky decomposition of S̄θ(k), ignores wavenumber
correlation effects. To make Fig. 1, we generated four times as many spatial samples as needed, retaining only the central portion for analysis,
to avoid wrap-around correlations. Constructing spatial patches via eq. (22), on the space grid (19), the variance of the results, ⟨H(x)H(x)⟩,
may be understood as a discrete approximation of the integral in eq. (4), with the spacings defined in eq. (21). Hermitian symmetry guarantees
that the simulated fiels are real, and their covariance is stationary,

⟨H(x)H(x′)⟩ = Cθ(x− x′). (30)

Furthermore, for large sample sets,
∑

k S̄θ(k) ≈
∑

k Sθ(k), which establishes the desired correspondence

var{H(x)} ≈
(2π)2

∑
k Sθ(k)

(MN∆x∆y)
≈ σ2. (31)

Eq. (28) shows that the expected periodogram of the data can be obtained via Fourier transformation of the autocovariance sequence
of the sampling window. Fig. 2 shows this equivalence. From a sequence of realizations, we show, in the top row from left to right, one
spatial-domain field, H(x), its periodogram |H(k)|2 on the corresponding normalized Fourier grid, and the expected periodogram, the
blurred spectrum S̄θ(k), for the parameter set θ shown at the top, σ2 = 1 (in arbitrary field units), ν = 2.5 and ρ = 1 (in units of the
spatial grid spacing). In the bottom row, we show a unit normalized square taper, the ratio of the average periodogram to its expectation,
mean|H(k)|2/S̄θ(k), with its sample mean m and standard deviation s, and the average of the periodograms across 100 realizations, the
sample variance, var{H(k)}, which approximates the blurred spectrum S̄θ(k) shown directly above.

2.2.3 Simulation

Simons & Olhede (2013) (their eq. 9) showed that the covariance of a finite set of gridded Fourier coefficients suffers both from blurring by the
sampling kernel, as we have just illustrated and calculated explicitly, but also from correlation between the wavenumbers. To prepare for what
is coming, we note, first, that the off-diagonal terms in ⟨H(k)H∗(k′)⟩ decay rapidly enough in most cases for us to ignore them as the basis
for the simulations that we just showed, which took ⟨H(k)H∗(k)⟩ ≈ S̄θ(k) as their point of departure, whether calculated on the interior
domain of a doubled grid, using grid refinement, discrete convolution, and subsampling to approximate S̄θ , or exactly, via eq. (28). Second,
we will show empirically that we are able to ignore them when designing the debiased-Whittle likelihood to perform parameter estimates
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Figure 2. The Fejér blurred spectral density S̄θ(k) approximates the expectation of the periodogram, |H(k)|2, of gridded and (unit) tapered data generated
from the population density Sθ(k). (Top row) A single realization, H(x), its modified periodogram |H(k)|2, and the blurred spectrum S̄θ(k). (Bottom row)
The unit taper, the ratio of the average periodogram to the blurred spectral density, and the average periodogram, over 100 realizations.

from sampled data, which is a central feature of this paper and its predecessors. Finally, we show that they will, however, play an important
role in the calculation of the estimation variance of the maximum-likelihood estimates, using the results obtained by Guillaumin et al. (2022),
and we discuss various algorithms to conduct the relevant calculations. This last fact stands in apparent contradiction to the material discussed
by Simons & Olhede (2013), their Sections A6 and A8, which, in retrospect, have proven to be overly optimistic, asymptotically.

As to data simulation, we are now able to take wavenumber correlation into account also by switching to space-domain methods that
use the spatial covariance, eq. (15), as their point of departure, via circulant embedding of the covariance matrix (Kroese & Botev 2015).

3 W H I T H E R W H I T T L E ?

In this paper we develop a maximum-likelihood procedure that takes gridded input ‘topographies’ and estimates the three-element sets θ,
see eq. (13), that contain the parameters of the isotropic Matérn spectral densities Sθ(k) or spatial covariances Cθ(r) by which we aim to
sufficiently describe such planetary data patches. Before proceeding we take a brief detour to illustrate, for the example of the variance, σ2,
why we embark on this journey. Additional motivation and considerations are offered by, among others, Vanmarcke (1983) and Stein (1999).

