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ABSTRACT

Crosstalk-free source-encoded elastic Full-Waveform Inver-
sion (FWI) using time-domain solvers has demonstrated
skill and efficiency at conducting seismic inversions involv-
ing multiple sources and receivers with limited computa-
tional resources. A drawback of common formulations of
the procedure is that, by sweeping through the frequency
domain randomly at a rate of one or a few sparsely sampled
frequencies per shot, it is difficult to simultaneously incor-
porate time-selective data windows, as necessary for the tar-
geting of arrivals or wave packets during the various stages
of the inversion. Here, we solve this problem by using the
Laplace transform of the data. Using complex-valued fre-
quencies allows for damping the records with flexible decay
rates and temporal offsets that target specific traveltimes.
We present the theory of crosstalk-free source-encoded FWI
in the Laplace domain, develop the details of its implemen-
tation, and illustrate the procedure with numerical examples
relevant to exploration-scale scenarios.

INTRODUCTION

Full-waveform inversion (FWI) aims to use all the informa-
tion in a seismogram to estimate subsurface material proper-
ties (Lailly, 1983; Tarantola, 1984, 1986). Over the last few
decades, FWI has firmly established itself as an important in-
version tool for both acoustic and elastic problems in active-
source exploration seismology (Pratt, 1999; Pratt and Shipp,
1999; Plessix, 2006; Operto et al., 2013) as well as for regional
and global problems using natural earthquakes as sources (Liu
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and Tromp, 2008; Liu and Gu, 2012; Tromp, 2020). Adjoint
formulations of the inverse problem and spectral-element sim-
ulations have fast become an inseparable pairing (Tromp et al.,
2008).

Full-Waveform Inversion

Most of the applications of FWI to real data acquired on land
(e.g., Brenders and Pratt, 2007; Plessix et al., 2010; Lemaistre
et al., 2019; Murphy et al., 2020) or in marine settings (Prieux
et al., 2013a; Operto et al., 2015) have used the acoustic ap-
proximation to wavefield modeling. While reliable results can
be obtained in that case, provided appropriate data prepro-
cessing and inversion preconditioning are applied (Brenders
and Pratt, 2007; Prieux et al., 2013a), elastic FWI is desirable
for applications when the data include strong elastic effects.
Acoustic FWI can lead to erroneous inversion results if applied
to elastic data that are sensitive to strong velocity contrasts
(Barnes and Charara, 2009; Mora and Wu, 2018; Pan et al.,
2018; Pérez Solano and Plessix, 2023; Zhang et al., 2023).
Elastic FWI is especially advantageous for the inversion of land
seismic data (Pérez Solano and Plessix, 2019), marked by high-
amplitude surface waves and elastic effects from near-surface
heterogeneities. Elastic FWI also allows for the inversion of
particle velocity data of multicomponent ocean-bottom seis-
mometers that record compressional and shear waves directly,
not just hydroacoustic pressure conversions. As shown by Cho
et al. (2022), for example, the shallow-background shear ve-
locity can be inverted from the horizontal components of mo-
tion recorded by ocean-bottom nodes. Multicomponent data
help constrain the inversion process and mitigate ill-posedness
(Prieux et al., 2013a,b; Pan et al., 2019).

A drawback of elastic FWI is that it remains computa-
tionally challenging to solve large-scale optimization systems
with three-dimensional (3-D) simulations for hundreds or even
thousands of sources. Frequency-domain solvers have proven
to be efficient at computing the response of large numbers of
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sources (Pratt, 1999). These methods additionally allow for the
selection of just a handful of contributing frequencies (Sirgue
and Pratt, 2004), and for the straightforward and cheap incor-
poration of intrinsic attenuation in the form of complex-valued
wave speeds (Marfurt, 1984). Despite these advantages, di-
rect solvers scale poorly (Virieux and Operto, 2009), require
vast amounts of storage, and thus are unsuitable for the large
3-D problems that we face today. Iterative frequency-domain
solvers may not share these limitations (Operto et al., 2007;
Plessix, 2009), but they do not have the benefit of source inde-
pendence.

In contrast, explicit time-domain solvers scale linearly with
the number of sources owing to the absence of all-to-all com-
munications (Komatitsch and Tromp, 2002; Komatitsch et al.,
2002) and they do not command a large amount of mem-
ory. However, since the compute time for elastic FWI using
time-domain solvers is proportional to the number of seismic
sources (for anelastic kernels, see Komatitsch et al., 2016), dis-
tributing those over the processors of parallel computers claim
large time blocks on huge computational platforms, in partic-
ular if the source parallelism is combined with a second level
of parallelism by domain decomposition of the computational
mesh.

Source Encoding

Source encoding remedies the run-away computational bur-
den of wavefield modeling in seismic inversion and migration.
It reduces the number of calculations by combining gathers
from multiple shots or events into “encoded” “super-gathers”
(Morton and Ober, 1998; Etgen, 2005; Zhang et al., 2005;
Krebs et al., 2009; Tang and Biondi, 2009; Ben-Hadj-Ali et al.,
2011; Schuster et al., 2011). Under the encoded multisource
approach the computational cost of FWI or Reverse Time Mi-
gration (RTM) no longer grows linearly with the number of
sources, allowing for the simultaneous consideration of several
thousand sources.

The mathematical effect of source encoding is clear by in-
spection of the FWI gradient, the equivalent RTM imaging
condition (Luo et al., 2009; Zhu et al., 2009; Luo et al., 2015),
or the sensitivity kernel (Tromp et al., 2005). Disregarding
weighting factors and other subtleties, these objects generally
involve the correlation interaction between two scalar wave-
fields (Romero et al., 2000). Combining all contributions in a
survey or experiment by summing the single-frequency wave-
fields individually over all distinct sources is computationally
advantageous but creates cross-term artifacts. Crosstalk nega-
tively affects the quality of the inversion gradient or migration
image and may introduce inaccuracy in the model results. A
source-encoding strategy amounts to applying an encoding op-
erator prior to expansion over the sources in a manner such that
the cross-terms become relatively unimportant.

