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Lithospheric strength variations both influence and are influenced by many tectonic processes, including 
orogenesis and rifting cycles. The long, complex, and highly anisotropic histories of the continental 
lithosphere might lead to a natural expectation of widespread mechanical anisotropy. Anisotropy in 
the coherence between topography and gravity anomalies is indeed often observed, but whether it 
corresponds to an elastic thickness that is anisotropic remains in question. If coherence is used to 
estimate flexural strength of the lithosphere, the null-hypothesis of elastic isotropy can only be rejected 
when there is significant anisotropy in both the coherence and the elastic strengths derived from it, 
and if interference from anisotropy in the data themselves can be plausibly excluded. We consider 
coherence estimates made using multitaper and wavelet methods, from which estimates of effective 
elastic thickness are derived. We develop a series of statistical and geophysical tests for anisotropy, and 
specifically evaluate the potential for spurious results with synthetically generated data. Our primary case 
study, the North American continent, does not exhibit meaningful anisotropy in its mechanical strength. 
Similarly, a global reanalysis of continental gravity and topography using multitaper methods produces 
only scant evidence for lithospheric flexural anisotropy.

 2015 Elsevier B.V. All rights reserved.

1. Introduction

In what are arguably the two most important textbooks pub-
lished on the subject of flexure and isostasy, neither Lambeck

(1988) nor Watts (2001) devotes much space to the question of 
whether the flexural elastic response of the lithosphere might 
be directionally (azimuthally) anisotropic, and this despite some 
early evidence (Stephenson and Beaumont, 1980; Stephenson and 
Lambeck, 1985; Lowry and Smith, 1995) predating the publica-
tion of these works. On the other hand, azimuthal anisotropy 
is hardly ever absent from a discussion of the seismic signa-
ture of lithospheric deformation (Silver, 1996; Montagner, 1998;
Park and Levin, 2002), and even very long-term, viscous, anisotropy 
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(Honda, 1986; Christensen, 1987; Lev and Hager, 2008; Tommasi et 
al., 2008; Hansen et al., 2012) enjoys moderate but sustained at-
tention from modellers and experimentalists alike.

The long-term (>1 Myr) flexural strength of the lithosphere is 
commonly measured in terms of an effective elastic thickness, Te , 
which is related to the rigidity, D , of a perfectly elastic plate by

D =
ET 3

e

12(1− ν2)
, (1)

where E is Young’s modulus and ν is Poisson’s ratio, both generally 
assumed to be constant throughout the lithosphere. In reality, the 
long-term strength of the lithosphere is a combination of brittle, 
elastic, and ductile strength; in the case of the continental litho-
sphere, the compositionally distinct upper crust, lower crust, and 
lithospheric mantle may each include all three regimes (e.g., Burov 
and Diament, 1995; Burov, 2010). Rather than corresponding to 
any specific isotherm or compositional boundary, Te measures the 
combined effect of this complex rheology by analogy with a purely 
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elastic plate, whose thickness represents the integrated strength 
(e.g., Burov, 2010).

Anisotropy in the elastic behaviour is not easily measured; it is 
difficult to separate from the complexity of resolving the isotropic 
elastic response. The latter may be estimated using a variety of 
methods, including forward modelling of seismic (e.g., Watts et al., 
1985) or topography and gravity (e.g., Watts et al., 1980) profiles, 
but continental-scale studies of spatial variation in Te are most 
commonly performed via cross-spectral analysis of topography 
and gravity anomalies (e.g., Dorman and Lewis, 1970; McKenzie 
and Bowin, 1976; Watts, 1978; Forsyth, 1985), which usually in-
volves admittance or coherence functions. A variety of statistical 
devices, such as windowing and tapering, are called upon to di-
minish the bias and reduce the variance of the estimates (e.g., 
Ojeda and Whitman, 2002; Crosby, 2007; Kalnins and Watts, 2009;
Pérez-Gussinyé et al., 2009). However, the reduction of hundreds 
of gravity and topography data points to admittance or coherence 
estimates at a handful of statistically uncorrelated wavenumbers 
results in a loss of statistical efficiency, limiting the potential of 
admittance- and coherence-based Te estimates, however well car-
ried out (Simons and Olhede, 2013).

Nevertheless, after the early works cited, increased attention 
led to the development of a suite of methods to locally extract di-
rectional anisotropy in the effective elastic thickness (Simons et al., 
2000, 2003; Swain and Kirby, 2003a; Audet and Mareschal, 2004;
Kirby and Swain, 2006). First applied to the Australian continent 
and the Canadian Shield, these methods have since yielded ap-
parent evidence for pervasive mechanical anisotropy worldwide 
(Rajesh et al., 2003; Stephen et al., 2003; Nair et al., 2011, 2012; 
Zamani et al., 2013).

Audet and Bürgmann (2011) made a geologically attractive case 
for tectonic inheritance being a controlling factor in the deforma-

tion behaviour of the lithosphere throughout supercontinent cy-
cles. Their analysis, like that of Simons et al. (2000), relied on the 
identification of weak directions with azimuths where the coher-
ence between Bouguer gravity anomalies and topography exceeds 
the isotropic average. Finding examples of such anisotropy in the 
continents worldwide, Audet and Bürgmann (2011) then showed 
its correlation with lateral gradients in the isotropically-estimated 
elastic thickness, which are often aligned perpendicular to tectonic 
boundaries.