The variance σ2 of a demeaned sample patch is not well estimated by its area-averaged sum of squares, which would amount to

s2 =
1

MN

∑
x

H2(x)− 1

(MN)2

(∑
x

H(x)

)2

. (32)

Indeed, the expectation of the ‘sample variance’ estimator, s2, is biased by the co-variance between the samples, which itself is unknown.
Using eqs (30) and (31), we find from eq. (32) that in expectation, approximately,

⟨s2⟩ ≈ 1

MN

∑
x

(2π)2
∑

k Sθ(k)

(MN∆x∆y)
− 1

(MN)2

∑
x

∑
x′

C(x− x′) ≈ σ2 − 1

(MN)2

∑
x

∑
x′

C(x− x′) (33)

≈ σ2 − (2π)2S̄θ(0)

MN∆x∆y
. (34)

Eq. (33) applies quite generally, to stationary processes with spectral density Sθ(k) or covariance function Cθ(x). The second term in
eq. (34) can be interpreted as discretizing eq. (7). The appearance of the blurred spectral density, S̄θ(0), is due to the finite-sample effects
by which the spatial grid is relatively coarse, and too small to comprise the lags at which the structure is completely decorrelated. Only for,
effectively, uncorrelated white noise, Cθ(x− x′) = σ2δ(x,x′), does eq. (33) reduce to the iid bias expression (Bendat & Piersol 2000)

⟨s2⟩ ≈ σ2

(
1− 1

MN

)
. (35)

If the spatial grid is fine enough, and the full behavior of the spatial covariance C(x) is being accurately captured by the sampling density,
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ones are solid black lines (‘blurred-likelihood’) resulting from calculations that use eq. (34). Solid red lines (‘full-likelihood’) are from eq. (36). As detailed
in the text, the quality of the various approximations is to be interpreted in terms of the Matérn correlation parameters ν and ρ, in relation to the sampling
spacings (∆x,∆y), which were kept constant at 10 km, and the field sizes (M,N), which increased from left to right, as shown. The vertical black lines are
drawn at the values 2πρ, a distance beyond which the bias in the sample variance estimator decreases to about a third of the true value, speaking empirically.

relatively to the scale length of correlation, Sθ(0) can again be substituted for S̄θ(0) in eq. (34). In that case, using eq. (14) yields the form
applicable to the isotropic Matérn density, namely

⟨s2⟩ ≈ σ2

(
1− π(πρ)2

MN∆x∆y

)
. (36)

While this last approximation is usually too crude for bias calculations, eq. (36) does explain the expected behavior that, the larger ρ, relative
to the area of the study region, the more correlation will be present between the samples, and the more negatively biased the naive estimator
eq. (32) will be. In real-world applications we will of course know neither the variance σ2 nor the range ρ. Nor the smoothness ν, for that
matter, knowledge of which might otherwise help us design better estimators, as developed in subsequent sections.

Fig. 3 illustrates the arguments made so far in this section, for a variety of values of ν and ρ, as a function of grid size, and where the
expectation of the estimate is formed by averaging over a great number of experiments. The naive variance estimator s2 is biased, in a manner
and for a reason that we understand intuitively, and are able to compute analytically .

It would take us too far, and down a dead-end street, to write down the expressions for the variance of the naive variance estimator s2.
Rather, we will illustrate its behavior on the basis of another suite of numerical experiments. Fig. 4 (left panels) reveals that the estimation
variance is generally high (relatively speaking), and decaying too slowly (for our taste) with increasing grid size.

In comparison, the maximum-likelihood estimator that we develop in the next section has properties that are far more favorable, as is
readily, if proleptically, illustrated by the second suite of experiments shown in Fig. 4 (right panels, marked ‘MLE’). Saving the details of
its construction for the next section, inspecting the figure reveals that, as soon as the data patch size exceeds the decorrelation length of the
Matérn process, the estimation variance of the maximum-likelihood variance estimator is acceptably low. Moreover, the estimation variance
continues to decay at a pleasing rate, suggestively of its asymptotic unbiasedness.

While the examples thus far may have appeared anecdotal, it is hoped that they do convincingly hint at the agreeable qualities of the
maximum-likelihood estimators, which we now discuss in more detail.
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Figure 4. The sample variance s2 is a biased, inconsistent, and inefficient estimator for the true process variance σ2. The maximum-likelihood estimator is
asymptotically unbiased, consistent and efficient. Conducting 40 lattice simulations on differently sized data patches, with Matérn parameters (σ2, ν, ρ) as
listed in the titles, the left panels show the behavior of the sample variance s2, and the right panels that of the maximum-likelihood variance estimator (‘MLE’),
both normalized by the actual variance σ2. The grey bars span the 5th to 95th percentiles of the estimates at the quoted patch sizes, the black open circles are
the mean estimates, and the solid blue lines their predictions from eq. (33), as in Fig. 3. The magenta curves are the scaled spatial correlation functions, with
the vertical black lines at 2πρ. The means of the MLE for field sizes smaller than 2πρ were calculated over the 80th percentile of the estimates.