For every one of Ns seismic sources or shot gathers, and for
each of the Nω frequencies under consideration, let ũs(x, ωk)
and ũ†

s(x, ωk) be generic forward and adjoint wavefields (the
star “∗” denotes complex conjugation) at position x and angu-
lar frequency ωk, and αs(ωk) a generic normalized encoding

operator. Denoting the real part by R, the expanded imaging
condition (Romero et al., 2000)

K̃(x) = R

Nω∑
k=1

[
Ns∑
s=1

αs(ωk)ũs(x, ωk)

]
(1)

×

[
Ns∑
s′=1

αs′(ωk)ũ
†
s′(x, ωk)

]∗

= R

Nω∑
k=1

Ns∑
s=1

ũs(x, ωk)u
†∗
s (x, ωk) (2)

+R

Nω∑
k=1

Ns∑
s=1

Ns∑
s′ ̸=s

ũs(x, ωk)
[
αs(ωk)α

∗
s′(ωk)

]
ũ†∗
s′ (x, ωk)

suffers from crosstalk unless αs(ωk)α
∗
s′(ωk) → δss′δkk′ .

Encoding operators need to be chosen carefully to produce
enough dissimilarity between all sources to mutually decorre-
late them in order to reduce the effect of crosstalk (and random
data) noise (Aghazade et al., 2022).

A number of encoding strategies have been proposed in the
literature. Romero et al. (2000) suggest multiplying the shot
gather by αs(ω) = eıϕs(ω) with a random phase ϕs(ω). Note
that the imaginary unit ı is to be distinguished from the i used to
denote a component index in what follows. Krebs et al. (2009)
advocate randomizing polarity using αs(ω) = ±1 drawn at
random. Tang and Biondi (2009) and Schuster et al. (2011)
propose shifting each shot with a random time offset. While
they all suffer from residual crosstalk to some extent, these
strategies furthermore require that the receiver spread be fixed
for each shot, hence they are not applicable for, e.g., marine
streamer data, with arrays that move with each shot. In con-
trast, a technique that is applicable to marine streamer acqui-
sition is through plane-wave encoding, whereby shot gathers
are linearly time-shifted with respect to source-receiver offset
and summed to form a series of plane-wave gathers with dif-
ferent ray parameters (Etgen, 2005; Zhang et al., 2005; Vigh
and Starr, 2008; Tang and Biondi, 2009). However, this pre-
supposes a small shot interval to avoid aliasing, which may not
be possible for realistic 3-D data sets, and a sufficiently large
number of ray parameters.

Crosstalk-Free Source Encoding

Source-encoding strategies designed to be completely
crosstalk-free have been developed in the last decade (Huang
and Schuster, 2012, 2018; Krebs et al., 2013; Schuster and
Huang, 2013; Zhang et al., 2018; Tromp and Bachmann, 2019).
Both Huang and Schuster (2012) and Krebs et al. (2013) pro-
pose an encoding operator that is a narrowband filter, con-
volved in the time domain with each trace. Different shot
gathers are allocated different filters from a nearly orthogonal
set. In the context of least-squares RTM, Dai et al. (2013) pro-
pose assigning to each source a unique frequency and using an
orthogonal encoding operator αs(ωk) = eıωkt. The encoded
wavefields mix frequencies and sources {k, s} to form “super-
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gathers”,

u(x, t) = R

Nω×Ns∑
{k,s}=1

e−ıωkt ũs(x, ωk), (3)

which can be computed in the time-domain by simultaneously
activating multiple sources driven by specific frequencies (Ni-
hei and Li, 2007). The encoded forward wavefield u(x, t)
and its adjoint u†(x, t) are run past the “steady-state time”, T .
The sensitivity kernel is obtained by zero-lag cross-correlation
over ∆τ , an interval over which the encoding operators are
exactly orthogonal, which accomplishes the “deblending” or
“decoding”,

K(x) =

∫ ∆τ

0

u(x, T +∆τ − t)u†(x, t+ T ) dt. (4)

Both T and ∆τ require careful consideration, though authors
often take T = ∆τ for convenience. Huang and Schuster
(2018) apply this idea in acoustic FWI. Zhang et al. (2018,
2020) propose a hybrid method that calculates time-domain en-
coded wavefields but performs the kernel computation in the
frequency domain.

Tromp and Bachmann (2019) provide a systematic and di-
dactic overview of crosstalk-free source-encoded FWI meth-
ods. They make the distinction between the steady-state time T
and the integration interval ∆τ required for decoding, which
are not typically differentiated. They also formulate differ-
ent misfits, e.g., for amplitude, phase, and double-difference
measurements. Finally, they show that the relative reduction in
computational cost of source-encoded to traditional FWI for a
large number of sources is approximately given by the original
duration of the simulated seismograms (e.g., about 5 s) times
their bandwidth (e.g., 20 Hz), a relationship (e.g., a 100× re-
duction) that holds both for computation time and for the num-
ber of input/output (I/O) calls—per iteration (noting that source
encoding might require more iterations). Their crosstalk-free
source-encoded FWI method has been successfully applied at
the global scale of earthquake tomography (Cui et al., 2023),
and at the human scale of 3-D ultrasound tomography (Bach-
mann and Tromp, 2020).