In this paper we draw attention to the “lingering problems” and 
“unresolved question[s]” identified by Audet (2014), indeed, to the 
general difficulty of inferring lithospheric anisotropy from gravity–
topography coherence. We specifically formulate our own concerns 
that a great many of the “weak” directions marked in Fig. 1 of 
the paper by Audet and Bürgmann (2011)—and by implication, in 
the results of most other workers including some authors of this 
present study (e.g., Simons et al., 2000, 2003; Kirby and Swain, 
2006)—may in fact be spurious artefacts due to the statistical prop-
erties of the analysis method.

2. Method and motivation

The coherence γ 2 is a normalised cross-power spectral den-
sity S of topography H and gravity G ,

γ 2
GH (r,k) =

|SGH (r,k)|2

SGG(r,k)SHH (r,k)
, (2)

where r is the spatial-domain position vector and k the spectral-
domain wave vector. It is a statistical measure of the average 
wavelength-dependent relation between two multivariate fields 
(Bendat and Piersol, 2000). That it contains information about the 
isostatic or flexural compensation mechanism by which to estimate 
the variable strength of the lithosphere is not in question here (but 

see Simons and Olhede, 2013). However, the identification of direc-
tionally anisotropic behaviour in the estimated coherence between 
gravity and topography — a methodology that one of us is at least 
partly responsible for promoting (Simons et al., 2000, 2003) — is 
not sufficient indication of intrinsic anisotropy in the mechanical 
process linking both geophysical fields (Swain and Kirby, 2003a;
Kirby and Swain, 2006).

Two further basic ingredients are necessary for the conclusion 
that lithospheric strength behaves anisotropically, i.e., differently 
depending on the look direction (azimuth). Firstly, it is neces-
sary to establish that the directional variations of the coherence 
at a given constant wavenumber are robust and statistically sig-
nificant with non-negligible probability. They should not arise by 
chance under a null-hypothesis of intrinsically isotropic behaviour, 
as could be due, for instance, to spectral discretisation effects or 
when anisotropic initial loads are emplaced on an isotropic litho-
sphere. Secondly, any robust variations in the coherence must lead 
to significant anisotropic variations in the parameter of interest, 
namely, the lithospheric flexural rigidity, which is derived from it 
by an inversion that is subject to its own, potentially large, estima-

tion uncertainty.
As to the first requirement, it should be shown that when no 

lithospheric anisotropy is in the system, none is introduced by the 
analysis. As to the second, the inferred directionally dependent val-
ues of elastic strength need to be evaluated against the uncertainty 
with which the isotropic elastic strength can be determined from 
the same data. Such a statistical analysis will need to be tailored to 
the method used to determine the coherence, whether via multita-

per spectral analysis, wavelets, or any other method. We can thus 
greatly reduce spurious identifications via statistical tests on the 
coherence, on the results of the rigidity estimation, and finally, by 
testing that it is not simply the widespread spectral anisotropies of 
gravity or topography themselves which impart insufficiently infor-
mative anisotropy to the coherence, or apparent anisotropy to the 
rigidity estimated from their relation.

In order to explore how widespread spurious anisotropy mea-

surements may be in published studies, we have chosen to test 
two methods commonly used (with variants) over the last fifteen 
years: the Slepian-windowed multitaper method (duration × half-

bandwidth product NW = 3, Shannon number 6, using 4 tapers 
in each dimension) of Simons et al. (2000) and the fan-wavelet 
method (Morlet wavelet with central wavenumber k0 = 5.336) of 
Kirby and Swain (2006, 2011), which is the basis of the fan-wavelet 
method of Audet and Mareschal (2007). For simplicity, we use 
square data patches or windows. Selective methods for regions of 
arbitrary description, such as irregular tectonic provinces, have also 
been developed, and may help avoid blending contrasting Te from 
different features into a single estimate (Simons and Wang, 2011). 
However, most workers to date have used square or circular win-

dows, making a simple geometric patch a better test domain for 
the reliability of existing analyses.

There are a great many subtleties involved in “inverting” a 
coherence curve for a proper estimate of the effective elastic 
thickness, including the choice of Bouguer versus free-air grav-
ity anomalies (McKenzie and Fairhead, 1997; Banks et al., 2001;
McKenzie, 2003; Swain and Kirby, 2003b; Pérez-Gussinyé et al., 
2004). The difficulties are especially daunting in the presence of 
correlation (r) between surface and subsurface loading (Macario 
et al., 1995; McKenzie, 2003; Kirby and Swain, 2009), which are 
furthermore present in an unknown proportion of variance to 
each other, the loading ratio ( f 2), which may be wavenumber-

dependent (Simons and Olhede, 2013). We point to the compre-

hensive overviews and historical reviews by Simons and Olhede
(2013) and Kirby (2014) for more context. Here, for the multita-