4 M A X I M U M - L I K E L I H O O D A N A L Y S I S

The material in this section is chiefly inspired by sections 4.3–4.8 and Appendix A6 of Simons & Olhede (2013). Cox & Hinkley (1974)
remains an excellent reference for the notions developed in this section, though modern texts such as Pawitan (2001) and Severini (2001) are
equally recommended. Our main device is the frequency-domain Whittle (1953, 1954) likelihood, blurred to acknowledge lattice effects.

4.1 Infinite sample size

Simons & Olhede (2013) introduced L(θ), the likelihood for the Matérn parameters, which, as is acceptable only large sample sizes, ignores
the blurring in the isotropic spectral density Sθ(k) as well as the correlation induced between wavenumbers, in the form

L(θ) = − 1

MN

∑
k

[
lnSθ(k) + S−1

θ (k) |H(k)|2
]
. (37)

Its first derivatives with respect to each of the parameters θ are the elements of the unblurred score vector γ(θ),

γθ(θ) = − 1

MN

∑
k

mθ(k)
[
1− S−1

θ (k) |H(k)|2
]
, (38)

with the required expressions

mθ(k) = S−1
θ (k)

∂Sθ(k)

∂θ
(39)

easily obtained via differentiation of eq. (12), and listed as eqs (65)–(67) in the Appendix.
Its second derivatives are the elements of the Hessian matrix F(θ),

Fθθ′(θ) = − 1

MN

∑
k

[
∂mθ′(k)

∂θ
+

{
mθ(k)mθ′(k)−

∂mθ′(k)

∂θ

}{
S−1
θ (k) |H(k)|2

}]
, (40)
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Figure 5. Behavior of the maximum-likelihood estimators of the Matérn parameters (σ2, ν, ρ) for the two sets of true values listed in the titles, over 40 lattice
simulations conducted on square data fields composed of up to M = N = 128 pixels of size ∆x = ∆y = 10 km. Grey bars cover the 5th through 95th
percentiles of all of the estimates in each set. Black filled circles are the means of the estimates, computed over the 80th percentile of the sets for fields whose
linear dimension M∆x < 2πρ, but over the full set of 40 estimates beyond that size. With growing field size, the estimates reveal themselves to be unbiased
with very low variance. The slanted line in the righmost panels corresponds to the data patch size.

with the nonvanishing derivatives ∂θmθ′(k) given as eqs (68)–(71) in the Appendix.
The negative expectation of F(θ) is the Fisher matrix F(θ), which does not depend on the data as ⟨S−1

θ (k) |H(k)|2⟩ = 1, and thus

Fθθ′(θ) =
1

MN

∑
k

mθ(k)mθ′(k). (41)

The inverse of the Fisher matrix is the information matrix, F−1 = J . Denoting the true parameter set as θ0, with elements θ0. and the
maximum-likelihood estimate as θ̂, with elements θ̂, the presumed normality of the Fourier coefficients (23) implies the distribution
√
MN(θ̂ − θ0) ∼ N (0,F−1(θ0)) = N (0,J (θ0)), (42)

from which we will seek to construct 100 × (1 − β) per cent confidence intervals about the estimates, using the values zβ/2 at which the
standard-normal distribution reaches a cumulative probability of (1− β/2), as follows:

θ̂ − zβ/2
J 1/2

θθ (θ̂)√
MN

≤ θ0 ≤ θ̂ + zβ/2
J 1/2

θθ (θ̂)√
MN

. (43)

The relations in this section are theoretical quantities derived by Simons & Olhede (2013) that, strictly speaking, apply only to the ‘population’
case. As mentioned before, however, in the ‘sample’ case of discretized, windowed likelihood analysis, we must replace the Matérn spectral
density Sθ(k) with a suitably blurred version, S̄θ(k), to acknowledge the effects of finite sampling. In what follows we will explore the
implications for the uncertainty estimates of the parameters.

4.2 Sampled data, heuristics

The blurred likelihood L̄(θ) of observing the data H(x) under the spectral model (12)–(13) parameterized by θ is given in terms of the
Fourier coefficients of the gridded and windowed data, H(k) in eq. (23), and of the blurred isotropic spectral density S̄θ(k) of eq. (28),
summed over all wavenumbers in the grid (21), by the relation

L̄(θ) = − 1

MN

∑
k

[
ln S̄θ(k) + S̄−1

θ (k) |H(k)|2
]
. (44)
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Compare eq. (44) with eq. (37): the only difference is the acknowledgement of the spectral blurring effect of sampled data. Eq. (44) is the
quantity that we maximize, under positivity constraints, for the parameter vector θ, thereby defining the maximum-likelihood estimate θ̂ to
be the maximizer of the ‘score’ vector γ̄(θ) of numerical first derivatives of the blurred likelihood, which solves

