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ABSTRACT

Full-waveform seismic inversions based on minimizing
the distance between observed and predicted seismograms
are, in principle, able to yield better-resolved earth models
than those minimizing misfits derived from traveltimes
alone. Adjoint-based methods provide an efficient way of
calculating the gradient of the misfit function via a sequence
of forward-modeling steps, which, using spectral-element
codes, can be carried out in realistically complex media.
Convergence and stability of full-waveform-difference ad-
joint schemes are greatly improved when data and synthetics
are progressively presented to the algorithms in a construc-
tive multiscale approximation using a (bi)orthogonal wave-
let transform. Wavelets provide the nonredundant spectral
decomposition that paves the way for the inversion to pro-
ceed successively from long-wavelength fitting to detailed
exploration of the phases in the seismogram. The choice
of wavelet class and type, the initial depth of the multiscale
decomposition, and the minimization algorithms used at
every level continue to play crucial roles in our procedure,
but adequate choices can be made that test successfully on
2C elastic seismograms generated in toy models, as well as
in the industry-standard 2D Marmousi model. Although for
simplicity our inversion ignored surface waves by prior ta-
pering and filtered removal, those also appeared to be very
well matched in the final model.

INTRODUCTION

This paper develops a strategy for waveform inversion, a tool
that is related to seismic migration. The objective of prestack depth
migration is to obtain an image of the subsurface reflectivity field;
in most implementations, the image is not intended as a quantitative
measure of the true subsurface impedances. The objective of
seismic tomography is to find reliable models that minimize the

difference between seismograms recorded at stations and syntheti-
cally computed waveforms. The differences can be variously mea-
sured in terms of picked arrival times, crosscorrelation traveltimes,
amplitude anomalies, or via direct waveform subtraction. The com-
mon goals in this branch of seismology are to obtain accurate,
high-resolution velocity models, to accomplish this using efficient
numerical solution strategies, and to appraise the uncertainties of
the model results. Our study focuses on the first two objectives
by developing an algorithm that regularizes the inversion via the use
of wavelet-based constructive approximations applied to elastic
waveform data, synthetic and observed, in a model that evolves as
part of a gradient-based iterative scheme relying on forward and
adjoint modeling carried out with a spectral-element method. We
neither explicitly optimize the numerical efficiency nor do we spend
much time on the a posteriori model evaluation or uncertainty
analysis, but rather, we present and document the performance of
a series of straightforward data processing steps that gently guide
the often highly nonlinear waveform-difference adjoint tomography
toward accurate and well-resolved models, even when starting from
poor initial models, without much additional burden on computa-
tion time.
In the previous decade, seismic tomography has evolved from

ray-based (Červený, 2001) to finite-frequency kernel-based meth-
ods (Marquering et al., 1999; Dahlen et al., 2000; Zhao et al.,
2000, 2005; Dahlen and Baig, 2002). Under ray theory, which is
an infinite-frequency approximation, traveltime changes are solely
influenced by velocity perturbations along the geometric raypaths.
In reality, phase and amplitude shifts are affected by velocity struc-
ture throughout the whole earth model. The main influence zone is
centered along the geometric ray within an ellipsoid-like volume
that takes the shape of a banana, but because the sensitivity is zero
on the geometric path, there is a hole along the ray (that is, for cross-
correlation traveltime measurements in simple background models)
— hence the name banana-doughnut kernels (Marquering et al.,
1999; Nolet et al., 2005). Under finite-frequency kernel theory,
measurement anomalies can be expressed as a volume integral
of sensitivity kernels against the corresponding model perturbations
(Hung et al., 2000, 2001; Montelli et al., 2004; Nolet, 2008).
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Fréchet sensitivity kernels can be calculated approximately using
dynamic ray theory (Tian et al., 2007a, 2007b) or better yet, esti-
mated numerically via the adjoint method by back-projecting
residuals between observations and synthetics at seismic stations.
These interact with the forward-propagating wavefield to yield an
image of the discrepancies between the estimated and the true
model (Tromp et al., 2005, 2010; Nissen-Meyer et al., 2007a; Tape
et al., 2007). The number of simulations required scales with the
number of earthquake sources or exploration shots, regardless of
the number or type of measurements in use. Above all, the quality
of inversions relies on accurate forward modeling. The advent of
spectral-element methods, which combine the flexibility of finite-
element schemes with the accuracy of pseudospectral methods, has
enabled accurate forward and adjoint wave-propagation simulations
in arbitrary earth-like models (Komatitsch et al., 2002, 2005; Nis-
sen-Meyer et al., 2007b, 2008).
The choice of misfit functional is a crucial factor in adjoint-based

optimization (Fichtner et al., 2008; Bozdağ et al., 2011; Rickers
et al., 2012). Crosscorrelation traveltime measurements (Luo and
Schuster, 1991) are commonly used. These correspond to the offset
that maximizes the crosscorrelation between predicted data and ob-
servations. Compared to waveform inversion, traveltime anomalies
are more linearly dependent on relative velocity perturbations and
there are fewer local minima in the objective function, which render
the inversion problem easier to implement (Pratt, 1999; Alkhalifah
and Choi, 2012). However, crosscorrelation traveltime inversion is
insensitive to much of the information in the waveforms generated
in complex earth models.
Efforts to seek globally optimal models by iterative optimization

techniques were pioneered by Lailly (1983), Tarantola (1984,
1986), and Mora (1987, 1988). The growth in computer power
has enabled full-waveform-difference inversions, which are able
to yield higher resolution images — provided that the inversions
converge (Gauthier et al., 1986; Mora, 1987; Bunks et al., 1995).
However, the primary difficulty preventing the direct and wide ap-
plication of iterative full-waveform inversion is the presence of nu-
merous local minima in the objective function (Alkhalifah and
Choi, 2012). The effects of nonlinearity are especially severe when
the starting model is not in the neighborhood of the target or when
the model contains details of great complexity.
Many careful schemes have been designed to avoid or alleviate

the local-minima problem. One possible solution is to use hybrid
approaches, which rely on traveltime tomography to build good in-
itial models for subsequent full-waveform inversion (Pratt and
Shipp, 1999; Operto et al., 2004; Sirgue and Pratt, 2004). However,
picking arrival times for inversions in smooth starting models is not
an easy task.
Another promising strategy to combat nonlinearity in waveform

inversion is to use a multiscale approach to waveform fitting.
Working successively from long to short wavelengths is usually a
powerful strategy to approach the global minimum (Nolet et al.,
1986) — if indeed such a state exists in an absolute sense. For long-
wavelength measurements, the number of local minima is greatly re-
duced and the inversion problem is more likely to converge faster to
the global solution or to a local minimum in the neighborhood of the
global one, than for the full problem (Bunks et al., 1995; Brossier
et al., 2009). The updated solution from the quasilinear large-scale
problem can serve as a starting point that is closer to the global target
for subsequent inversions at smaller scales.