per method, we use the simple coherence transition-wavelength 
metric to determine relative values of effective elastic thickness 
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Fig. 1. Testing coherence and elastic thickness estimates for anisotropy: real data example. All error bars shown are plus/minus two standard deviations. (a) An example 
with visible anisotropy in the north–south direction. The azimuthally averaged coherence reaches 0.5 at a wavelength of 213 km, marked by the black circle. Values below 
0.1 are left white. (b) Mean coherence (averaged over azimuth and wavenumber; horizontal black line), and radially averaged coherence (a function of azimuth; thick 
black curve), with red and blue triangles indicating the global maximum and minimum. Shading defines ranges of significant and well-resolved anisotropy, in this case 
around one directional low (blue) and one high (red) in the coherence. (c) Azimuthally averaged coherence (a function of wavenumber; black), with filled symbols showing 
approximately statistically uncorrelated wavenumbers. Coherence in the directions of the maximum (red) and minimum (blue) radially averaged coherence. Vertical lines 
mark the half-points of the curves. Grey band marks the wavenumber uncertainty of the azimuthally averaged (black) half-point. As in (a), 213 is the wavelength of the 
azimuthally averaged half-point. The directional Te estimates are 19 km (from the blue curve) and 11 km (from the red curve). The Te estimate from the isotropic average 
(black curve) is 14 km with lower and upper bounds of 11 km and 20 km, respectively. As the isotropic bounds exceed the directional estimates, there is no robust indication 
of anisotropy in the effective elastic thickness.

(Simons and van der Hilst, 2002, 2003; Kirby and Swain, 2008b), 
and for the wavelet results we remain faithful to the method of 
Kirby and Swain (2006), which was used with some modifications 
by Audet and Bürgmann (2011). Following the majority of previ-
ous anisotropy studies, we use the Bouguer gravity anomaly with 
both methods.

3. Anisotropy tests for coherence and Te

For our statistical testing, any estimate of the two-dimensional 
gravity–topography coherence is simply denoted γ 2(k) = γ 2(k, θ). 
The wave vector k-half-plane is parameterised using an azimuth 
(θ , quoted from 0 to π , increasing anticlockwise from a bearing 
of 90◦ to 270◦) and a radius (k = |k|, the wavenumber). The co-
herence estimate is asymptotically Gaussian (Carter et al., 1973;
Touzi and Lopes, 1996; Walden, 1990). The grand average is the 
constant denoted γ 2 . Averaging γ 2(k) over all available wavenum-

bers in a particular direction produces the radially averaged quan-
tity γ 2(θ), whereas averaging over all azimuths at a particular 
wavenumber produces the directionally averaged quantity γ 2(k). 
The respective uncertainties are the standard deviations σγ 2 (k), 
σγ 2 (θ), and σγ 2 (k), always written with the explicit functional de-
pendence on k, θ , or k, where applicable.

For multitaper estimates made as discussed by Simons et al.
(2003), with J Slepian tapers, the standard deviation of the co-
herence is taken to be the square root of σ 2

γ 2(k) = 2γ 2(k)×
[

1− γ 2(k)
]2

/ J . Other scale estimates for the coherence may be 
substituted (e.g., Chave et al., 1987), but from any σ 2

γ 2 (k) we ob-

tain, by averaging, σ 2
γ 2 (θ) = N−2

k(θ)

∑

k(θ) σ
2
γ 2 (k, θ), and σ 2

γ 2 (k) =

N−2
θ(k)

∑

θ(k) σ
2
γ 2 (k, θ), where the sums are over the Nk(θ) or Nθ(k)

gridded positions k(θ) or θ(k) defined on a subgrid of wave vec-
tors (k, θ) that are separated by half the taper bandwidth. At that 
set of wavenumbers the coherence estimates can be considered 
sufficiently uncorrelated according to standard Slepian-multitaper 
theory (Percival and Walden, 1993) and its extensions (Dahlen 
and Simons, 2008; Kirby and Swain, 2013; Simons and Olhede, 
2013), which motivates our variance calculation of σ 2

γ̄ 2(θ) and 

σ 2
γ̄ 2(k).

3.1. Test for mathematical significance

Our first test is for “mathematical significance”: whether the 
coherence itself is significantly anisotropic. To illustrate, Fig. 1a 
shows a coherence estimate, γ 2(k, θ), made at a location in the 
Labrador Sea and displaying visible anisotropy. Fig. 1b then com-

pares the radial average γ 2(θ) with the grand average γ 2 . Because 
we are ultimately looking for robust directions, we also use a 
scaled threshold to define the angular resolution of the identified 
peaks, the azimuthal range over which

|γ 2(θ) − γ 2(θe)| < σγ 2(θ) + σγ 2(θe), (3)

where θe is the azimuth of the extremum. A positive identifica-
tion for mathematically significant anisotropy is made when (1) 
the local extremum of the radially averaged coherence, γ 2(θ), is 
separated from the mean coherence, γ 2 , by more than 2σγ 2 (θ)

and (2) the angular resolution of the peak is sharper than 60◦ . 
In the case shown in Fig. 1b, both the maximum and mini-

mum pass the significance and width tests, but no secondary ex-
trema do.