γ̄(θ̂) = 0. (45)

Satisfying eq. (45) to find θ̂, for example by an iterative function minimization routine, requires repeated evaluation of the spectral den-
sity (12) on the grid (21), with the blurring implemented convolutionally (on a refined and subsequently reinterpolated grid) or else exactly,
as discussed in Section 2.2.2. Without entering into the details for now, Fig. 5 shows the results of a suite of experiments conducted to illus-
trate the performance of a numerical method that recovers each of the three Matérn parameters (σ2, ν, ρ), as a function of grid size (measured
in terms of the correlation length πρ). As the right-hand side panels of Fig. 4 showed for the variance estimate, the maximum-likelihood
estimates are very well-behaved, from about the point where the grid size reaches a linear dimension of about πρ. The procedure almost
surely yields low-variance and practically unbiased estimates from a grid size of about 2πρ onwards, as Fig. 5 shows empirically.

The mathematical form and geometry of the blurred likelihood function are what, fundamentally, controls the observed behaviors.
Simons & Olhede (2013) only considered convolutional approaches to blurring, and therefore were limited in their ability to acknowledge
the spectral interaction induced by the applied data windows on the parameter covariance estimates. The first and second derivatives of the
blurred likelihood are not simply obtained by substituting S̄θ(k) for Sθ(k) in eqs (38) and (40), since the factors mθ(k) that appear in the
expressions for the score and the Hessian are analytical derivatives that involve the unblurred spectral density Sθ(k). Replacing Sθ(k) by
S̄θ(k) in eq. (38) yields reasonable approximations for the likelihood derivatives, which compare relatively favorably to their numerical
counterparts—especially for large sample sizes. Most numerical optimization routines will be able to maximize eq. (44), solving eq. (45)
without being given explicit expressions for the score and the Hessian, but in order to derive accurate confidence intervals on our estimated
parameters, we do need access to the expected value of the second-order derivatives of the actual likelihood that is being maximized.

Numerical experiments and theoretical considerations (along the lines suggested in Appendix A8 of Simons & Olhede 2013) tempted
them into concluding that eq. (43) could be used to construct confidence intervals for the solutions of eq. (45) in our present case of univariate
two-dimensional analysis. Under the viewpoint (espoused in their eqs A84–A87), the blurred spectrum is an additive correction term (small
for smoothly varying spectra) away from the original. In this framework, neglecting to blur the Fisher matrix—and neglecting wavenumber
correlations—was believed to have an altogether negligible effect on the estimation variances based on its inverse, even if blurring the
likelihood is absolutely essential to arrive at the estimate in the first place. However, the ability of the unblurred Fisher matrix to help
predict the variance of the parameters derived via maximization of the blurred likelihoods turns out to be poor, especially as concerns the
variance and correlation parameters σ2 and ρ. The unblurred expression, eq. (41), of the Fisher matrix provides an asymptotic but ultimately
inadequate match to the average of the numerical Hessian for real-world sampling scenarios.

Not accounting for wavenumber correlation proved to be another stumbling block. Simons & Olhede (2013) conceived of approxima-
tions to account for wavenumber correlation involving a multiplicative correction term (their eqs A56–A58). For very large sample sizes
this correction term approaches unity. Contrary to the optimism they expressed, uncertainty estimates for the maximizers of eq. (44) that
rely on eq. (43) are inadequate for all but the largest sample sizes. A heuristic way of determining the estimation variance for the recovered
parameters when actual data are being investigated is to generate synthetics with features identical to those of the gridded data, from mod-
els with Matérn parameters given by previously obtained solutions, then estimating their parameters a number of times, and learning from
their distribution what the likely uncertainty ranges for the parameters of the actual data patches might be, as in Fig. 5. Little transferable
knowledge is gained in the process, and the procedure is cumbersome and time-consuming.

Guillaumin et al. (2022) showed the way forward by further developing the theory of likelihood analysis for finite sampled data, on
which we rely to develop the practical methods offered in the next sections. They include the ability to calculate uncertainty estimates on the
parameters from first principles. The next section provides a complete description of the entire workflow.