In seismic tomography, but also in other fields such as electrical-
resistivity tomography (e.g., Plattner et al., 2012), multiscale meth-
ods in a formal, multiresolution sense using wavelet bases and
frames have been formulated in data space (Pratt, 1999; Wu et al.,
2007; Shin and Cha, 2008, 2009), in model space (Chiao and Kuo,
2001; Loris et al., 2007; Hung et al., 2010; Loris et al., 2010; Si-
mons et al., 2011), or in the space of the imaging kernel (Wu and
Yang, 1997; Chevrot and Zhao, 2007). Simons et al. (2011) and
Charléty et al. (2013) apply a spherical wavelet transform in model
space for global geophysical model representation, analysis, and
construction by regularized inversion. Chevrot and Zhao (2007) and
Chevrot et al. (2012) introduce a multiscale strategy that effectively
compresses sensitivity kernels in global tomography.
Bunks et al. (1995) and Akçelik et al. (2003) prove the effective-

ness of multiscale approaches in reducing problems with local min-
ima. Bunks et al. (1995) develop a full-waveform inversion based
on multigrid frequency decompositions applied to the 2DMarmousi
model (Versteeg, 1993). Without elaborating, they write that scale
decomposition by wavelets might be even more effective. Our paper
picks up on their suggestion in developing a wavelet-based multi-
scale approach to waveform inversion. We refrain from making
acoustic approximations and use a spectral-element method to solve
the elastic wave equation, removing surface waves using tapered dip
filtering prior to processing. We implement scale decompositions of
the seismogram using wavelets rather than band-passing via the
Fourier transform. The discrete wavelet transform provides a non-
overlapping scale decomposition and is easily computable for 1D
signal traces. In this paper, we apply our wavelet-based multiscale
scheme exclusively in the data space. We do not regularize in the
model space per se, although a plethora of approaches (e.g., Akçelik
et al., 2002; Loris et al., 2010; Charléty et al., 2013) remains to be
tried in combination with our methodology.
The spectral-element method of wavefield modeling is imple-

mented on Gauss-Lobatto-Legendre grids (Komatitsch and Tromp,
2002a, 2002b). These grids provide a natural parameterization for
all spatial fields, such as the velocity model and all kernels, where
of course care must be taken to adequately represent their fine struc-
ture (e.g., Zhou et al., 2004; Boschi et al., 2006; Trampert and Spet-
zler, 2006). Although we do engage in some smoothing of the kernels
for numerical stability (e.g., Tape et al., 2009; Zhu et al., 2012) as
described below, we do not reparametrize the spatial fields, although
various such strategies hold promise (Chevrot and Zhao, 2007; Ficht-
ner et al., 2009; Simons et al., 2011; Chevrot et al., 2012), especially
those using 2D and 3D wavelets.
Wavelets come with great flexibility in terms of the selection of

the basis class (e.g., orthogonal, biorthogonal, bandlimited or not)
or type (e.g., number of vanishing moments, separability), and there
is a wealth of choice for the inversion-decomposition parameters
(such as the maximum decomposition level, the progression
through successive scales, and the number of iterations performed
up to each scale). We illustrate the main concepts of our procedure
using a toy model first, studying in particular the optimal basis set,
decomposition level, and number of iterations per scale. Finally, we
demonstrate our approach on a synthetic data set generated in the
Marmousi model.

MULTISCALE WAVEFORM TOMOGRAPHY

In this section, we briefly present our method of using wavelet-
based multiscale analysis in data space, as applied to waveform-
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difference adjoint tomography. We give guidance on how to select
suitable wavelets, the maximum decomposition level, and the num-
ber of iterations in each scale. We discuss how to implement an
adjoint inversion within a single wavelet scale, and we show how
to progress from scale to scale, developing an effective reconstruc-
tion workflow across the wavelet scales.

Choice of misfit

The flexibility of the adjoint method (Tromp et al., 2005) allows
for great freedom in measurement because the Fréchet kernel ex-
pressions retain their form except for the necessary changes to
the adjoint sources. Another advantage is that the bulk of the com-
putational cost is due to the number of wavefield simulations, which
solely depends on the number of sources (and sometimes not even
that, e.g., Capdeville et al., 2005; Krebs et al., 2009; Li et al., 2012),
and it is unaffected by increasing the numbers or types of measure-
ments made. Constructing Fréchet derivatives for tomographic
models usually requires one forward and one adjoint simulation
for each source.
Traveltime measurements are widely used in global tomography

owing to their relatively good inversion convergence behavior. Per-
turbations in traveltime are quasilinearly dependent on the relative
perturbations in wave speeds, making the optimization easier and
faster to converge (Pratt, 1999). Traveltime anomalies can be esti-
mated by crosscorrelation of synthetic and observed arrivals iden-
tified using such software as FLEXWIN (Maggi et al., 2009).
However, traveltime inversion ignores the effect of velocity anoma-
lies on the shape of seismic arrivals and wave speed heterogeneities
(exactly) on the raypath result in amplitude changes but no time
delay (Nolet et al., 2005). Furthermore, arrivals in the seismogram
may not be distinguishable and separable, especially when the ini-
tial models are smooth. Traveltime inversion only uses one number
(the measurement) for each (windowed and filtered) arrival. In con-
trast, waveform-difference tomography, as we understand it, solves
the full elastic wave-propagation problem in heterogeneous media,
and it attempts to explain all of the available recorded information;
see Figure 1 for a cartoon illustration. If the inversions converge,
waveform tomography has the potential to reveal more structural
information than do traveltimes.

Waveform-difference adjoint tomography

The waveform-difference misfit function χðmÞ computed in a
model m can be expressed as the sum of the squared residuals be-
tween the synthetic waveforms sðxr; xs; t;mÞ and the corresponding
observations dðxr; xs; tÞ, over all sources s located at xs and receiv-
ers r at xr, over some time window T:

χðmÞ ¼ 1

2

X
s;r

Z
T

0

ksðxr; xs; t;mÞ − dðxr; xs; tÞk2dt: (1)

Gradient methods require the gradient of the misfit function, the
Fréchet derivative of χðmÞ. We write

δχðmÞ¼
X
s;r

Z
T

0

½sðxr;xs; t;mÞ−dðxr;xs; tÞ� · δsðmÞdt; (2)

where δsðmÞ is the displacement-field perturbation due to model
perturbations from m, which can be approximated under the Born
theory (Wu and Aki, 1985).

Tromp et al. (2005) show how the misfit perturbation of equa-
tion 2 in an elastic earth model can be expressed via the cumulative
effect of sensitivity kernels Kρ and Kcijkl in the model parameter
density ρ and elastic constants cijkl, respectively. With respect to
their perturbations δρ and δccijkl, we rewrite the expressions of
Tromp et al. (2005) and Zhu et al. (2009) by collecting the elastic
kernels into a tensor Kc to allow the following concise form:

δχ ¼
Z
V
½KρðxÞδρðxÞ þKcðxÞ∶∶δcðxÞ�d3x; (3)

where the dependence on the model m is implicit. The quadruple
dot denotes tensor contraction over all four indicesKcðxÞ∶∶δcðxÞ ¼
Kcijkl ðxÞδcijklðxÞ using Einstein’s summation convention. The ker-
nels for the density and the elastic-tensor components can be deter-
mined from the interaction between the forward (s) and adjoint (s†)
wavefields. Again dropping the explicit notational dependence on
the model m, we can write

KρðxÞ ¼ −
X
s;r

Z
T

0

s†ðxr; x; tÞ · ∂2t sðx; xs; tÞdt; (4)

KcðxÞ¼−
X
s;r

Z
T

0

½∇s†ðxr;x;T− tÞ�½∇sðx;xs; tÞ�dt; (5)

where s†ðx; xr; tÞ is the waveform adjoint wavefield obtained by
back-projecting the time-reversed waveform residuals between pre-
dicted data and observations at receiver xr. The interaction of the
adjoint wavefield s†ðxr; x; tÞ with the forward wavefield sðx; xs; tÞ
yields station sensitivity kernels for each source-receiver pair
ðxs; xrÞ. The event kernels (Tape et al., 2007), or gradients of the
misfit function corresponding to a single source at xs, are defined as
the sum of all station sensitivity kernels, which can be efficiently
obtained by back-projecting all waveform residual measurements
from all receiver stations simultaneously. We refer to the sum of