The main drawback of source-encoded formulations arises
from the difficulty of time-windowing modeled data when in-
verting one or a few sparsely sampled frequencies at one time:
time- and frequency-limitation are intrinsically incompatible
(Simons, 2010). Yet, time-windowing allows for the balanced
selection of specific arrivals during the various stages of the in-
version, which is often desirable in order to navigate the misfit
surface towards a global optimum. In this paper, we propose
the use of complex-valued frequencies through the Laplace
transform (Shin et al., 2002; Brenders and Pratt, 2007; Brossier
et al., 2009; Prieux et al., 2013a), which damps arrivals at a
certain rate γ starting from a given traveltime t0, to be defined
below. We develop the theory of crosstalk-free source-encoded
elastic FWI in the Laplace domain and illustrate it with numer-
ical examples.

ELASTIC FWI IN THE LAPLACE DOMAIN

In this paper, we extend the theory of crosstalk-free source-
encoded elastic full-waveform inversion. Our treatment largely
follows the adjoint formulation laid out by Tromp et al. (2005)
and Tromp and Bachmann (2019), but we enable damping of
the seismogram beyond a certain time offset (both to target spe-
cific seismic phases and to ensure stability), by switching from
the Fourier domain to the Laplace domain, involving complex
frequencies.

For a generic time-domain function g(t), we write the one-
sided Laplace transform at complex argument

z = γ + ı ω, (5)

where γ and ω are real, as

g̃(z) = L[g(t)](z) =
∫ ∞

0

g(t) e−zt dt. (6)

The objective function
Let us consider a source location xs and a source-time func-

tion f(t) which drives a body-force point source acting in the
n̂ direction with components

fj(xs, t) = n̂j(xs)f(t), (7)

which gives rise to displacement components at a receiver lo-
cated at xr through convolution with the elastic Green’s func-
tion Gij(xr,xs; t) in the form, whereby Einstein’s summation
convention is implied,

ui(xr, t) =

∫ t

0

Gij(xr,xs; t− t′)fj(xs, t
′) dt′. (8)

With Laplace transforms of the synthetic, the source, and the
Green’s function given by

ũi(xr, z) = L[ui(xr, t)], (9)

f̃j(xs, z) = L[fj(xs, t)], (10)

G̃ij(xr,xs; z) = L[Gij(xr,xs; t)], (11)

the Laplace convolution theorem transforms equation 8 to the
equivalent expression, again summed over j,

ũi(xr, z) = G̃ij(xr,xs; z)f̃j(xs, z). (12)

The scaled Laplace coefficient of ui(xr, t), where the damping
is given by γ and the shift is over the arbitrary constant tsr0 ,
e.g., the first-arrival time of the elastic waves from source xs

to receiver xr, is given by

L
[
eγt

sr
0 ui(xr, t)

]
(z) = eγt

sr
0 ũi(xr, z). (13)

Because we will associate every source at xs recorded by a
receiver at xr with a unique complex source frequency zs, we
introduce the shorthand notation

f̃s
j ≡ f̃j(xs, zs), (14)

G̃s
ij(xr,x) ≡ G̃ij(xr,x; zs), (15)

ũsr
i ≡ eγt

sr
0 ũi(xr, zs), (16)

d̃sri ≡ eγt
sr
0 d̃i(xr, zs), (17)
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where equation 17 applies to the Laplace transform of the ob-
served data di(xr, t).

The amplitude damping factor γ and the source-receiver de-
pendent time shift tsr0 (as might be picked from the data or
calculated in an initial model) effectively allow for time win-
dowing of the seismograms through the Laplace transform, en-
suring Green’s function recovery through orthogonality beyond
steady-state time, as will be clarified below. To ensure that the
discrete Laplace transform of the observed data contains ex-
actly the encoded complex frequencies zs, we may zero-pad
or truncate the time series to be able to evaluate the Laplace
transform

d̃sri = eγt
sr
0

∫ ∆τ

0

di(xr, t)e
−zst dt, (18)

=

∫ ∆τ

0

di(xr, t)e
−γ(t−tsr0 )e−ıωst dt, (19)

over the integration interval ∆τ , to be specified below.
The modeling residuals to be minimized are the differences

between the scaled Laplace coefficients,

∆ũsr
i = ũsr

i − d̃sri . (20)

The overall misfit is defined as the sum of squares, with the
“∗” denoting complex conjugation,

χ =

S∑
s=1

R∑
r=1

C∑
i=1

wsri ∆ũsr
i

∗∆ũsr
i , (21)

accounting for s = 1, ..., S different frequencies or sources,
r = 1, ..., R receivers, and i = 1, ..., C sensor components.
The weights wsri are nonzero only for those receivers r that
record a source (frequency) s on a component i. Note the slight
variation in notation compared to equations 2–3.

The objective of FWI is to adjust the Earth model, embodied
by the Green’s function G, in such a manner that synthetic pre-
dictions u made for observations d are ideally matched. When
carried out in the least-squares sense, we require ways to min-
imize equation 21. See Appendix A for alternative misfit for-
mulations.

The misfit variation
To perform the minimization of the misfit criterion χ in

equation 21 we begin by considering how it varies under Earth
model perturbations. The variation of the misfit is

δχ = R

S∑
s=1

R∑
r=1

C∑
i=1

wsri ∆ũsr
i

∗ δũsr
i . (22)

Under the Born approximation (Nolet, 2008), in terms of the
density and stiffness perturbations δρ and δcjklm, the time-
domain perturbed displacement (Tromp et al., 2005)

δui(xr, t) = (23)

−
∫ t

0

∫
V

[
δρ(x)Gij(xr,x; t− t′) ∂2

t′uj(x, t
′)

+ δcjklm(x) ∂kGij(xr,x; t− t′) ∂lum(x, t′)] d3x dt′,

whereby Einstein’s summation convention is now implied for
the repeat indices j, k, l, m, and from hereon out. Using
the convolution identity and the derivative properties of the
Laplace transform, the scaled Laplace coefficients of the per-
turbed wavefield are

δũsr
i =− eγt

sr
0

∫
V

[
δρ(x) G̃s

ij(xr,x) z
2
s ũj(x, zs) (24)

+ δcjklm(x) ∂kG̃
s
ij(xr,x) ∂lũm(x, zs)

]
d3x,

where initial conditions uj(x, 0) = 0 and ∂tuj(x, 0) = 0 are
used to reduce the Laplace transform of the second temporal
derivative of the displacement.