4.3 Sampled data, full theory

For sampled data the likelihood comprises the blurred spectral density S̄θ , and the squared windowed Fourier coefficients of the data H(x),

L̄(θ) = − 1

MN

∑
k

[
ln S̄θ(k) + S̄−1

θ (k) |H(k)|2
]
, (46)

where H(k) is the windowed Fourier transform of the data H(x), for an arbitrary unit-normalized window w(x),

H(k) ≡ 1

2π

(
∆x∆y

MN

) 1
2 ∑

x

w(x)H(x)e−ik·x, (47)

and the Matérn spectral density Sθ whose parameters we aim to recover (see eq. 12) is exactly blurred to account for finite-sample effects
via the intermediary of the Matérn covariance Cθ (see eq. 15), as in eq. (28),

S̄θ(k) =
1

(2π)2

(
∆x∆y

MN

)∑
y

W (y)Cθ (y) e
−ik·y, (48)
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and with W the autocorrelation of the sampling window, that is,

W (y) =
∑
x

w(x)w(x+ y). (49)

The solution θ̂ is found by maximization of eq. (46), requiring the vanishing of the score ∇L̄(θ) = γ̄(θ), whose elements are given by

γ̄θ(θ) = − 1

MN

∑
k

m̄θ(k)
[
1− S̄−1

θ (k) |H(k)|2
]
, (50)

with the blurred equivalents to eq. (39) again obtained exactly as

m̄θ =
S̄−1
θ

(2π)2

(
∆x∆y

MN

)∑
y

W (y)
∂Cθ(y)

∂θ
e−ik·y, (51)

in which several of the derivatives in the parameters θ of the spatial covariance ∂θCθ are analytically available, as we will write elsewhere.
The elements of the Fisher matrix F̄(θ) are now given by

F̄θθ′(θ) =
1

MN

∑
k

m̄θ(k)m̄θ′(k). (52)

As Simons & Olhede (2013) (their eq. 138), but now following Guillaumin et al. (2022) (their eq. 36), the parameter estimation variance,

cov(θ̂) ≈ F̄−1
(θ0) cov{γ̄(θ0)} F̄−1

(θ0), (53)

requires the additional calculation of the covariance of the score without neglecting the correlation between wavenumbers,

cov
{
γθ, γθ′

}
=

1

(MN)2

∑
k

∑
k′

m̄θ(k)
cov{|H(k)|2, |H(k′)|2}

S̄(k)S̄(k′)
m̄θ(k

′), (54)

see Guillaumin et al. (2022) (their eq. 37), and compare Simons & Olhede (2013) (their eq. A54), which implies that we require the covariance
of the windowed periodogram, which can be written under standard theory as (Simons & Olhede 2013, their eq. A57)

cov
{
|H(k)|2, |H(k′)|2

}
=
∣∣cov{H(k), H∗(k′)}

∣∣2 + ∣∣cov{H(k), H(k′)}
∣∣2 . (55)

Eq. (54) can be approximated by simulation, but eq. (55) can be calculated exactly using one of two methods. Ultimately, this yields three
different methods to obtain the desired estimation variance in eq. (54). Three/four if we mention but discard the Monte Carlo approach of
Guillaumin et al. (2022)

4.3.1 Derivatives of the spatial covariance

Brief. Most of it in Paper II.

4.3.2 Exact method 1?

This probably does belong in this paper.

4.3.3 Exact method 2?

This probably does belong in this paper.

4.4 Numerical Examples

Illustrate for square grids in Paper I? And then France, anti France, and random, in Paper II? So Paper II starts from Section 4.3, then talks
about S and C as Fourier transforms, with the special cases table, and there is parallellism from this paper’s Figure 2, and these, and then
simulations, and then we can go on with Venus in Paper III. I think that is the best approach.

Fig. 7 is a representative illustration of this type of behavior. We conducted hundreds of inversions for independent simulations, and
studied the distribution of the estimates and investigated how well the theoretical expression for their covariance approximated the observed
regime. Invariably, our estimates were nearly unbiased, and nearly universally Gaussian distributed, as can be seen from the histograms and
the quantile-quantile plots. The top row shows the smoothly estimated standardized probability density function of the values recovered in
this experiment of sample size 64× 64. The abscissas were truncated to within ±3 of the empirical standard deviation; the percentage of the
values captured by this truncation is listed in the top left of each graph. The ratio of the empirical to theoretical standard deviation is shown
listed as s/σ for each of the parameters. The bottom row shows the quantile-quantile plots of the empirical (ordinate) versus the theoretical
(abscissa) distributions. The averages of the recovered values σ2, ν and ρ are listed at the top of the second row of graphs. The true parameter
values σ2

0 , ν0 and ρ0 are listed at the bottom.
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Fig. 8 is discussed. These are cross plots of the recovered parameters with their summaries and with the predicted covariances closely
matching. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur condimentum venenatis magna. Ut vulputate urna vitae luctus
sollicitudin. Etiam tempus nisl at mi imperdiet interdum. Pellentesque nec urna turpis. Etiam ultricies consectetur mauris hendrerit tristique.

Fig. 9 is discussed. These are normalized covariance plots of the recovered parameters with their predicted values from our complete
theory. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur condimentum venenatis magna. Ut vulputate urna vitae luctus
sollicitudin. Etiam tempus nisl at mi imperdiet interdum. Pellentesque nec urna turpis. Etiam ultricies consectetur mauris hendrerit tristique.