3.2. Test for geophysical significance

Our second test is one of “geophysical significance”: whether 
the anisotropy in the coherence translates into a resolvable 
anisotropy in flexural strength. Is the anisotropy in the wave-

lengths sensitive to Te , and does it exceed the uncertainty asso-
ciated with the inversion? The first criterion is that the coherence 
provide a good match to Forsyth’s (1985) model of uncorrelated 
surface and subsurface loading, under which we expect high co-
herence (>0.75) at long wavelengths and low coherence (<0.5) 
at short ones, with a well-defined transition wavelength sepa-
rating both regimes (see the “Standard Model” as discussed by 
Simons and Olhede, 2013). We can then use the simplest possible 
route to “convert” a coherence measurement to an effective elastic 
thickness, by ignoring load correlations (r = 0), assuming a fixed 
constant loading ratio f 2 = 0.5, and analytically solving for the Te

that corresponds to the observed half-coherence wavenumber k1/2 , 
where γ 2 = 1/2 (Simons and van der Hilst, 2002, 2003; Kirby and 
Swain, 2008a, 2008b; Simons and Olhede, 2013).
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Fig. 2. Possible bias in the coherence anisotropy from topography or gravity anisotropy and summary of the continent-wide analysis for mechanical anisotropy. (a) Power 
spectral density of North American topography from the EGM2008 model (Pavlis et al., 2012), analysed in 1400 × 1400 km non-overlapping patches. Geological province 
boundaries are after Vigil et al. (2000). (b) Mechanical anisotropy in the North American lithosphere analysed from topography and Bouguer gravity over the same 25 
windows shown in (a). Black circles identify azimuthally-averaged coherence half-points, and boxed numbers their corresponding wavelengths in km, as in Fig. 1a. Red and 
blue wedges show azimuthal ranges of (high and low, respectively) coherence anisotropy that pass both the mathematical (Fig. 1b) and geophysical (Fig. 1c) significance tests. 
Brown and green lines indicate significant maxima (solid lines) and minima (dashed lines) in the radially averaged power spectral density of the topography and Bouguer 
gravity anomaly, respectively. No values or measurements are plotted when the measurements are deemed insufficiently well determined.

This method minimises the effect of short-wavelength ani-
sotropy on our estimate of Te , and provides a simple measure 
of its uncertainty based on the uncertainty in the wavenumber 
from which it is estimated (half the taper bandwidth, as discussed 
earlier in Section 3). Due to the underlying (and not uncommon) 
assumptions about f 2 and r, we cannot place much faith on the 
absolute determination of the Te using this method. However, our 
focus here is on directional variation, rather than absolute value. 
Since the spatial regions we compare are of equal size, and f 2 and 
r should in most cases be relatively slowly varying and thus rea-
sonably constant within a region, we should still be able detect 
anisotropy in Te . It is possible, however, that a sharp gradient in 
r or f 2 could be wrongly detected as flexural anisotropy rather 
than a change in loading; the trade-off between f 2 and Te , in 
particular, is a well-known and ubiquitous challenge in estimat-

ing Te from coherence (e.g., Banks et al., 2001; McKenzie, 2003;
Simons and Olhede, 2013).

Returning to our worked example, the black circle in Fig. 1a 
marks the “half-point” of the azimuthally averaged coherence; its 
wavelength, λ1/2 = 2π/k1/2 , is given in km in the upper left. 
Fig. 1c shows the azimuthally averaged coherence γ 2(k) as a thick 
black curve, with the half-point marked as a vertical line. This is 
contrasted with the curves γ 2(k, θe) retrieved in the directions θe
of the maximum (red) and minimum (blue) that were retained 
by the analysis of the radially averaged coherence γ 2(θ) shown 
in Fig. 1b. The vertical lines show the half-point of each curve, 
with the corresponding Te values shown in the lower left, and we 
can see that the half-points for the anisotropic extrema fall within 
the uncertainty of the isotropic estimate, indicated by the grey 
band. Thus, despite the coherence anisotropy being mathemati-

cally significant, neither the maximum nor the minimum derived 
lithospheric anisotropy is geophysically significant, and our exam-

ple does not robustly indicate anything that can be interpreted as 
actual anisotropy in lithospheric strength.

3.3. Test for bias from anisotropy in gravity or topography

Our third test aims to remove the potential anisotropic bias in-
troduced to the coherence from analysing intrinsically anisotropic 
fields such as topography and gravity: anisotropies in the power-

spectral densities of the individual fields H and G themselves may 
impart anisotropy to the coherence estimate, even when the intrin-
sic behaviour of the lithosphere is isotropic (Simons and Olhede, 
2013; Kirby, 2014). To illustrate, Fig. 2a shows estimates of the 
power-spectral density of the topography in the North American 
continent, formed over 25 non-overlapping square (1400 km on 
the side) patches. Substantial anisotropy is visible to the untrained 
eye. We map the anisotropy in topography and gravity over the 
continent via a radially-averaged azimuthal significance analysis, 
as shown for the coherence in Fig. 1b. Fig. 2b then shows how sig-
nificant directional extrema in topography and gravity align with 
those in the coherence.