−50 0 50 100 150 200 250

Residual norm = 146%
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syn
syn−obs

Figure 1. Comparison of crosscorrelation traveltime and wave-
form-difference measurements between observed (d, top) and pre-
dicted (s, top) waveforms. The norm of the waveform residual
s − d, represented by the bottom line, is expressed relative to the
norm of d (in percent, 146% in this example). The traveltime differ-
ence (ΔT ¼ Ts − Td ¼ 4.56 s in this example) is the time shift that
maximizes the crosscorrelation between the seismic arrivals
contained within the window of interest (shaded gray). Traveltime
inversion aims to minimize the time shift, and waveform-difference
inversion seeks to flatten the residual waveform by fitting all values
within the window.
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all event kernels as misfit kernels (Tromp et al., 2005), or gradients
of the summed misfit over all sources and receivers in equation 1.
We can reparametrize equations 4–5 into seismic-velocity and den-
sity kernels and express the misfit anomaly in equation 3 as a func-
tion of velocity and density perturbations (Tromp et al., 2005).

Multiscale approach based on wavelets

Compared to the limited applicability of traveltime-based ap-
proaches, methods based on direct waveform subtraction would
appear to be promising. However, the potential to explain all avail-
able information, including phase and amplitude simultaneously,
exacerbates the nonlinearity of the inverse problem and causes
waveform-difference adjoint tomography to suffer from conver-
gence to secondary minima. The quasilinear dependence of travel-
time anomalies on wave speed perturbations suggests that a hybrid
method of traveltime fitting followed by amplitude inversion will
provide better velocity resolution than explaining traveltime mea-
surements alone (Wang and Houseman, 1995).
However, because long-wavelength measurements are more lin-

early related to wave speed perturbations, a multiscale approach
might be a solution to the convergence problem even for wave-
form-difference inversions. Starting with low-frequency measure-
ments, we may try to image the long-wavelength structures of the
model before proceeding to explaining the higher frequencies in the
seismogram, which should be able to map short-wavelength varia-
tions in the model with high resolution.
Compared to global representations via Fourier transforms,

wavelet transforms admit a description of local features of a signal
in the space and frequency domains. Wavelet transforms provide
efficient spectral decompositions of the seismogram by extracting
nonoverlapping phase-space information at different scales from lo-
cal stretches of the time series. Another advantage of wavelet trans-
forms lies in the flexibility to choose from a collection of orthogonal
or biorthogonal bases to optimally represent the data under consid-
eration. Wavelet transforms are invertible, and successive approx-
imations over discrete ranges of scales do not display the truncation
artifacts that typify Fourier-based filtering.
Multiscale waveform-difference inversion involves multiscale

analysis of the seismograms sðtÞ, whereby we refer to either syn-
thetic data or observations, which we distinguished in equation 1.
We consider two sets of scaling functions ~ϕj

k for the analysis and ϕ
j
k

for the synthesis as well as two sets of wavelet functions ~ψ j
k for

analysis and ψ j
k for synthesis, where j indicates a particular scale

and k denotes translation in time (Beylkin, 1992; Daubechies, 1992;
Mallat, 2008). In the case of orthogonal transforms, ~ϕj

k ¼ ϕj
k and

~ψ j
k ¼ ψ j

k. Using these functions, the input signal sðtÞ can be ex-
panded in the synthesis (wavelet and scaling) functions using the
inner products of the input signal with the analysis (wavelet and
scaling) functions. The expansion coefficients

aJk ¼ hs; ~ϕJ
ki; (6)

djk ¼ hs; ~ψk
ji; (7)

are termed approximation (scaling) coefficients and detail (wavelet)
coefficients, respectively. Denoting the maximal scale for the break-
down of the input signal by J, the signal can be represented as the
sum over all translates k and scales j ¼ 1; : : : ; J as

sðtÞ ¼
X
k

aJkϕ
J
k þ

XJ
j¼1

X
k

djkψ
j
k: (8)

We denote the partial reconstruction of the signal up to scale j only
as sjðtÞ, which is thus given by

sjðtÞ ¼
X
k

aJkϕ
J
k þ

XJ
j 0¼jþ1

X
k

dj
0

k ψ
j 0
k ; (9)

¼
X
k

ajkϕ
j
k: (10)

We call J the depth of the decomposition. The finest level of infor-
mation about sðtÞ is contained in the lowest-order wavelet coeffi-
cients d1k. The coarsest level of information is obtained by the
disregard of all wavelet coefficients, which leaves sJðtÞ as a recon-
struction by scaling functions only, using the scaling coefficients aJk .
In this notation, the original full-resolution seismogram is denoted
sðtÞ ¼ s0ðtÞ. On the dyadic grids typically used for the discrete
wavelet transform, the physical scale lengths of d1k, a

J
k , and all levels

in between, will depend on the initial sampling rate of the signal and
its total length (Strang and Nguyen, 1997; Jensen and la Cour-
Harbo, 2001; Simons et al., 2006).

Choice of optimal wavelets

The main issue with the multiscale approach is how to select a
collection of wavelets that are “optimally” suitable for the wave-
form inversion problem. The common ones are the orthogonal
Daubechies (1992) wavelet families and the biorthogonal Cohen-
Daubechies-Feauveau (CDF) wavelet sets (Cohen et al., 1992).
Daubechies wavelets are asymmetric, but the synthesis and analysis
transforms share the same filters, whereas CDF wavelets are
symmetric with distinct synthesis and analysis functions. To be
practical for seismogram decomposition in the context of wave-
form-difference tomography, three factors should be particularly
considered:

1) The optimal wavelet basis will depend on the specific data
under consideration. As a general rule, we choose wavelets with
large numbers of vanishing moments, for smooth signals.

2) Wavelet expansions under which seismogram synthetics and
observations have a high degree of similarity, measured by the
mean-squared error of the residual waveforms, are preferred.

3) The computational cost of wavelet analysis and synthesis
should be considered, especially for massive data processing.
Decomposition using wavelets with larger numbers of vanish-
ing moments is more expensive than with those with fewer van-
ishing moments, which involves fewer filtering coefficients.

Choice of decomposition parameters

Given optimal wavelets, the next crucial issue for the multiscale
approach is the choice of the maximal decomposition scale and the
successive reconstruction levels. The “best” decomposition depth
should provide a good and easy starting point at which the synthetic
seismograms are close to the corresponding observations in the
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subspace defined by the wavelet basis at the maximal chosen scale
level. Successive reconstructions can be terminated when they
resemble the input signals according to a mean-squared misfit con-
vergence criterion.

Choice of optimization method

Given optimal wavelets, maximum decomposition scale, and cur-
rent analysis depth, observed and predicted seismograms can
be wavelet transformed. We apply the spectral-element wavefield
simulation and adjoint calculation of gradients combined with a
conjugate-gradient algorithm to reduce misfit functions defined
in the wavelet subspace. Other optimization methods may be sub-
stituted here (Brossier et al., 2009; van Leeuwen and Herr-
mann, 2013).