4.5 Analysis of residuals

The terms S̄−1
θ (k) |H(k)|2 and S−1

θ (k) |H(k)|2 that have appeared above in the expressions for the likelihoods (44), (37) and their derivatives
contain the ratio of the observed periodogram of the data to the (blurred) spectral density predicted under the model. Since the spectral density
is a ‘scale’ parameter (as opposed to a ‘location’) this ratio has the usual interpretation as a measure of misfit. We have previously noted that
if the Gaussian model fits, the expectation of this quadratic is ⟨S̄−1

θ (k) |H(k)|2⟩ = 1. Here we follow Simons & Olhede (2013) to maintain
that twice this quantity should be a chi-squared random variable with two degrees of freedom,

Xθ(k) = S̄−1
θ (k) |H(k)|2 ∼ χ2

2/2. (56)

Equipped with this knowledge we can examine how closely the ratios Xθ(k), i.e., the ‘residuals’, follow the distribution (56), and use the
match or lack thereof as a basis to accept or reject the model that the data are indeed given by a Matérn process of the specified parameters.

It is imprudent to ignore and impossible to overstate the importance of such a hypothesis test. Apart from serious numerical instabil-
ity and potential run-away effects, possibly caused by improper initialization of or unrealistic constraints on the optimization procedure,
maximum–likelihood inversion will always return the parameter set with maximum likelihood. But whether the most likely model is, in fact,
any good, then remains to be ascertained.

Establishing whether eq. (56) in fact holds can be carried out visually, by inspection of the overlay of the histograms of 2Xθ across all
wave vectors with the probability density function χ2

2, and by making ‘quantile-quantile’ plots of the ranked values of 2Xθ versus the inverse
cumulative density function of χ2

2 evaluated at their corresponding fractional ranks. Moreover, the two-dimensional map of Xθ(k) should
show no residual structure, and will contain information on possible wavenumber ranges or specific directions in which the data might be
over- or under-fit. All three such representations of model quality must be thoroughly scrutinized.

Fig 10 enlightens us in this regard. The top three panels show the result of a successful experiment with parameters similar to those of
the runs presented in Fig. 7, in which the Matérn parameters were very well recovered, and whose residuals Xθ(k) showed the expected
distributional behavior without any hint of remaining structure, privileged directions or otherwise. The sample mean and the sample variance
of the variable Xθ are listed above the first panel. Per eq. (56), both are expected to be one. Above the second panel are the test statistic s2X ,
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Figure 7. Recovery statistics of spatial-covariance embedding simulations carried out on a 64×64 grid, with spacings ∆x = ∆y = 10 km, and true values
of σ2

0 = 1 km2, ν0 = 2.5, ρ0 = 20 km. The estimated parameters recovered over 500 simulations via the exactly blurred uncorrelated likelihood average to
σ2 = 0.9841 ± 0.2738 km2, ν = 2.56 ± 0.20, ρ = 19.641 ± 1.986 km. The thick gray line is derived from the covariance directly calculated from the
ensemble of simulation and inversion outcomes. The thick black line is based on the covariance exactly calculated from eq. (53).
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its variance under the null hypothesis, the decision to accept (in this case) or reject, and the two-sided probability that values more extreme
than the calculated one are likely to occur under the model.

Beyond visual inspection it is desirable to design a formal test for when the hypothesis of isotropic Matérn behavior needs to be
abandoned, and the veracity of the parameters recovered by likelihood maximization called into question, regardless of how narrow their
uncertainty intervals (43) may be. Failing the test could be due, for example, to the presence of patterns or preferred directions indicating that
the data should rather be interpreted under anisotropic (e.g. geometric Goff & Jordan 1989b; Herzfeld & Overbeck 1999) extensions of the
model. We save developing alternative hypotheses for future work.



14 Simons et al.

predicted

σ
2 ν ρ

σ
2

ν

ρ

observed

σ
2 ν ρ

σ
2

ν

ρ

n
o

rm
a

liz
e

d
 c

o
v
a

ri
a

n
c
e

 m
a

tr
ix

-1

-0.5

0

0.5

1

500 MLE simulations with 64x64 grid ; 640x640 km ; blur Inf

σ
2
 = 984128.40 ± 273838.20 ; ν = 2.56 ± 0.20 ; ρ = 19641.00 ± 1986.00Figure 9. Covariance comparison. The numbers are as follows: observed Cσ2ν = −0.1961, Cσ2ρ = 0.8335, Cνρ = −0.5678, and predicted Cσ2ν =

−0.2837, Cσ2ρ = 0.8167, Cνρ = −0.6766.