Inserting the perturbed displacement δũsr
i of equation 24

into equation 22 yields

δχ = −R eγt
sr
0

∫
V

{
δρ(x)wsri∆ũsr

i
∗G̃s

ij(xr,x) z
2
s ũj(x, zs)

+ δcjklm(x)wsri∆ũsr
i

∗∂kG̃
s
ij(xr,x) ∂lũm(x, zs)

}
d3x,

(25)

with the summation convention now additionally applying over
the indices s, r and i, i.e., over all sources, receivers, and re-
ceiver components.

In the following, we focus on deriving the density kernel for
simplicity. Elastic kernels can be derived in a similar way. In
equation 25, guided by equations 12 and 7, we first substitute
ũj(x, zs) = G̃s

jm(x,xs)f̃
sn̂m(xs) and, denoting the Laplace

coefficient of the source-time function as f̃s, we rewrite f̃s =
−ı2f̃s to obtain

δχρ = −
∫
V

δρ(x)R
{
eγt

sr
0 wsri∆ũsr

i
∗G̃s

ij(xr,x) (26)

× z2sG̃
s
jm(x,xs)f

sn̂m(xs)
}

d3x′,

= −
∫
V

δρ(x)R
{
eγt

sr
0 ∆̄ũsr

i
∗G̃s

ij(xr,x) z
2
s
¯̃u
s
j(x)

}
d3x′,

(27)

where we have defined a weighted residual as

∆̄ũsr
i = −ı wsrif

s∗∆ũsr
i , (28)

and redefined the Laplace coefficients of a new forward wave-
field to be

¯̃u
s
j(x) = −ı G̃s

jm(x,xs)n̂m(xs). (29)

Multiplying equation 27 by ezste−zs′ t and integrating over
a suitably shifted time interval of interest allows us to exploit
their orthogonality to rewrite equation 27 as

δχρ = − 2

∆τ

∫
V

δρ(x) (30)

×
∫ ∆τ

0

R

{
eγt

sr
0 ∆̄ũsr

i
∗G̃s

ij(xr,x)e
−zs(t+T )

}
︸ ︷︷ ︸

I

×R

{
z2s′

¯̃u
s′

j (x)e
zs′ (t+T )

}
︸ ︷︷ ︸

II

dtd3x.
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Other than the damping parameter γ and the trace-dependent
temporal shift tsr0 , which provide opportunities for time-
windowing, phase selectivity and numerical stability, equa-
tion 30 contains the length of the “decoding” integration in-
terval ∆τ which commences beyond the “steady-state” time
shift T . These two parameters are briefly introduced in equa-
tion 4, but here as there, they await further identification and
numerical specification.

Interacting forward and adjoint wavefields
In the second factor (II) of equation 30 we recognize the

second time derivative of an encoded forward wavefield com-
ponent, summed over the sources,

uj(x, t+ T ) = R
{
¯̃u
s
j(x)e

zs(t+T )
}
, (31)

into which we substitute equation 29, the definition of the
Laplace transform to reduce G̃s

jm(x,xs), and then rearrange
(see Appendix B) to obtain

uj(x, t+ T ) =

S∑
s=1

∫ T+t

−∞
Gjm(x,xs, T + t− t′) (32)

× n̂m(xs)e
γt′ sinωst

′︸ ︷︷ ︸
source

dt′,

that is, driven by sources fm(xs, t) with source-time functions
f(t) = eγt sin(ωst).

In the first factor (I) of equation 30, we recognize a wave-
field, summed over all sources and receivers, which, using
the definition of the Laplace transform, the reciprocity of the
Green’s function, and a rearranging of the integration limits
can be rewritten (see Appendix B) as

ϕj(x, t+ T ) =

R∑
r=1

∫ T+∆τ−t

−∞
Gji(x,xr, T +∆τ − t− t′)

×
S∑

s=1

eγt
sr
0 R

{
∆̄ũsr

i
∗e−zs(2T+∆τ−t′)

}
︸ ︷︷ ︸

adjoint source

dt′, (33)

where we now define an adjoint source that can be simplified
(see Appendix B) to

f†
i (xr, t) = R

{ S∑
s=1

eγt
sr
0 ∆̄ũsr

i eıωs(T+t)e−γ(T+t)

}
, (34)

= R
{
∆̄urs

i (T + t)e−γ(T+t)
}
, (35)

where we recognized the shifted inverse Fourier transform

∆̄urs
i (t) =

S∑
s=1

eγt
sr
0 ∆̄ũsr

i eıωst. (36)

We now introduce the adjoint wavefield

u†
j(x, t) =

R∑
r=1

∫ t

0

Gji(x,xr, t− t′)f†
i (xr, t

′) dt′, (37)

from which we obtain the relationship

ϕj(x, t+ T ) = u†
j(x, T +∆τ − t). (38)

Substituting equations 38 and 32 into equation 30 yields

δχρ = − 2

∆τ

∫
V

δρ(x) (39)

×

(∫ ∆τ

0

u†
j(x

′, T +∆τ − t) ∂2
t uj(x, t+ T ) dt

)
d3x.

As far as the density perturbation is concerned, equation 39
provides an accessible version for the misfit variation in equa-
tion 30. To gain further insight we now write it in the form that
emphasizes the sensitivity kernel in the manner of Tromp et al.
(2005).

Fréchet derivative sensitivity kernels
Equation 39 is in the form

δχρ =

∫
V

δ log ρ(x)Kρ(x) d
3x, (40)

which defines the Fréchet derivative with respect to the mass
density as

Kρ(x) = − 2

∆τ

∫ ∆τ

0

ρ(x)u†
j(x, T+∆τ−t) ∂2

t uj(x, t+T ) dt.