Where the directions are clearly aligned, we must consider 
whether the apparent anisotropy in Te is purely an artefact of 
the anisotropy in topography or gravity. We consider the directions 
aligned if the azimuthal ranges for coherence and gravity/topogra-
phy anisotropy overlap; however, for clarity, the azimuthal ranges 
for gravity and topography are not shown in Fig. 2b. Across the 
25 patches shown, four directions will be rejected. However, in 
many geological settings, genuine lithospheric weakness may be 
aligned with structures in the topography/gravity. We have delib-
erately performed this test last to facilitate consideration of this 
possibility. (See the figures on azimuthal bias in the Supplemen-

tary Material for details.)

4. Synthetic tests, multitapers, and wavelets

To test the coherence estimation methods currently widely used 
as well as our proposed significance testing, we perform anisotropy 
analysis on two types of synthetic data, one wholly synthetic and 
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Fig. 3. Testing coherence and elastic thickness estimates for mathematically significant anisotropy: synthetic data example. Directions show maxima in the coherence, which 
correspond to minima in Te . (a) and (b) show results using Simons and Olhede (2013) synthetics analysed using multitaper and fan-wavelet methods, respectively. (c) and 
(d) show the corresponding results for the Kirby and Swain (2009) synthetics. For the multitaper method, results are shown after mathematical significance testing, and the 
window size of 1400 km is shown in the lower left. In the fan-wavelet results, the spatial domain of signal extraction scales inversely with the wavenumber and the length 
of the bars is scaled to the purported strength of the lithospheric anisotropy. All of the anisotropy is spurious. Of the anisotropy in (a) and (c), 100% of that in (a) and 89% 
of that in (c) is later identified and removed by the geophysical significance and topography/gravity bias tests.

the other using the actual topography of North America. For the 
first, we use the method of Simons and Olhede (2013), who de-
veloped a procedure to generate synthetic gravity and topogra-
phy fields that are jointly isotropic and coupled via an intrinsi-
cally isotropic flexural equation. Their method assumes a station-
ary isotropic Matérn spectral form (Handcock and Wallis, 1994;
Guttorp and Gneiting, 2006) for the initial surface and subsurface 
loads, which are simulated in known proportion (constant f 2) and 
correlation (constant r) to each other. The only other parameters 
in the model are the flexural rigidity D , related to Te by Eq. (1), 
the depth to the subsurface interface z2 , and the density contrasts 
�1 and �2 across the surface and subsurface interfaces. No aspect 
of the model is anisotropic in any way.

Our second set of synthetic data uses the method of Kirby and 
Swain (2009), who developed a scheme to generate synthetic grav-
ity anomaly data from observed topography, in a similar two-layer 
setup with an isotropic flexural rigidity. To simulate data under an 
uncorrelated initial-loading scenario, their synthetics are the aver-
age of 100 Bouguer anomalies calculated from 100 fractally simu-

lated (Swain and Kirby, 2003b) initial surface loads together with 
the observed topography, thereby averaging out random instances 
of load correlation (Kirby and Swain, 2008a). In their synthetics, 
any anisotropy present in the system is solely that which arises 
from the match to the observed topography, which of course is 

usually anisotropic. Being characterised by a single D , the litho-
spheric response itself is wholly isotropic.

We perform anisotropy analysis on these two types of synthetic 
data over an area the size of North America, using the actual North 
American topography for the second method. For the multitaper 
method, hypothesis testing for anisotropy, as in Figs. 1 and 2, is 
performed. For the wavelet analysis, no hypothesis testing is per-
formed per se, although the strength of anisotropy is reported as 
1 − (Tmin/Tmax), which captures the strength of anisotropy of an 
orthotropic plate as proposed by Swain and Kirby (2003b) and 
Kirby and Swain (2006). It is the latter analysis that best compares 
to the procedure followed by Audet and Bürgmann (2011).

What we should expect to see in order to validate our statistical 
treatment is that our hypothesis testing on the multitaper results 
successfully rejects any anisotropy in the synthetics. What we fear 
to see, and what would signal significant concern about the va-
lidity of many of the results of previous studies, is widespread 
anisotropy in the synthetic multitaper results prior to the hypoth-
esis testing proposed here, and in the synthetic wavelet results, for 
which dedicated wavelet hypothesis tests to rule it out remain in 
need of development.

Fig. 3 summarises the results of the Slepian multitaper analy-
sis (after hypothesis testing for mathematical significance, a and c), 
and of the fan wavelet analysis (b and d) of the synthetics. Clearly, 
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Fig. 4. North American topography, gravity, and mechanical anisotropy from directional coherence analysis. (a) Topography and (b) Bouguer gravity anomaly from the 
EGM2008 model (Pavlis et al., 2012); the Bouguer anomaly is calculated from the model using the infinite-slab method with a crustal density of 2670 kg/m3 and a man-

tle density of 3300 kg/m3 . (c) Mathematically significant weak directions detected with a square window size of 1400 km. (d) Weak directions surviving mathematical 
and geophysical significance testing. Directions aligned with gravity or topography are shown in green or brown, respectively. (e) Weak directions surviving mathematical, 
geophysical, and bias testing.