0

2

4

6

quadratic residual 2X

0 2 4 6 8 10 12

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0

0.1

0.2

0.3

0.4

0.5

m(X) =  0.994   v(X) =  0.970

predicted 2X

0 2 4 6 8 10 12

o
b
s
e
rv

e
d
 2

X

0

2

4

6

8

10

12

s
X

2 =  0.970   8/K = 0.002   accept   p =  0.49 quadratic residual X

wavenumber index

-32 0  32 

w
a
v
e
n
u
m

b
e
r 

in
d
e
x

-32

0  

32 

1 MLE simulation with 64x64 grid ; 640x640 km ; blur -1

σ
2
 = 646224.47 ± 32568.88 ; ν = 2.90 ± 0.06 ; ρ = 16423.00 ± 375.00Figure 10. Residual statistics of simulations carried out on a 64×64 grid, with spacings ∆x = ∆y = 10 km, convolutional blurring, and true Matérn

parameter values of σ2
0 = 1 km2, ν0 = 2.5, ρ0 = 20 km. Results pertaining to one of the simulations and its maximum-likelihood recovery. Distribution

of the variable Xθ(k) of eq. (56), as a histogram across all wavenumbers with the theoretical distribution superposed, as a quantile-quantile plot for the
distribution in question, and as a spectral-domain map.0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5
m(X) =  1.001   v(X) =  1.006

quadratic residual 2X

pr
ob

ab
ilit

y 
de

ns
ity

0 2 4 6 8 10 12
0

2

4

6

8

10

12
sX

2 =  1.005   8/K = 0.002   accept   p =  0.90

observed 2X

pr
ed

ic
te

d 
2X

L =   −24.784   ln(S) =  −23.787

wavenumber index
w

av
en

um
be

r i
nd

ex

 

 

−32 0 32
−32

0

32

qu
ad

ra
tic

 re
si

du
al

 X

0

2

4

6

si
m

ul
at

ed
 fi

el
d 

[k
m

]

−2

−1

0

1

2

0.82 0.91 1 1.09 1.18
0

2

4

6

8

10

m(sX
2) =  1.003   v(sX

2) =  0.002

sX
2

pr
ob

ab
ilit

y 
de

ns
ity

0.9 1 1.1

0.9

1

1.1

observed sX
2

pr
ed

ic
te

d 
s X2

position index

po
si

tio
n 

in
de

x

 

 

−32 0 32
−32

0

32

Figure 11. Report on the behavior of the test statistic s2X of eq. (57) across an ensemble of 175 simulations and recovery experiments. Histogram and its
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validated; there are no surprises.
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For a given modeled data sample, we propose as a test statistic the mean-squared deviation from the expected value of the residual ratio,

s2X =
1

MN

∑
k

[Xθ(k)− 1]2. (57)

The smoothness and boundedness of the spectrum S̄θ(k), the presumed independence of Xθ(k) between wavenumbers, and the central limit
theorem should help the variable s2X to converge to a normal variate. The central moments of the pth power of chi-squared variables with m

degreees of freedom (Davison 2003) satisfy
〈[
χ2
m

]p〉
= 2pΓ(p+m/2)/Γ(m/2), from which we obtain〈

Xp
θ

〉
= Γ(p+ 1) = p!. (58)

The case p = 1 discussed previously, in reducing eq. (40) to eq. (41), is easily verified. Evaluating eq. (58) for the case p = 2 then yields the
expectation of eq. (57), our test statistic,

⟨s2X⟩ = 1

MN

∑
k

〈
X2

θ(k)− 2Xθ(k) + 1
〉
= 1. (59)

For its variance, assuming independence between the wave vectors, we find from elementary calculations that

MNvar
{
s2X
}
= var

{
X2

θ

}
+ 4 var

{
Xθ

}
− 4 cov

{
X2

θ , Xθ

}
(60)

=
〈
X4

θ

〉
−
〈
X2

θ

〉2
+ 4
〈
X2

θ

〉
− 4
〈
Xθ

〉2 − 4
〈
X3

θ

〉
+ 4
〈
X2

θ

〉〈
Xθ

〉
= 8. (61)

Hence we deduce that our chosen metric converges ‘in law’ to a variable distributed as:

s2X
L−→ N (1, 8/[MN ]). (62)

In other words, by computing eq. (57) after finding the maximum-likelihood estimates for the Matérn parameters of a data set, we are in a
position to test whether the residuals are distributed according to the theory, rejecting the model at whichever confidence level we envisage.