(41)
For the stiffness perturbations we ultimately have the similar
expression

δχc =

∫
V

δcjklm(x)Kcjklm
(x) d3x, (42)

containing, as in Tromp et al. (2005), the Fréchet kernel with
respect to the elastic constants

Kcjklm
(x) = − 2

∆τ

∫ ∆τ

0

ϵ†jk(x, T +∆τ − t) (43)

× ϵlm(x, t+ T ) dt,

where no summation is implied, and ϵlm = 1
2 [∂lum + ∂mul]

and ϵ†jk = 1
2 [∂ju

†
k + ∂ku

†
j ] denote the elements of the strain

and the adjoint strain tensors, respectively.
We return to equation 25 for the total misfit variation, δχ =

δχρ+ δχc. In an isotropic medium with elastic tensor cjklm =
(κ− 2µ/3)δjkδlm +µ(δjlδkm + δjmδkl), equations 40 and 43
combine into the expression

δχ =

∫
V

[δ log ρ(x′)Kρ(x
′) + δ log κ(x′)Kκ(x

′) (44)

+δ logµ(x′)Kµ(x
′)] d3x′,

where, in addition to the density kernel 41, we have the bulk
and shear modulus kernels

Kκ(x) = − 2

∆τ

∫ ∆τ

0

κ(x) ∂iu
†
i (x, T +∆τ − t) (45)

× ∂juj(x, t+ T ) dt,

Kµ(x) = − 2

∆τ

∫ ∆τ

0

2µ(x)D†
ij(x, T +∆τ − t) (46)

×Dij(x, t+ T ) dt,
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whereby Dij(x, t) = 1
2 (∂iUj + ∂jUi) − 1

3∂kUkδij and
D†

ij(x, t) = 1
2 (∂iU

†
j + ∂jU

†
i ) − 1

3∂kU
†
kδij are the strain de-

viators associated with the forward and adjoint wavefields.
The formalism developed so far, in particular equations 41

and 43 for the density and elastic kernels, require numeri-
cal evaluation. In particular, they require reconciliation with
the philosophy espoused in the Introduction. Following equa-
tion 4, single-frequency wavefields calculations can be carried
out, and subsequently recombined, to return gradients for the
FWI optimization without crosstalk. Naturally, this will entail
the discussion of the steady-state time T and the decoding in-
terval ∆τ .

COMPUTATIONAL CONSIDERATIONS

While frequency-domain numerical modeling methods
(Pratt, 1999) can be brought to bear on our problem, Nihei
and Li (2007) propose an efficient time-domain method that as-
signs a single, unique, frequency to each shot and simulates all
shots simultaneously without crosstalk. Their approach is key
to our source-encoded full-waveform strategy (Zhang et al.,
2018; Tromp and Bachmann, 2019), as we further motivate,
and specify.

Single-frequency time-domain modeling
Let G(t) denote a Green’s function for wave propagation

from a certain source to a certain receiver, without specificity
to simplify the notation. Its Fourier transform is

G̃(ω) =

∫ ∞

0

G(t)e−ıωt dt, (47)

where ω denotes the continuous angular frequency. Over a fi-
nite time interval ∆τ , to be specified, the discrete angular fre-
quency will be ωk = 2πk/∆τ , for integer k = 1, . . . ,K. The
relation between these time and frequency properties will be
made explicit below.

The response to a single-frequency source-time function
fk(t) = cos(ωkt) = R{eıωkt}, through equation 47, can be
equivalently expressed as

uk(t) = R
{
G̃(ωk) e

ıωkt
}
, (48)

=

∫ ∆τ

0

G(t− t′) cos(ωkt
′) dt′, (49)

= [G ⋆ fk](t). (50)

The star “⋆” denotes convolution. Hence we can obtain uk(t)
by solving the wave equation using a time-domain numerical
solver driven by a monochromatic source-time function. The
single-frequency G̃(ωk) can be recovered via the inner product
of equation 48 with respect to the e±ıωkt/∆τ orthonormal ba-
sis for the interval ∆τ , shifted by the steady-state time T , to be
defined. By virtue of orthogonality, this integration yields

G̃(ωk) δkk′ =
2

∆τ

∫ T+∆τ

T

uk(t) e
−ıωk′ t dt. (51)

The numerical evaluation of equation 51 may be performed
using the Fast Fourier Transform (FFT), taking care of the fac-
tors (2dt/∆τ) exp(−ıωk′T ). In practice, and to increase nu-
merical stability, we may also change the source-time function
from cos(ωkt) to sin(ωkt), for which we multiply equation 51
by ı =

√
−1.

The steady-state time T is when the value of the Green’s
function becomes vanishingly small, after which virtually no
more seismic waves reach the recording station (Cui et al.,
2023). Depending on the Earth model, the source-receiver con-
figuration, and the numbers and types of the seismic sources,
steady state may be difficult to achieve, a situation that can be
remedied by the damping of the Green’s function as discussed
further below.

Figure 1 shows a variety of example geometries. In Fig-
ure 1a there is precisely one source, at x1, and only one
receiver, at xr. The single-frequency source-time function
f1(t) = cos(ω1t), see Figure 2a, the Green’s function G1(t) =
G(xr,x1; t), as shown in Figure 2b, and the seismic response,
the convolution of G1(t) with f1(t), is u(t) = u1(t), as shown
in Figure 2c. The Fourier terms of the Green’s function G̃1(ωk)
at different frequencies k are depicted by blue circles in Fig-
ure 2d, and G̃1(ω1), recovered via equation 51, is shown as a
red diamond.