anisotropy is detectably present in the observed coherence, despite 
no anisotropy whatsoever present in the mechanical model of the 
lithosphere. For the multitaper method, much spurious anisotropy 
survives this first test, but after geophysical significance testing (as 
in Fig. 1c), 100% and 58% of the directions from Figs. 3a and 3c, 
respectively, are successfully flagged as spurious. As with all statis-
tical tests of the kind, the Type I error of multiple testing is for-
mally set by the significance level (Bendat and Piersol, 2000), with 
additional tests increasing the number of false positives (Davison, 
2003), but here we must recognise that our choices are largely em-

pirical. Adding the bias test for alignment with anisotropy in the 
gravity or topography rejects a further 31% of the anisotropy in 
Fig. 3c, for a total of 89% identified as spurious. Although genuine 
alignments between anisotropy in Te and in gravity/topography 
may occur in real data, without this criterion, a substantial per-
centage of the spurious weak directions shown in Fig. 3c were 
retained when testing the Kirby and Swain (2009) synthetics (42%, 
as opposed to 11% using this criterion); we cannot at present be 
confident that directions aligned like this are robust.

Hence, judicious use of hypothesis testing would allow us 
to retain the null-hypothesis of lithospheric intrinsic isotropy 
in the vast majority of those cases analysed by the multitaper 
method. However, even after this stringent testing, some spuri-
ous anisotropy remains, and results must thus be interpreted with 
caution. The fan-wavelet results paint a more worrying picture: 
while they have not been made subject to the hypothesis testing 

discussed for multitapers, without such testing, much of what is 
observed in Figs. 3b and 3d could be wrongly ascribed to intrinsic 
lithospheric anisotropy when, in actuality, there is none.

5. The case of North America

We now consider the elastic anisotropy results using real data 
for the case of North America. Figs. 4a and 4b show the data: 
topography and Bouguer gravity anomaly, both derived from the 
EGM2008 release (Pavlis et al., 2012), in a Lambert conformal conic 
projection. Figs. 4c, 4d, and 4e show the results from the statisti-
cal analysis of the gravity-topography coherence, conducted on a 
grid of overlapping 1400 × 1400 km analysis boxes. Testing only 
for mathematical significance leaves a great number of anisotropic 
directions (Fig. 4c) but most of those are later rejected by the 
tests for geophysical significance (Fig. 4d) and then for potential 
bias from anisotropy in the topography or the gravity (Fig. 4e). As 
far as the continental landmass is concerned, almost no evidence 
for lithospheric anisotropy remains to be interpreted at this scale. 
Changing the window size to 2500 × 2500 km (Figs. 5a and 5b) 
and to 3500 × 3500 km (Figs. 5c and 5d) brings out more litho-
spheric anisotropy, but at those resolutions, the primary generator 
for the signal could very well be related to the ocean–continent 
transition or even to anisotropy in the oceanic, rather than con-
tinental, lithosphere. Similar analyses for the other continents can 
be found in the Supplementary Material.
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Fig. 5. Weak directions surviving mathematical and geophysical significance testing (a and c) and all three tests (b and d), as in Figs. 4d and 4e, respectively, but with window 
sizes of (a–b) 2500 km and (c–d) 3500 km.

6. Discussion and conclusions

Lithospheric strength variations play a role in modulating many 
Earth processes, including large-scale tectonic processes such as 
rifting and orogeny. These processes in turn are expected to alter 
the strength of the lithosphere involved. Many geological materials 
are highly anisotropic, from the crystal to the continental scale, but 
the effective length scale over which anisotropic behaviour exerts 
a dominant influence will be variable depending on the process 
under consideration. If no one direction dominates, a combina-

tion of varying anisotropies at different scales will also produce 
an isotropic response. While the natural expectation might be for 
anisotropy in many locations, a null hypothesis of isotropy should 
be our point of departure.

It has generally been difficult to relate measurements of litho-
spheric elastic anisotropy with other measures of anisotropic 
behaviour in the lithosphere. Concerns about the robustness of 
the measurements themselves have led to the realisation that 
anisotropy in the gravity-topography coherence cannot easily be 
identified with evidence for anisotropy in the mechanical strength 
of the lithosphere itself. In this paper, we have used synthetic data 
to reveal that much apparent, but spurious, anisotropy can arise 
from the analysis method. We have developed a methodology to 
test the mathematical and geophysical robustness of mechanical 
anisotropy measurements.

Such spurious anisotropy can arise from many sources. These 
range from the numerical effects of data gridding and window-

ing (which is seen very clearly by studying completely isotropic 
synthetics), to the imprints of anisotropy in the gravity or topog-
raphy on the coherence (as we have seen in the synthetic studies 
that used actual topography), and to correlations in the initial load-
ing topographies (which we did not model here), which could be 
anisotropic. Even the high gradients in the isotropic Te , which 
have been suspected by some to be correlated with lithospheric 
anisotropy, may increase the uncertainty of the measurement. In 
such a case the data inside a particular window may incorporate 
a wide range of Te , thereby increasing how anisotropic a measure-

ment can appear without reflecting intrinsic flexural anisotropy 
(Kirby, 2014). Even our stringent testing may fail to detect this 
type of spurious anisotropy. Finally, the complexity and variety of 
the geological processes linking gravity and topography in the data 
is likely greater than in the simple linear models by which we re-
late them, leaving other potentially anisotropic contributions to the 
coherence unmodelled.