Choice of iterations at an individual scale

Misfits involving measurements down to a certain scale are de-
creased iteratively by following the conjugate-gradient directions.
When the waveform residuals between the partially reconstructed
synthetics and observations are smaller than a certain tolerance,
when the model improvements are no longer obvious, or when the
total number of iterations exceeds a certain predefined maximum,
the iterations at that scale can be stopped. Switching to the next
scale, cumulatively, over time will allow the adjoint procedure
to fit more oscillatory waveform information, hence illuminating
smaller structures in the model space more clearly.

Summary of the algorithm

Building on our prior discussion, we summarize the basic recipe
for multiscale waveform-difference adjoint inversion as follows:

1) Based on the synthetics computed in the initial model, and
on the observed seismograms, we define the multiresolution
parameters, including the wavelet family, the number of vanish-
ing moments, and the maximal decomposition scale J, i.e., the
starting level.

2) We initialize j ¼ J (if coming from step 1), or we update to j ¼
j − 1 (if coming from step 4).

3) Iterative minimization within scale level j. We make wavelet-
transformed measurements on the observed and synthetic seis-
mograms; we run forward and adjoint wavefield simulations to
compute the gradient of the misfit; we update the current model
in the search direction weighted by the step length estimated
using a line search, as follows:

a)We conduct forward simulations in the current model
mðxÞ with the spectral-element code, to obtain synthetic
seismic data sðxr; xs; t;mÞ at all stations and for all
receivers in the time window of interest.

b)We wavelet transform and partially reconstruct data
and the synthetics in the current model up to level j to
yield the subbands of seismograms sjðxr; xs; t;mÞ and
djðxr; xs; tÞ in the notation of equations 1, 9, and 10.

c)We choose the specific time windows of length T to make
the measurements of interest. Usually, we adopt longer
windows for longer wavelength data up to higher scale
levels and narrower windows for shorter wavelengths as
the scale levels decrease.

d)We calculate the difference between the windowed and
partially reconstructed synthetics sjðxr; xs; t;mÞ and
the observed seismograms djðxr; xs; tÞ. Our measure-
ments of the waveform-difference misfit become, in
the notation of equation 1,

χjðmÞ¼ 1

2

X
s;r

ZT

0

ksjðxr;xs; t;mÞ−djðxr;xs; tÞk2dt:

(11)

e)We carry out an adjoint wavefield simulation with the
spectral-element code, and we compute the interaction of
the adjoint with the forward wavefields to obtain the gra-
dient of the misfit as in equations 3–5, which we now
denote g, evaluated at model m.

f)We choose a search direction by conjugate gradients;
at the kth iteration, pk ¼ −gk þ βkpk−1, where p1 ¼
−g1 for the first iteration, k ¼ 1, and βk ¼ gk ·
ðgk − gk−1Þ∕ðgk−1 · gk−1Þ for k > 1.

g)We perform a line search to obtain a scalar step size νk

to minimize the misfit function χj along the direction
defined by pk in the previous step.

h)We update the current model in the search direction of
step g weighted by the step size estimated in step f to
compute the updated model mkþ1 ¼ mk þ νkpk, and we
return to step a.

4) The loop in step 3 is repeated until the partially reconstructed
seismograms for scale j fail to add more information for misfit
improvement, after which we return to step 2 to add shorter
wavelength information by switching to the next scale of
reconstruction j − 1.

5) We repeat the entire iteration scheme in steps 2–4 until conver-
gence at the full-resolution scale j ¼ 0.

NUMERICAL EXPERIMENTS — I

Geometry of the toy model

Our first test model measures 480 × 480 km, with 40 mesh nodes
uniformly distributed in each dimension; thus, there are 1600 mesh
elements in total. In each of those, there are 5 × 5 Gauss-Lobatto-
Legendre integration points, for a total of ½40 × ð5 − 1Þ þ 1�2 ¼
25;921 unique grid points, or ½40 × 5�2 ¼ 40;000 S-wave speeds.
As shown in Figure 2, we designed the source-receiver geometry
to be reminiscent of a vertical seismic profile exploration survey.
We placed 12 virtual shots near the surface and 11 in a source “bore-
hole” on the right of the study area. We aligned 30 virtual receivers
near the surface and 30 in a receiver borehole on the left side of the
study area. We sample the wavefield every 6 × 10−2 s for 4800 time
steps. Sources and receivers were spaced 2 km from the edges to
avoid boundary effects in the simulation. The target model for our
inversion is shown in Figure 2 (left panel). It has a background S-
wave speed β ¼ 3500 m∕s and two circular anomalous areas whose
S-wave speeds are 3100 m∕s and 3900 m∕s, i.e., �11% perturba-
tions relative to the background velocity. Station spacing
Δx ¼ 1.5 km, and the shot interval Δs ¼ 4 km, both of which sat-
isfy the wavelength thresholds λ∕Δx > 2 and λ∕Δs > 2 to guaran-
tee unaliased shot and receiver wavefields (Levander and Nolet,
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2005) for wavelengths 300–500 km. The sampling interval for
our simulations, Δt ¼ 6 × 10−2 s, satisfies the Nyquist-Shannon
and the Courant stability criteria (Virieux, 1986; Komatitsch and
Tromp, 2002a). We used a first-derivative Gaussian source-time
function.

Multiscale seismograms

As illustrated in Figure 3, we use a series of Daubechies (1988)
wavelets with six vanishing moments to decompose the observed
(thick solid lines) and initial-model synthetic (thin dashed lines)
displacement seismograms over eight scales, and we successively
reconstruct them from the top level down to 8, 7, and 5 scales (dif-
ferentiated by color). For each of the observed-synthetic approxi-
mation pairs, we also show the waveform difference (thin solid
lines) and quote the norm of this residual, expressed as a percentage
of the norm of the observations. In the simple toy model of Figure 2,
the multiresolution “measurements” shown in Figure 3 are simple,
easily interpreted, and quickly made directly from the seismograms
after one forward simulation.
The source-receiver pair for which the seismograms are being plot-

ted in Figure 3 is the path highlighted by the line in Figure 2. Because
the chosen trajectory samples the anomalously slow region in the
target model, the synthetics calculated with a background S-wave
speed of 3500 m∕s in the featureless initial model arrive well before
the observations, which is clearly visible by their relative time shift,
especially at the lower scale numbers that represent higher frequency
arrivals. The measurements are increasingly oscillatory in function of
descending scale number, and their relative residual norm increases.
The partial reconstruction up to scale 5 is able to represent almost all
of the features of the original data (in black), thereby defining an
effective resolution and compression criterion, which is, however,
of no further significance to us here. Scale 0 formally captures all
of the original signal in its entirety.

No noise was added to our data set. Uncorrelated, additive Gaus-
sian noise would be easy to remove using thresholded wavelet-
denoising techniques (e.g., Simons et al., 2009). On the other hand,
jointly estimating and fully characterizing structural and signal-gen-
erated noise would be so involved that we continue to focus on the
performance of the algorithm as applied to noise-free data for the
sake of simplicity and brevity.