Multiple-source encoding and decoding

Figure 1b shows the situation where one receiver at xr is
activated simultaneously by two sources at x1 and x2. The

Figure 1: Crosstalk-free time-domain source encoding in a
variety of acquisition geometries. (a) Single source x1, sin-
gle receiver xr, single frequency ω1. (b) Dual sources x1

and x2, single receiver xr, two distinct frequencies, ω1 and
ω2. (c) Two sources x1 and x2, two receivers xr1 and xr2,
two unique frequencies ω1 and ω2. In (a) and (b), fk(t) =
cos(ωkt), k = 1, 2, denote monochromatic source-time func-
tions; Gk(t) = G(xr,xk; t) denote Green’s functions from
sources at xk to receivers at xr; u(t) the full seismic response.
In (c), Gki(t) = G(xri,xk, t) denote Green’s functions from
sources at xk to receivers at xri.
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Figure 2: Time-domain source encoding and decoding for the
acquisition geometry shown in Figure 1a. (a) Monochromatic
source-time function with angular frequency ω1. (b) Time-
domain Green’s function G1(t), which vanishes beyond
the steady-state time T . (c) Synthetic observations u1(t).
(d) Frequency-domain Green’s function G1(ω), highlighting
the Fourier coefficient at ω1 recovered using equation 51. The
recording length of the observed data is ∆τ , and the angular
frequency ω1 = 2πn1/∆τ for integer n1 > 0.

source-time functions for the two sources f1(t) = cos(ω1t)
and f2(t) = cos(ω2t) are shown in Figures 2a and 3a, respec-
tively. The Green’s functions to the receiver xr are G1(t) =
G(xr,x1; t) and G2(t) = G(xr,x2; t), respectively, as shown
in Figures 2b and 3b. The “supergather” u(t) as shown in Fig-
ure 3c is the superposition of two terms of the form of equa-
tions 48–50,

u(t) =

2∑
k=1

uk(t) =

2∑
k=1

Gk ⋆ fk. (52)

Fourier coefficients G̃1(ω1) and G̃2(ω2) can be recovered
without crosstalk according to equation 51. The recovery is
illustrated numerically in Figure 3d and 3e.

Now suppose that there are K frequencies within the fre-
quency band [ωmin, ωmax], with

∆ω = (ωmax − ωmin)/(K − 1), (53)

which, at last, defines the integration or decoding interval ∆τ
for the seismic signal as

∆τ = 2π/∆ω =
2π(K − 1)

ωmax − ωmin
. (54)

Our goal is to perform one “super” forward simulation com-
bining all sources by effectively tagging each individual fre-
quency. If there were as many physical sources as there are
discrete frequencies, each source would be randomly assigned
a monochromatic source time function with an angular fre-
quency ωk defined by

ωk = ωmin + (k − 1)∆ω, k = 1, . . . ,K. (55)

Figure 3: Crosstalk-free time-domain source encoding and
decoding for the acquisition geometry shown in Figure 1b.
(a) Monochromatic source-time function at frequency ω2.
(b) Time-domain Green’s function G2(t), which vanishes be-
yond the steady-state time T . (c) Synthetic “supergather”,
the complete seismic response u(t). (d–e) Frequency-domain
Green’s functions G̃1(ω) and G̃2(ω), highlighting the Fourier
coefficients G̃1(ω1) in (d) and G̃2(ω2) in (e), recovered using
equation 51. The integration interval is the record length ∆τ ,
and the second frequency ω2 = 2πn2/δτ with n2 > 0 integer
and n1 ̸= n2.

In practical application, the set of frequencies determined by
equation 55 is randomly distributed over the available sources
at the start of every iteration. As K is the number of frequen-
cies rather than distinct sources, individual sources may be as-
signed more than one frequency. When the number of sources
is very large, as with streamer data or large-scale nodal deploy-
ments, the frequency spacing can be reduced by increasing the
interval ∆τ without loss of orthogonality.

The duration of all observed seismic data may not be equal
to ∆τ , in which case the frequency spacing of the observations
may not equal that of the synthetics, ∆ω. In those cases, we
may resort to truncation or zero-padding of the real data be-
fore Fourier transformation. If this unduly increases the com-
putation time or storage requirements, we may first apply the
discrete Fourier transform to the data directly, without zero-
padding or truncating, and subsequently use Fourier interpola-
tion to achieve similar results (Bachmann and Tromp, 2020).
In the examples shown we use zero-padding or truncating, as
required.

Figure 1c depicts the general case where multiple sources
are recorded by multiple receivers, a common acquisition ge-
ometry in earthquake seismology or with marine streamer sur-
veys where sources and receivers move for every shot, pos-
sibly combined with ocean-bottom node (OBN) deployments.
Hence with simultaneous simulation, each receiver will record
waves emanating from all sources. When there are two sources
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and two receivers, the data recorded at xr1 and xr2 are

u1(t) =

2∑
k=1

Gk1 ⋆ fk, (56)

u2(t) =

2∑
k=1

Gk2 ⋆ fk, (57)

where Gk1(t) and Gk2(t) are the Green’s function from the
source at xk to the receivers xr1 and xr2, respectively. Again,
equation 51 shows how to integrate to u1(t) and u2(t) against
e−ıω1t to obtain G̃11(ω1) and G̃12(ω1), respectively. Similarly,
integrating against e−ıω2t will yield G̃22(ω2) and G̃21(ω2).
Upon doing so we may choose to retain only G̃11(ω1) and
G̃22(ω2), choosing to discard G12(ω1) and G21(ω2).