Fig. 11 continues to show how the theory is borne out by simulation and experiment. The lower row of three panels reports on the ‘test
of the test’, specifically, whether eq. (62) holds, across 175 simulations. Sample mean and variance of the test statistic are labeled above
the first panel, which displays the histogram of s2X over the simulations. The second panel shows the linearity of the quantile-quantile plots.
Our conclusion is that using s2X as a statistic results in a useful and sensitive test on the appropriateness of the Matérn model, whatever its
parameters, and irrespectively of their confidence intervals.

5 P R A C T I C E

We are inching closer to the discussion of real-world data. Before we do so, we give one final example of residual analysis in the form of
a diagnostic figure that we designed to be uncompromisingly informative yet cursorily consultable. We elect to show a false rejection, one
of the 5 per cent such cases expected at the 95th per cent confidence level. The true Matérn parameter values were picked at random, as
annotated, σ2

0 = 0.50 km2, ν0 = 2.70, ρ0 = 60 km. The recovery, at σ2 = 0.49 km2, ν = 2.65, ρ = 61 km, would have been deemed
successful by conventional standards.

The leftmost two panels of Fig. 12 appear in a layout that is a combination of the top three panels of Fig. 11, including the histogram of
Xθ(k) = S̄−1

θ (k) |H(k)|2 and its theoretical probability density (using the left ordinate) and quantile-quantile plot (using the right ordinate),
and its wavenumber map.The rightmost panels show the blurred predicted spectral density S̄θ(k), and the observed periodogram |H(k)|2.
Contours of the predicted spectrum are drawn on the observed spectrum, showing a very good match.

Likelihood contours. Counterexample.

6 C O N C L U S I O N S

Rescue some of the high-falutin writing of the now mostly cut introduction.
What numbers capture the essence of a patch of planetary topography? Surprisingly few, as we show. Can we derive them, can we derive

uncertainty bounds on them, can we simulate “new” realizations of patches that should look to the geologists exactly as if they were derived
from similar processes? The answer to all of these questions is “yes”. Moreover, our approach holds in one, two, and three spatial dimensions,
and it generalizes to multiple variables, e.g. when topography and gravity are being considered jointly (perhaps linked by flexural rigidity,
erosion, or other surface and sub-surface modifying processes).

Equally important is our treatment of edge effects, both in simulation and in estimation. Our use of data tapering allows for the con-
sideration of regions whose outlines are irregularly shaped, i.e. not rectangles or circles. Our procedure correctly determines the estimation
variance of all of the parameters. Because even the maximum-likelihood “best” estimate may not be “good enough”, we developed tests on
the residuals to ascertain whether the “model” itself fits or warrants rejection.
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Figure 12. Example of a synthetic experiment where the maximum-likelihood estimate of simulated data ends up being close to the truth, and yet the model is
rejected on the basis of hypothesis testing on the residual statistics. (Top left:) Histogram and its prediction, quantile-quantile plot, and (Bottom right:) spectral
map of the residual variable Xθ(k) = S̄−1

θ (k) |H(k)|2, as in Fig. 11. (Top right:) Predicted blurred spectral density S̄θ(k). (Bottom right:) Observed
periodogram |H(k)|2, with contours of the prediction superposed.
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Figure 13. A synthetic, with the model accepted.
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8 A P P E N D I X

For easy reference we list the expressions for the derivatives of the isotropic Matérn spectral density (12)–(13), in each of the three parameters
θ ∈ θ, via the parameter in which they enter the expressions (38)–(41) for the various derivatives of the likelihood (37), namely

mθ(k) = S−1
θ (k)

∂Sθ(k)

∂θ
= −Sθ(k)

∂S−1
θ (k)

∂θ
(63)

Introducing the auxiliary variable

µ =

(
4ν

π2ρ2

)(
4ν

π2ρ2
+ k2

)−1

, (64)

we can write the following three (which agree with eqs A25–A27 of Simons & Olhede 2013), which enter into the definition of the score (38)
and the Fisher matrix (41),

mσ2 =
1

σ2
, (65)

mν =
ν + 1

ν
− ν + 1

ν
µ+ lnµ, (66)

mρ = −2
ν

ρ
+ 2

ν + 1

ρ
µ. (67)

The nonvanishing derivatives of eqs (65)–(67) necessary for the computation of the Hessian (40) are given by

∂mσ2

∂σ2
= − 1

σ4
, (68)

∂mν

∂ν
=

1

ν

(
ν + 1

ν
− µ+

ν + 1

ν
µ2

)
, (69)

∂mρ

∂ρ
= 2

ν

ρ2

(
1− 3

ν + 1

ν
µ+ 2

ν + 1

ν
µ2

)
, (70)

∂mν

∂ρ
=

2

ρ

(
−1 +

2ν + 1

ν
µ− ν + 1

ν
µ2

)
, (71)