Multiscale waveform-difference station sensitivity kernels

How do the new wavelet multiscale waveform-difference mea-
surements, introduced in the previous section and illustrated in Fig-
ure 3, sense the discrepancy between the target model and its initial,
current, or final estimate? As discussed in the previous section, we
can address this question by inspection of the station sensitivity ker-
nels of the chosen waveform-difference misfit criterion defined for
the corresponding source-station pair, with respect to model pertur-
bations of the current model iterate. Their values reflect the spatial
distribution of where S-wave speed perturbations to the model de-
crease the waveform difference measurements for the particular
source-station pair, up to different wavelet-scale levels.
For the source-receiver pair connected by the line in Figure 2, we

show the multiscale waveform-difference station sensitivity kernels
in Figure 4. These are obtained via the zero-lag crosscorrelation of the
forward wavefield from the source and the adjoint wavefield from the
receiver, by back-projecting the time-reversed waveform residuals up
to different scale levels from the station back to the source. For a fixed
relative location of source and receiver, the width of the first Fresnel
zone at the midpoint along the geometric raypath is proportional to
the square root of the wavelength (Dahlen and Tromp, 1998; Baig
et al., 2003). Figure 4 serves as a graphical illustration of this
behavior.
The kernel up to wavelet scale 8 has a less oscillatory structure

than those of the kernels corresponding to the shorter wavelength,
lower scale measurements, shown up to scales 7
and 5. The positive values of the sensitivity ker-
nel up to scale 8 reflect the need to negatively
adjust the model in which the synthetics are
being calculated to reduce the misfit with respect
to the model in which the observations were
made. As we know from Figure 2, the raypath
shown directly samples the wave speed region
that is anomalously slow when compared to the
homogeneous initial-model background velocity.
The steepest-descent model update is indeed the
negative of the misfit kernel (Tape et al., 2007).
In contrast, at shorter wavelengths, the complex
rippled structures and overall narrower Fresnel
zones are less easily related to a simple reliable
direction of model improvement. This general
behavior goes a long way toward explaining the
issues plaguing stability and convergence in
high-frequency seismic waveform modeling.

Iterative model evolution and final
data fits

Through the multiscale representations of the
recorded seismograms and their spectral-element
synthetics, we can make waveform-difference
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Figure 2. The 2D toy experiment for wavelet-based multiscale waveform-difference
inversion. (a) Target S-wave speed model of a 3500 m∕s background with two circular
�11% anomalies. The 23 shot points and 60 receivers are marked by stars and tri-
angles, respectively. (b) Ray coverage in the initial model, which is homogeneous with
the background wave speed. The outlines of the anomalies remain visible as circles.
The line connecting one source-receiver pair will be used later to illustrate our
analysis.
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measurements as the model evolves. Within each iteration, we use
the appropriate misfit sensitivity kernels for all stations and all
shots. The model is improved iteratively by following the conju-
gate-gradient search directions determined by the current misfit
kernel and the previous update direction.
As can be seen in Figures 3 and 4, the seismograms up to the

largest scales (for example, scale 8) correspond to long-wavelength
(in the time domain) measurements. They correspond to a very blur-
ry sensitivity to long-wavelength wave speed structure (in the space
domain). Measurements and kernels made up to subsequent, lower
scales gradually increase the level of detail in the data (time) domain
and the model (space) domain. We run the adjoint inversion within a
certain scale until no further obvious improvement of the solution
can be obtained; see Figure 5. After that, we switch to the next,
lower scale. At the end of this procedure, we have used all of the
available data down to the lowest full-resolution scale (in our ex-
ample, scale 5 contained virtually all of the information in the seis-
mogram at this sampling rate) and have obtained a high-resolution
final result. In our toy experiment, the synthetics generated in the
final model match the observations extremely well, from long-
wavelength trends down to short-wavelength details, as shown in
Figure 6.
From the final model shown in Figure 5, we can see that the high-

wave speed (fast) anomaly can be recovered nearly perfectly, but the
low-wave speed (slow) area continues to lack some definition. We
attribute the relative difference in model resolution first of all to
the source-receiver geometry. Approximate connections between
ray density, resolution, and a posteriori uncertainty have been for-
mulated for the adjoint-modeling framework by Fichtner and Tram-
pert (2011). As can be seen in Figure 2, the ray coverage is less
dense in the bottom half of the model domain, which includes
the slow anomaly. A secondary explanation is that slow anomalies
are inherently more sensitive to wavefront healing (Williamson and
Worthington, 1993; Nolet and Dahlen, 2000; Hung et al., 2001;
Dahlen, 2004), which further degrades their potential resolution.
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Figure 3. Initial data fits. Wavelet decomposition of observed (thick
solid lines) and synthetic (thin dashed lines) seismograms using the
target and initial models shown in Figure 2, where the particular
source-receiver pair was highlighted. Colored curves represent
the partial reconstructions of the original seismograms down to
scales 8, 7, and 5, as labeled. The residual waveforms, obtained
by subtraction of the observed from the synthetic waveforms, are
shown by the thin solid lines, together with their norm, which is
expressed as a percentage relative to the norm of the observations
down to that scale.
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Figure 4. Multiscale station sensitivity kernels corresponding to waveform-difference measurements in Figure 3. The initial velocity model
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and (c), fine-scale, short-wavelength data give rise to more complicated rippled structures.
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Comparison with classical misfit functions

The success of our new wavelet-multiscale waveform-difference
method, which we introduced via the toy model, can be properly
appreciated by comparison with more classical measurements and
inversion methods that use the same adjoint modeling of the wave
equation, but work either with crosscorrelation traveltimes, or with
direct or filtered (but not multiscale) waveform-difference measures.
To this end, we conducted experiments, for use with the classical
methods, similar to the one described above, but with more challeng-

ing (i.e., farther from the target) starting models. Indeed, previous
studies (Gauthier et al., 1986; Mora, 1987) showed that if the initial
model is far from the target, gradient-based iterative algorithms might
terminate into secondary solutions. In this subsection, we show the
spectacular failure of waveform-difference inversions conducted at
“full resolution” in such a case. We then show how regularization
via conventional frequency filtering or, alternatively, using our wave-
let-based multiscale-approach produces very well-resolved con-
verged solutions, with the metrics favoring the wavelet method.
For a starting model, we chose a uniformly high wave speed,

equal to the largest anomalous velocity in the tar-
get model (a þ11% perturbation relative to the
average velocity); see Figure 7a. All experiments
were run to numerical convergence (except in the
divergent case shown), with the number of iter-
ations mentioned below.
The use of crosscorrelation traveltimes as mea-

surements continues to result in a reasonable fi-
nal model, as shown in Figure 7b. We attribute
this to the pseudolinear misfit behavior of the
measurements being sensitive enough to the great
discrepancy in wave speed in this poorly chosen
initial velocity model. In contrast, direct wave-
form-difference inversion of the seismograms,
without any kind of filtering or multiscale decom-
position, sends the inversion into an incorrect up-
date direction from which it fails to recover. The
result is a divergent final model that is unreason-
ably far from the target; see Figure 7c.
A hybrid approach (not shown), whereby the

crosscorrelation traveltime inversion, to recover
the overall background and large-scale struc-
tures, was followed by direct waveform-differ-
ence inversion of the remaining observational
discrepancies, succeeded in providing more ac-
curately detailed information on the wave speed
anomalies compared to Figure 7b.
Figure 7d shows the results from a multifre-

quency inversion in the Fourier domain. In the
first stage, synthetics and observations were low-
pass filtered (Stockwell, 1999) with a cut-off fre-
quency at 0.045 Hz. For the second stage, full-
resolution measurements (with an approximate
bandwidth of 0.084 Hz) were used in an iterative
waveform inversion starting from the model ob-
tained in the first stage. The end result reprodu-
ces the true model with great fidelity.
Finally, Figure 7e shows a final model obtained