Time-selective single-frequency modeling
In the methodology outlined above, the steady-state time T

should be reached for recovery of the single-frequency Green’s
function. Reaching steady state may be challenging, to the
detriment of source-encoded FWI. Damping by γ > 0 pro-
vides a solution. The Fourier transform of the damped Green’s
function G(t) is the Laplace transform

G̃(z = ıω + γ) = L[G(t)](z) (58)

=

∫ ∞

0

G(t)e−γte−ıωt dt (59)

=

∫ ∞

0

G(t)e−zt dt. (60)

Next consider the response to a cosinusoidal source-time
function with exponentially increasing amplitude, f ′

k(t) =
eγt cos(ωkt) = R{ezkt}. The corresponding wavefield

u′
k(t) = R{G̃(zk) e

zkt}, (61)

=

∫ ∆τ

0

G(t− t′) eγt
′
cos(ωkt

′) dt′, (62)

= [G ⋆ f ′
k](t), (63)

which again can be calculated using a time-domain solver.
In analogy with equation 51, the single complex-frequency
Green’s function can now be recovered as

G̃(zk)δkk′ =
2

∆τ

∫ T+∆τ

T

u′
k(t)e

−zk′ t dt. (64)

As discussed, to provide phase selectivity as well as numeri-
cal stability, usually, we will damp G(t) by e−γ(t−tsr0 ), with tsr0
the arrival time for waves traveling from source xs to receiver
xr. The Fourier transform of the Green’s function damped in
time starting from tsr0 , assuming it is zero before that, is its
simply scaled Laplace transform,

L
[
eγt

sr
0 G(t)

]
(z) = eγt

sr
0 G̃(z). (65)

The Laplace transform of the convolution between functions is
the product of their Laplace transforms. The Laplace transform

Figure 4: Crosstalk-free damped time-domain source encod-
ing and decoding. (a) Monochromatic source-time function of
angular frequency ω1. (b) Same as (a) but with an exponen-
tially increasing amplitude eγt. (c) Green’s function G1(t),
and an inappropriate steady-state time T . (d) Green’s func-
tion G1(t)e

−γ(t−tsr0 ) damped using γ = 10 s−1 and with off-
set time tsr0 . (e)–(f) Synthetics obtained by convolution of the
Green’s function in (c) with the source-time function in (a)
and (b), respectively. (g)–(h) Frequency-domain versions of
the Green’s function in (c), |G̃1(ω)|, and of the damped Green’s
function in (d), |G̃1(ω)|, highlighting the recovered Fourier co-
efficients.

of the nth derivative of a function brings out the nth power of
the arguments, in particular,

L
[
∂2
t u(t)

]
(z) = z2ũ(z)− zu(0)− ∂tu(0). (66)

Figure 4 shows a worked example of single complex-
frequency forward model. Figure 4a and 4b show source-time
functions f1(t) = cos(ω1) and f ′

1(t) = eγt cos(ωkt), Figure 4c
and 4d the Green’s functions G1(t) and G1(t)e

−γ(t−tsr0 ), Fig-
ure 4e and 4f the wavefields, and Figure 4g and 4h the recov-
ery of the single-frequency Fourier terms. Figure 4g shows the
failure of decoding the Fourier coefficient G1(ω1) due to an
inappropriate steady-state time T for G1(t) in Figure 4c. For
a damping factor γ = 10 s−1, the damped Green’s function is
shown in Figure 4d and the corresponding Fourier coefficients
are shown as blue dashed stems in Figure 4h. Alternatively,
we can convolve the source-time function cos(ω1t)e

γt in Fig-
ure 4b with G1(t) in Figure 4c to get the encoded data u′

1(t) in
Figure 4f. We can recover the Fourier coefficient at ω = ω1 of
the damped Green’s function using equation 64 (the red stem
in Figure 4h).

Damping the Green’s function not only mutes late arrivals
but also reduces the steady-state time. The time windowing
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Figure 5: Schematic of the Laplace-domain source-encoded full-waveform inversion method developed in this paper.

operation allows selection of specific arrivals during the stages
of the inversion, as an effective means to mitigate the non-
linearity of the inversion. For example, we may begin an in-
version sequence in the Fourier domain, without any damping
(γ = 0), in order to capture the large-amplitude surface waves
and constrain the shallow velocity model, and later switch to
the Laplace domain using damping (γ > 0) to focus on the
early arrivals. In any case the damping factor γ should be
set appropriately so that the maximum value of the simulated
wavefield does not exceed the valid range of the data type in
which the calculations are carried out. A rule of thumb is
γ(T +∆τ) < 22 for 4-byte data (float32).

Inversion workflow
Our workflow is shown in Figure 5. We begin by transform-

ing the observed data to the Laplace domain, choosing a damp-
ing parameter γ and source-receiver-dependent time shift tsr0 ,
obtaining scaled Laplace coefficients as in equations 17–19.
Subsequently, we:

1. select random disjoint sets of scaled data Laplace coeffi-
cients for each source, d̃sri ;

2. activate all sources with source-time functions in the
form of a (co)sine with amplitude exponentially increas-
ing according with the (un-)damping parameter γ, as in
equations 61–63;

3. carry out a source-encoded forward simulation until the
wavefield reaches steady state after a time T , and obtain
the encoded synthetic data that will be decoded owing to
the orthogonality between the trigonometric (exponen-
tial) phase encoding terms;

4. encode the Laplace-domain data residuals 20 to obtain
the adjoint source 34–36;

5. carry out one source-encoded adjoint simulation and cal-
culate the gradients K as in equations 41 and 45–46
through zero-lag cross-correlation between the steady-
state encoded forward and adjoint wavefields over inter-
val ∆τ , proportional to the inverse of the encoded fre-
quency spacing ∆ω, as in equation 54.

FREQUENCY ASSIGNMENT STRATEGIES

Frequency-domain FWI is traditionally conducted by invert-
ing single frequencies in succession from low to high, for all
sources (Pratt, 1999; Sirgue and Pratt, 2004). In contrast,
source-encoded FWI assigns to each source only one, or a few,
frequencies at a time. A strategy needs to be designed to en-
sure that an adequate number of frequencies (indeed: all) are
used for every source across the iterations. In the approach
by Dai et al. (2013), each source is initially allocated a unique
frequency within the band of interest. All source frequencies
are increased by ∆ω in subsequent iterations, wrapping around
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Figure 6: The Moving Frequency Band (MFB) method for
source-encoding frequency assignment, a multiscale strategy
that involves consecutive inversions of slightly overlapping fre-
quency groups of fixed bandwidth. In this example, the shift
δω = ∆ω, the frequency spacing. In each iteration, the fre-
quencies assigned to the sources are randomly selected.