Areas of very high Te are also locations where apparently highly 
anisotropic measurements may be within error of the isotropic 
measurement. Near major geological boundaries and orogenic 
zones, many of these confounding factors are conflated: anisotropic 
input data, high Te gradients, as well as many possible sources of 
legitimate anisotropy in the mechanical strength of the lithosphere 
itself. Our analysis in no way rules out the possibility that strength 
in these areas is significantly anisotropic and that this anisotropy 
plays a major role in large-scale tectonic cycles. However, as also 
shown in the results of Kirby (2014), it does mean that teasing 
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out and verifying such anisotropy is much more difficult, if not 
impossible, regardless of the cross-spectral methods being used.

In the absence of solid evidence to the contrary, we must 
fail to reject the null-hypothesis of isotropy. Using the observed 
coherence between topography and gravity anomalies to model 
flexural strength of the lithosphere, the null-hypothesis of elas-
tic isotropy should only be rejected when both the coherence 
itself is significantly anisotropic and the inversions based on the 
coherence yield significantly anisotropic elastic strengths. In ad-
dition, directions aligned with significant anisotropy in the to-
pography or gravity data may also be spurious. A conservative 
global reanalysis of gravity-topography coherence on these terms, 
which we present in the Supplementary Material, produces only 
scant evidence for lithospheric flexural anisotropy, in marked con-
trast to previous results (Rajesh et al., 2003; Stephen et al., 2003;
Nair et al., 2011, 2012; Zamani et al., 2013). We draw attention 
particularly to the results reported by Audet and Bürgmann (2011), 
which we feel are in danger of being over-interpreted.
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Supplementary Material

These supplementary figures illustrate the details of our anisotropy analysis for all

the continents. The first set, Supp. Figures 1–9, are the equivalent of Figures 4 and 5

from the main text, showing the topography (a) and Bouguer gravity anomaly (b) data,

maps of weak directions after mathematical significance testing (c), after mathematical

and geophysical significance testing, with directions aligned with gravity and topog-

raphy shown in green and brown, respectively (d), and then after all tests (e) using a

1400 km window. The results after mathematical and geophysical significance testing

and after all testing are repeated using larger window sizes of 2500 km (f and g) and

3500 km (h and i). In general, few areas within the continents show a consistent, ro-

bust direction of low Te, using a 1400 km window. More anisotropy survives testing

using larger windows, but the large size makes it more difficult to identify the source

of these directions; in some cases, it may arise from the ocean/continent boundary or

from oceanic, rather than continental, lithosphere.

The next three sets of figures illustrate the details of the underlying analysis using

a tiled approach as in Figure 3. Except where noted below, all follow a similar pattern

of panels as for the first set of supplementary figures: (a) topography, (b) Bouguer

gravity anomaly, (c) results after mathematical significance testing, (d) results after all

testing, (e) and (f) results after all testing using larger window sizes. The exact sizes

of windows used vary slightly between the continents in order to divide the various

datasets evenly into an integer number of tiles.

The second set of figures, Supp. Figures 10–18, shows the analysis of radially av-

eraged coherence, as explained in Figure 1b. In panels (d), (e), and (f), those directions

that are geophysically significant but are aligned with anisotropy in the gravity or to-

pography data are marked with a green or brown line, as in Figure 3b. Panels (c) and

(d) thus allow the effects of each of the three tests to be seen.

The third set of figures, Supp. Figures 19–27, shows the analysis of geophysical sig-

nificance using the azimuthally averaged coherence, as explained in Figure 1c. Again,

those directions aligned with gravity or topography are marked in green or brown in

panels (d), (e), and (f). For clarity, a maximum of one weak and one strong profile are

shown.

The final set of figures, Supp. Figures 28–36, shows the raw 2D coherence, as ex-

plained in Figure 1a, together with summary figures analogous to Figure 3b. As in Fig-

ure 3b, for clarity, the ranges for the gravity and topography directions are not shown;

however, as explained in the main text, these are used in determining if anisotropy in

the coherence and gravity/topography are aligned. Whether or not an individual coher-

ence maximum or minimum is considered aligned with a nearby direction from gravity

or topography can be confirmed in the second set of supplementary figures.
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Supp. Figure 1: continues on next page.
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Supp. Figure 1: Anisotropy maps for North America. (a) Topography. (b) Bouguer gravity
anomaly. (c) All mathematically significant weak directions using a 1400 km window. (d) All geo-
physically significant weak directions, with directions aligned with gravity and topography shown
in green and brown, respectively. (e) Weak directions remaining after all three tests. (f–i) As for
(d–e) for window sizes of 2500 km, and 3500 km windows. The panels in this figure are identical to
the ones shown in Figures 4 and 5, in the order shown there.
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Supp. Figure 2: Anisotropy maps for South America; panels (a–i) as in Supp. Figure 1.
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Supp. Figure 3: Anisotropy maps for Africa; panels (a–i) as in Supp. Figure 1.
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Supp. Figure 4: Anisotropy maps for Australia; panels (a–i) as in Supp. Figure 1.
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Supp. Figure 5: Anisotropy maps for Europe and western Asia; panels (a–i) as in Supp. Figure 1.
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(f)