via the wavelet multiscale approach applied to the
starting model in Figure 7a. By breaking down
to eight wavelet scales the seismograms for syn-
thetics and observations, and starting with the
coarsest measurements, the inversion successfully
recovers the overall background model. Adding
the detail information back to the data, they begin
to gradually image the anomalies, blurrily at first.
The successive inclusion of all of the remaining
structure in the seismograms approaches the target
anomalies with good resolution. The resilient
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Figure 5. Inversion results for the toy model shown in Figure 2. Using multiscale wave-
form-difference adjoint modeling with time-domain wavelets, the model evolves
through the iterations, as annotated, from the initial homogeneous, average background
toward the target. In the final fits, the low-wave speed anomaly is less well recovered due
to poorer ray coverage toward the bottom of the model domain. Some final fits to the
data are shown in Figure 6.
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border artifacts in Figure 7d–7e are due to the location of sources and
receivers being near the edges of the model domain, which introduces
some spurious structure in the kernels.
Adopting the codes TT for traveltime shown in Figure 7b, WD

for direct-waveform difference shown in Figure 7c, TH for the

hybrid method (not shown), MF for the multifrequency approach
in Figure 7d, and MS for the wavelet multiscale result shown in
Figure 7e, the metrics for the experiments discussed above are
as follows: We computed the number of iterations (TT 15, WD
10, TH 30, MF 33, MS 25), the correlation coefficient of the final
model with the true model (TT 0.73, WD −0.01, TH 0.83, MF 0.74,
MS 0.85), the root-mean squared (rms) misfit of the model relative
to the norm of the true model, in percent (TT 3.4, WD 16, TH 2.7,
MF 3.9, MS 2.7), the rms traveltime misfit relative to the initial
misfit, in percent (TT 2.1, WD 107, TH 1.3, MF 1.0, MS 1.0),
and the rms waveform misfit relative to the initial misfit, in percent
(TT 13.5, WD 63.8, TH 7.5, MF 6.6, MS 5.5). Finally, we com-
puted the relative CPU times, in percent (TT 68, WD 47, TH
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Figure 6. Final fits. Multiscale comparison of the synthetics in the
final model shown in Figure 5, with the observations for the same
source-receiver pair as used in Figure 3. For ease of comparison, the
layout is identical to that of Figure 3.
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obtained using (b) crosscorrelation traveltimes, (c) direct waveform-differences, (d) multifrequency filtered waveform-differences, and finally,
in (e) using the new wavelet multiscale waveform-difference measurements of this paper. Traveltime-based adjoint inversions converge to
acceptable if smeared versions of the anomalies of interest. Waveform-difference modeling, by itself, succumbs to the severe nonlinearity of the
misfit functions. The multifrequency and wavelet multiscale approaches yield well-resolved results.

D
ep

th
 (

km
)

Target P-wave speed model
0

a)

b)

1

2

3 P
-w

av
e 

sp
ee

d 
(k

m
/s

)

2

3

4

5

Offset (km)

D
ep

th
 (

km
)

Initial P-wave speed model

0 2 4 6 8

0

1

2

3

P
-w

av
e 

sp
ee

d 
(k

m
/s

)

2

3

4

5

Figure 8. (a) The P-wave speed Marmousi model and (b) its iso-
tropic Gaussian-kernel smoothed version that constitutes our start-
ing model. The corresponding S-wave speed model (not shown) is
derived from the compressional model assuming equality of the
Lamé parameters as appropriate for a Poisson solid.

Wavelet multiscale waveform tomography WA87

D
ow

nl
oa

de
d 

06
/1

6/
14

 to
 1

28
.1

12
.2

2.
12

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



120, MF 127, MS 100). All metrics favor the wavelet multiscale
method (except of course the number of iterations for the divergent
WD experiment).
In summary, our initial suite of experiments illustrates the success

of our proposed multiscale waveform-difference approach in alle-
viating the convergence problem of waveform-difference based ad-
joint modeling techniques. The ability of wavelets to naturally break
down and partially reconstruct the data as the iterations progress
allows the imaging to proceed quite intuitively from the large-scale
structures down to some of the finest details.

NUMERICAL EXPERIMENTS — II

Our experience with the toy model, for a variety of starting mod-
els and using a variety of measurement types, gives us confidence to
apply the new wavelet-multiscale waveform-difference approach in
a realistic setting relevant to seismic exploration problems. In this
section, we illustrate the performance of our method as applied to
data generated in the Marmousi model (Versteeg, 1993). To simu-
late fully elastic wavefields, we converted the acoustic model to an
elastic one by assuming that the material is a Poisson solid; that is,
β ¼ α∕

ffiffiffi
3

p
. Gauthier et al. (1986), among others, discuss how in

gradient-based least-squares waveform inversion, initial models
should be reasonably accurate to avoid getting trapped into local
minima. Thus, to test the effectiveness of our wavelet multiscale
approach, we have wanted to start from a model rather far from
the target. To obtain our starting model, we generated a smooth
version of the target model by homogenizing the complex geologic
structures with an isotropic Gaussian kernel with a standard
deviation of 300 m, equivalent to an e-folding width of 850 m. In-
trinsic attenuation remains unaccounted for. The resulting models
are shown in Figure 8. We applied free-surface conditions at the
top of the model and perfectly matching layer absorbing boundary
conditions (Festa and Nielsen, 2003) on the remaining three sides
of the model domain. All data generated were considered to be
noise free.
In the 2D synthetic setting, 112 shots are deployed at a 10 m

depth with an 80 m horizontal interval and 361 2C (vertical: Z-com-
ponent and horizontal: X-component) receivers at 5 m depth with
25 m horizontal spacing. The sampling interval was taken to be
5 × 10−4 s, and the recording duration was set to 6 s. The maximum
frequency modeled is 25 Hz, using a Ricker-wavelet (second deriva-
tive of the Gaussian) source. To resolve at least five points for the
shortest wavelength, we use 120 elements in the horizontal and 40
elements in the vertical direction. As in the toy model, the elements
are distributed uniformly. The mesh was not designed to honor
known discontinuities (Zhu et al., 2009; Capdeville et al., 2010),
nor are the positions of the interfaces model parameters. During
the course of the algorithm, we run all simulations on the same
numerical grid, despite the fact that we approach the tomographic
inverse problem from the coarse to the fine scales in data space, and
by extension in the space of the kernels and, ultimately, the model
space. Scale-adaptive mesh refinement (e.g., Akçelik et al., 2002) or
even wavelet-decomposed operator approaches (e.g., Le Bras et al.,
1992; Le Bras and Mellman, 1994; Wu and Yang, 1997) might lead
to computational speedup if further upscaling of our methods was to
be sought, e.g., for large-volume 3D exploration or global settings.
Surface waves are naturally present with the free-surface boun-

dary conditions via the constructive interference of P-waves and
vertically polarized S-waves. Nevertheless, adhering to industry

practice, we performed band-pass filtering with cut-off frequencies
at 3 and 30 Hz, and dip-filtering with a cut-off slope at 0.0011 s/m
remove to the predictions from the initial model and the syn-
thetic “observations” in the evolving target model, to remove low-
frequency and low-velocity surface waves. Our processing scheme
was carried out using Seismic Un*x and also incorporated time-
domain tapering to circumvent Fourier-domain edge artifacts and
antialiasing techniques to remove the distortions caused by spatial
and temporal undersampling (Stockwell, 1999). Examples for one
shot gather (the 20th shot located 1.8 km from the left model boun-
dary) are shown in Figure 9 for the target model. We duly note that
the synthetic seismograms in the initial model are devoid of many of
the complex features that would be generated by reflectors, which
are absent in the starting model.