2600

6100

9600

n
o

rt
h

in
g

 (
k
m

)

(h)

−3500 0 3500
2600

6100

9600

easting (km)

n
o

rt
h

in
g

 (
k
m

)

(g)

2600

6100

9600

(i)

−3500 0 3500
2600

6100

9600

easting (km)

Supp. Figure 6: Anisotropy maps for central Asia; panels (a–i) as in Supp. Figure 1.
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Supp. Figure 7: Anisotropy maps for eastern Asia; panels (a–i) as in Supp. Figure 1.
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Supp. Figure 8: Anisotropy maps for northeastern Asia; panels (a–i) as in Supp. Figure 1.
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Supp. Figure 9: Anisotropy maps for the Indian subcontinent; panels (a–i) as in Supp. Figure 1.
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Supp. Figure 10: Azimuthal variation for North America. (a) Topography. (b) Bouguer gravity
anomaly. (c) Mathematically significant strong (blue) and weak (red) directions. (d–f) Geophysi-
cally significant strong and weak directions, with those aligned with anisotropy in topography or
Bouguer gravity marked with brown and green lines, respectively. Window sizes 1400 km, 1750 km,
and 3500 km.
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Supp. Figure 11: Azimuthal variation for South America; panels (a–f) as in Supp. Figure 10, using
window sizes of 1500 km, 1800 km, and 3000 km.
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Supp. Figure 12: Azimuthal variation for Africa; panels (a–f) as in Supp. Figure 10, using window
sizes of 1500 km, 1800 km, and 3000 km.
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Supp. Figure 13: Azimuthal variation for Australia; panels (a–f) as in Supp. Figure 10, using
window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 14: Azimuthal variation for Europe and western Asia; panels (a–f) as in Supp. Fig-
ure 10, using window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 15: Azimuthal variation for central Asia; panels (a–f) as in Supp. Figure 10, using
window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 16: Azimuthal variation for eastern Asia; panels (a–f) as in Supp. Figure 10, using
window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 17: Azimuthal variation for northeastern Asia; panels (a–f) as in Supp. Figure 10,
using window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 18: Azimuthal variation for the Indian subcontinent; panels (a–f) as in Supp. Fig-
ure 10, using window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 19: Impact of anisotropy on Te for North America. (a) Topography. (b) Bouguer
gravity anomaly. (c) Mathematically significant strong (blue) and weak (red) directions. (d–
f) Geophysically significant strong and weak directions, with those aligned with anisotropy in
topography or Bouguer gravity marked with brown and green lines, respectively. Window sizes
1400 km, 1750 km, and 3500 km.
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Supp. Figure 20: Impact of anisotropy on Te for South America; panels (a–f) as in Supp. Figure 19,
using window sizes of 1500 km, 1800 km, and 3000 km.
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Supp. Figure 21: Impact of anisotropy on Te for Africa; panels (a–f) as in Supp. Figure 19, using
window sizes of 1500 km, 1800 km, and 3000 km.
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Supp. Figure 22: Impact of anisotropy on Te for Australia; panels (a–f) as in Supp. Figure 19,
using window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 23: Impact of anisotropy on Te for Europe and western Asia; panels (a–f) as in
Supp. Figure 19, using window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 24: Impact of anisotropy on Te for central Asia; panels (a–f) as in Supp. Figure 19,
using window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 25: Impact of anisotropy on Te for eastern Asia; panels (a–f) as in Supp. Figure 19,
using window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 26: Impact of anisotropy on Te for northeastern Asia; panels (a–f) as in Supp. Fig-
ure 19, using window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 27: Impact of anisotropy on Te for the Indian subcontinent; panels (a–f) as in
Supp. Figure 19, using window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 28: Summary analysis for North America. (a) Topography. (b) Bouguer gravity
anomaly. (c) 2D coherence using a 1400 km window. (d–f) Strong (blue) and weak (red) directions
remaining after mathematical and geophysical significance testing with directions for topography
(brown) and Bouguer gravity (green) also shown, as in Figure 3b, using 1400 km, 1750 km, and
3500 km windows.
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Supp. Figure 29: Summary analysis for South America; panels (a–f) as in Supp. Figure 28, using
window sizes of 1500 km, 1800 km, and 3000 km.
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Supp. Figure 30: Summary analysis for Africa; panels (a–f) as in Supp. Figure 28, using window
sizes of 1500 km, 1800 km, and 3000 km.
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Supp. Figure 31: Summary analysis for Australia; panels (a–f) as in Supp. Figure 28, using window
sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 32: Summary analysis for Europe and western Asia; panels (a–f) as in Supp. Fig-
ure 28, using window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 33: Summary analysis for central Asia; panels (a–f) as in Supp. Figure 28, using
window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 34: Summary analysis for eastern Asia; panels (a–f) as in Supp. Figure 28, using
window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 35: Summary analysis for northeastern Asia; panels (a–f) as in Supp. Figure 28,
using window sizes of 1400 km, 1750 km, and 3500 km.
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Supp. Figure 36: Summary analysis for the Indian subcontinent; panels (a–f) as in Supp. Figure 28,
using window sizes of 1400 km, 1750 km, and 3500 km.
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