Choice of wavelets

Although we have shown before how to use wavelets to perform a
multiscale decomposition of the seismograms before delivering
waveform-difference measurements made on partially reexpanded
observations to the spectral-element based adjoint method, we have
not advocated any particular class or type of wavelets. To realize the
gains of the multiscale method, the selection of a basis of wavelets
suitable to the break down the seismograms in the target and starting
model is guided by three criteria.
First, our wavelet basis should be able to naturally represent the

oscillatory properties of the seismograms. Wavelets with large num-
bers of vanishing moments are generally adept at encoding smooth
and oscillatory features in the seismograms, whereas wavelets with
fewer vanishing moments capture rough and sudden variations
(Tae-Kyung and Kennett, 2002). Second, the wavelets are chosen
so that the similarity between the synthetic and observed waveforms
is initially great enough to result in relatively small residuals in the
first iteration. Third, on the grounds of efficiency, we are interested
in choosing wavelets that lead to particularly sparse representations
of the seismograms.
Figure 10 illustrates the effect of our wavelet choices by plotting

the mean-squared error between the seismograms in the initial and
target models, at a particular scale as indicated in the legend, and for
a variety of orthogonal Daubechies (1988) and biorthogonal Cohen
et al. (1992) wavelet types. The orthogonal wavelet bases (D) out-
perform the biorthogonal ones (CDF) with respect to the misfit
metric.
Using a somewhat loose interpretation of the three criteria

outlined above, we settled on the orthogonal Daubechies 12-tap
wavelets (D12 with six vanishing moments) as the optimal basis
functions to conduct multiscale waveform-difference adjoint inver-
sions in the Marmousi model. Using these wavelets for the (partial)
reconstructions of the seismograms gives rise to adequate and
sparse representations of the data, and it leads to small discrepancies
between the initial synthetics and the observations.

Multiscale seismograms

All seismograms were decomposed into nine scales for the suc-
cessive reconstruction and inversion. Our waveform-difference-
based adjoint algorithm first fits the longest-wavelength measure-
ments, at scale 9. We switch to a lower scale as the residuals in
the inversion within a certain scale level off. Overall, the agreement
between the seismograms in the evolving model and the target
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model improves, when measured at the lowest scale taken into
consideration.Figure11ashowstherelativelyhighdegreeofsimilarity
between the initial (green) and the target (black) traces at the highest
scale, for a selection of traces from the twentieth shot gather.After 301
iterations conducted using, ultimately, all of the scales, the modeled
seismograms (red) are a close but not a perfect match for the seismo-
grams at this elevated scale. Focusing on scale 8 next, Figure 11b
shows the mismatch of the initial and the final models at that scale.
The final model is a good but not a perfect match for the observations,
in terms of arrival times and amplitudes.As shown in Figure 11c, after
301 iterations, thematchbetween thedataandthesynthetics in thefinal
model is very good at the lowest,most detailed scale and our objective
of fitting the observations as faithfully as possibly is satisfied.
We reiterate that when a smooth initial model is used, most trav-

eltime-based inversions are not practical because in the synthetics

(green lines in Figure 11c), there are no obvious reflected arrivals to
pick and compare with the observations (black lines in Figure 11c).
In addition, direct waveform-difference inversion of the original
measurements (i.e., up to scale 0 in Figure 11c) is not a good strat-
egy due to our smooth starting model being too far from the target:
We would be comparing fairly featureless synthetics with much
more oscillatory observations.
Surface waves, though not incorporated in the inversion, are

remarkably well matched in the final model, as is apparent from
Figure 12.

Multiscale misfit kernels

By themselves, the multiscale misfit kernels paint a complete pic-
ture of how the seismic waveform-residuals, for all shots and all
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Figure 9. Data processing for the removal of surface waves. (a) X-component displacement seismograms from shot 20. Many of the reflec-
tions that could be used to image subsurface structure are severely contaminated by surface waves. After processing by tapering, low-pass
and dip-filtering, and antialiasing, undesired surface waves are successfully removed, with only a hint of residual artifacts (b). (c) Subspace
representations of the processed shot gather up to different scale levels using Daubechies (1988) D12 wavelets with six vanishing moments.
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stations, capture the discrepancy between the current model and the
target at each of the wavelet scales in the seismograms. Because 2C
seismograms are recorded, the misfit functions make the sum of the
squared waveform differences for each component.

To suppress short-wavelength artifacts introduced by the numeri-
cal computation and spuriously elevated kernel amplitudes in the
vicinity of sources and receivers, we applied a Gaussian smoothing
operator to the misfit kernels. The scale length of the smoothing
depends on the smallest wavelengths that can be resolved. To safe-
guard the resolution of structural heterogeneities in iterative inver-
sions, more Gaussian smoothing is applied to the misfit kernels for
larger scale wavelengths, but smoothing lengths are decreased to
embrace finer structures when measurements at smaller scales are
added.
At the start of the iterations (iteration 0), and for the largest scale

9, the waveform-difference measurements are sensitive to the larg-
est-scale anomalies. As shown by Figure 13a, the P- and S-wave
speed kernels Kα and Kβ do not contain much detail of the structure
to be imaged, but rather they are sensitive to the wholesale adjust-
ment of the initial model necessary to bring the model closer to
reproducing the observed seismograms. The energy in the S-wave
kernels is much stronger than that for the P-waves. After 21 iter-
ations carried out at scale 9, the residual kernels are subdued, as
shown in Figure 13b and the model improvement has bottomed
out for this scale. Figure 13c shows the kernels at the same point
in the iteration sequence, for scale 8, which is the point of departure
for the next suite of adjoint optimization steps.
A comparison of the initial-model kernels at scales 8 and 7,

shown in Figure 14a and 14b, illustrates why the comparatively
simpler kernels at scale 9, which were shown in Figure 13a, were
a suitable point of departure for the iterations. The more detailed the
kernels, the greater the potential for nonlinear effects to steer the
inversion in poorly resolved directions. Finally, the full-resolution
kernels, shown at iteration 119 and for scale 0, in Figure 14c are the
result of having accounted for the residuals down to scale 6 as best
we could. The S-wave speed kernel Kβ shows that much of the
structure has been accounted for, at least in the top half of the
model, whereas the P-wave speed kernel Kα reveals the intricate
detail that is still necessary to image the short-wavelength variations
in the target model. These last kernels are the starting point for the
remainder of the iterations, which in our experiment number 301
in total.
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Figure 10. Choice of wavelets. Mean-squared residuals between
data in the starting and target models, at different scale levels, for
several types of wavelets. We accepted a trade-off between signal
representation and computational efficiency in choosing the Daube-
chies (1988) D12 basis for this class of seismograms.
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Figure 11. Seismograms (after surface-wave suppression) for the target (black), initial (green), and current final (red) model after 301 iterations
using the adjoint waveform-difference method across the wavelet scales. The final model provides a very good match for the full-resolution
seismograms at scales 9, 8, and all of the intermediate scales down to scale 0 (full resolution), as shown.
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Figure 12. Seismograms (without surface-wave suppression) in an identical layout as in Figure 11. The dominant features in this figure are the
surface waves, which, though not the target of the waveform-difference inversion, are also very well matched in the final model, shown after
301 iterations.
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Figure 13. Multiscale misfit kernels for the model updates at different iteration and scale levels. At the start of the inversion, at scale 9, we
mainly update larger scale structures near the surface. After 21 iterations at scale 9, most of the structure at that scale has been imaged. At that
point, the kernels at scale 8 reveal additional detailed structures remaining to be imaged.
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Figure 14. Multiscale misfit kernels at different iteration steps for different scale levels. The kernels at scales 8 and 7 contain much detail that
renders the inversion potentially unstable, compared to the initial-model kernels at scale 9 that were shown in Figure 13a. After 119 iterations,
the full-resolution (scale 0) kernels reveal the fine-grained structure that is the starting point for several more adjoint modeling steps until the
end point, at 301 iterations, for this experiment.
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Multiscale misfit evolution

Figure 15 shows the detailed sequence of data residual and model
norms reached as the algorithm progresses. There are three parts
that enter the evaluation. The first part, shown in Figure 15a, shows
the overall rms misfit within the scale levels of the approximation
for the iterations, on a logarithmic scale for clarity. The norm is
represented relative to the norm of the metric in the starting model,
as a dimensionless ratio starting at one at iteration zero for scale 9.
This residual norm is decreased by the adjoint modeling until iter-
ation 21, when we switch to reconstructing the seismogram down to
scale 8. Once again, the residual norm is relative to the zeroth iter-
ation. As a consequence, it is already much lower than one for iter-
ation 21, but compared to that residual norm at scale 9, the inclusion
of extra detail in the seismogram leads to a higher residual at
scale 8 at the start of the iterations that also consider this next lower
scale. We switch to including scales 7 and 6 after a total of
45 and 71 iterations. After scale 6, we cut directly to full resolution
by involving all scale levels because our sampling rate is much
higher than needed to fully represent the signals, and scales smaller
than five contain almost no information. The point at 119 iterations
is the start for a final suite of optimization steps until at iteration
301, when our experiment is stopped.
The black line in Figure 15b shows the evolution of the rms misfit

for all scales without surface waves, but now the normalization is
such that the normalized point of departure is the residual of the
initial model for the full-resolution seismograms after removing sur-
face waves. As we deduce from Figure 15a, the residual norms nor-
malized per scale tend to flatten out with diminishing returns —
our cue to bring in additional, lower wavelet scales, where they
jump up as new information in the seismogram is brought into
the inversion. On the other hand, the residuals normalized to the
initial norm of the full-resolution seismograms without considering
surface waves, for all scales down to 0, show a mostly monotonic
decrease. Evidently, the progressive inclusion of increasingly de-
tailed structure in the seismograms leads to an overall decline of
the entire misfit, with downward steps every time an additional

scale is added into the mix. This is the desired behavior, by which
minimization within a certain scale tends to efficiently guide the
algorithm to reduce the overall data misfit over the course of the
iterations. The red line in Figure 15b shows the residual norms
of the full-resolution seismograms, now including surface waves,
relative to the zeroth iteration residual norm of all scales containing
surface waves. Because surface waves were not considered in our
inversions, the behavior of this curve is much more erratic through-
out the iterations. Ultimately, though, the full-resolution seismo-
grams including surface waves define a misfit threshold that has
dropped to a very low level. In the final model, surface waves
are also well matched, even though they were never the explicit tar-
get of our optimization procedure.
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Figure 15. Residual norm evolution as a function of the running iteration number, with the scales within which the adjoint optimization
is being conducted noted. At the marked points, additional (lower) scales of the seismograms are being fed to the algorithm. The norms
are shown in the data space, normalized relative to the initial-model residual norm, (a) within the scale of the approximation, (b) considering
all scales of the full-resolution seismograms with and without surface waves, and (c) in the model space, separately for the P- and S-wave
speed portions of the Marmousi model and their combination. The abscissas are logarithmic to facilitate inspection of the convergence
behavior.
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From the luxury of having access to the “true” target Marmousi
model, we can also compute a model-space norm. Its evolution is
shown in Figure 15c, separately for the P-wave speed (α ¼ VP), the
S-wave speed (β ¼ VS), and their combination.

Final models

After reaching a final number of 301 iterations in the multiscale
waveform-difference adjoint modeling (Figure 16), the upper part
of the Marmousi model has been very well recovered. The lower
part continues to suffer from lower resolution, likely resulting from
insufficient ray coverage in our experiment as could be clearly seen
also in the misfit kernels. Overall, the S-wave speed model is im-
aged earlier in the procedure, starting with scale 9. This is due
to the larger amplitudes of the shear waveforms, and this effect
was already apparent from the relative energies of the misfit kernels
shown in Figure 13a, where the S-wave speed kernels Kβ showed a
clear dominance. After most of the shear waveforms are fitted, the
compressional model starts to improve, which can be verified from
the model norm evolution at scale 6 in Figure 15c.
Although there remains room for model improvement, the

gradual conditioning of the adjoint inversion problem, using only
differences of the waveforms as measurements, has reached a point
where the full-resolution waveform data can be used for additional
inversion steps using the standard adjoint waveform-difference
modeling, and these should converge to a final model that is only
limited by the available data coverage.

CONCLUSIONS

Waveform tomography is an intrinsically nonlinear procedure, in
which the complexity of the multiparameter misfit surface dictates
the ease with which any inversion method can navigate it to a, hope-
fully, global minimum. Various strategies have been proposed to
mitigate the difficulties with full-resolution waveform inversion,
whether operating in the data space, on the compression or com-
plexity reduction of the sensitivity kernels, or in the model domain.
Of course, numerous factors contribute to the success of tomo-
graphic modeling, broadly speaking. The influence of structural
or signal-generated noise, the choice of misfit functionals, the
meshing for the wavefield calculations, the parameterization of
the model domain, the chosen form of any additional model regu-
larization, the optimization algorithm, and real-world issues with
actual data collected in the field all play a role. By ignoring all these
subtleties, in this paper we proposed and tested a data-space pro-
cedure that uses multiscale constructive approximations of the seis-
mograms and sequentially feeds them to a conjugate-gradient-based
inverse modeling procedure using a fully elastic spectral-element
formalism for the computation of the forward and adjoint wave-
fields. More sophisticated optimization algorithms, e.g., precondi-
tioned conjugate-gradient or quasi-Newton methods, can probably
be taken advantage of to speed up convergence rate even further.
From our numerical tests, we conclude that multiscale wavelet

decomposition of the seismograms helps solve the convergence
problem of waveform-difference tomography. Starting from a
coarse representation of the seismograms, we make waveform-
difference measurements and apply the usual procedure of adjoint
tomography to improve the initial model for several iterations, until
data fitting at that scale level no longer improves. Subsequently, we
add finer scale information back to the seismograms and proceed

with more iterations. We repeat the procedure until the data are well
matched by the final model. Using wavelets to implement a truly
multiscale analysis puts the usual practice of incorporating shorter
period information as the iterations proceed on a more solid and
objective footing, improves the overall ability of adjoint wave-
form-difference tomography, and yields good final models — even
when the initial model is far from the target.
Surface waves are generally regarded as interference in most

exploration-scale seismic inversions. Although never explicitly tar-
geting them, but in fact removing them from the seismograms
throughout the inversion, our obtained models nevertheless match
observed surface waves extremely well. In further work, we will
attempt to incorporate surface waves back into the inversion, fully
embracing their power to more robustly constrain shallow subsur-
face structure and possibly speed up convergence rates of wavelet-
based multiscale full-waveform tomography.
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