Figure 7: The multiscale strategy for source-encoded fre-
quency assignment, a multiscale strategy that involves succes-
sive inversions of overlapping frequency groups whose lowest
frequency is fixed. Each subsequent group adds one higher fre-
quency. The frequencies assigned to the sources are randomly
selected for each iteration.

upon reaching the bandlimit, back to the minimum frequency.
Only (ωmax−ωmin)/∆ω, iterations are needed to sample all fre-
quencies for every source, hence there will be welcome sam-
pling redundancy across the frequency spectrum.

In contrast to this type of systematic frequency sweep, we
will adopt a random frequency assignment strategy, as pro-
posed by Huang and Schuster (2018), Zhang et al. (2018) and
Tromp and Bachmann (2019). Random frequency assignment
is commonly combined with multiscale strategies in order to
mitigate the nonlinearity inherent in FWI. We aim to utilize
a wide frequency band to accommodate many sources with-
out reducing the spacing ∆ω, which would increase simulation
times. However, due to the nonlinearity of the inverse problem
and under the threat of cycle-skipping, it may be necessary to
use a narrower band in the early inversion stages. Hence the
bandwidth will reflect a compromise between avoiding cycle-
skips and simultaneously inverting as many sources and fre-
quencies as possible. Ultimately, all are used.

Tromp and Bachmann (2019) propose the multiscale fre-
quency selection strategy depicted in Figure 6. At the outset
they choose a bandwidth and a frequency spacing ∆ω that en-
ables encoding all sources using equation 53. This initial inter-
val is shifted up by δω with each subsequent iteration, until the
maximum frequency reaches the overall maximum desired. In
our implementation, δω could be a fraction of ∆ω, allowing for
the bandwidth to stay constant for a set number of iterations.
This approach is referred to as the “Moving Frequency Band”
(MFB) method. Brossier et al. (2009) adapt the time-domain
Bunks et al. (1995) approach to frequency selection as shown
in Figure 7. They conduct successive inversions in widening
frequency bands. The first iteration involves only the starting
frequency interval, to which one frequency is added with every
iteration. This approach is known as the “Bunks” method.

To further mitigate the nonlinearity of FWI, our Laplace-
domain formulation allows for a subset of specific arrivals,
e.g., early or reflected phases, to be used selectively, using
the time offset tsr0 and damping factors γ by which to con-
trol the time windowing. The damping can be adjusted, e.g., to
keep converted waves, free-surface multiples, or surface waves
from adding to the nonlinearity of the inversion in the early
iterations. For example, FWI of land data presents challenges
due to increased nonlinearity caused by free-surface effects, in-
cluding the propagation of surface waves, in the heterogeneous
near-surface. With surface waves, multi-offset strategies may
be necessary, as cycle-skipping accumulates nonlinearity with
increasing offset (Liu and Huang, 2019; Borisov et al., 2020).

NUMERICAL VALIDATION

Offshore Coupled Acoustic-Elastic FWI of Mar-
mousi Streamer Data

We demonstrate the applicability of our workflow to a syn-
thetic streamer data set generated from the Marmousi model
(Versteeg, 1994; Modrak and Tromp, 2016), overlain by a
450 m water layer. Both sources and receivers move with ev-
ery shot. The shear-wave speed (VS) model is derived from
the compressional (VP ) model using a constant Poisson’s ratio
of 0.25, VS = VP /1.732. The density is assumed to be uni-
form at 1000 kg/m3 and is not updated during the inversion.
An absorbing boundary condition is applied around the model
without adapting it to the free surface at the top of the water
layer.

Figure 8a shows the compressional wave speed model, our
inversion target. The initial VP and VS models for the inversion
are formed by smoothing the true models with a 2-D Gaussian
with vertical and horizontal standard deviations of 848.5 m, see
Figure 8b. We used a lower starting frequency of 1.0 Hz, and
employ the exponentiated phase cost function (Fu et al., 2018;
Yuan et al., 2019) as defined in equation A-18. A first set of
inversion tests is conducted without damping terms (γ = 0),
that is, involving all the arrivals in the inversion.

The model dimensions are 9.2 km×3.5 km. We simulate a 2-
D towed-streamer seismic acquisition, consisting of 148 evenly
distributed pressure sources excited 10 m below the water sur-
face, with 61 m shot spacing. The streamer length is 8 km, and
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Figure 8: (a) True and (b) initial VP models (Marmousi).

includes 438 hydrophones with a spacing of 18 m at a depth of
10 m. The distance between the sources and the first recording
channel is 30 m. The source-time function is a Ricker wavelet
with a center frequency of 5 Hz, considered known. The maxi-
mum recording time is 7.5 s, the time step is 0.75 ms. The ob-
served and synthetic data are computed with the 2-D spectral-
element method SPECFEM2D (Komatitsch and Vilotte, 1998).
The corresponding shot gather is depicted in Figure 9a.

Figure 9: Pressure seismograms in the true model shown in
Figure 8 computed with different damping factors: (a) none,
γ = 0 s−1, (b) γ = 2 s−1, and (c) γ = 0.8 s−1.

Figure 10: Frequency assignment versus iteration for the un-
damped inversions using (a) the MFB method in (b) the Bunks
approach. Frequency assignment versus source number for
(c) MFB and (d) Bunks, histograms and heatmaps.

Moving Frequency Band inversion, undamped

Using the MFB strategy, the first iteration follows Tromp
and Bachmann (2019) in utilizing waves between 1–6 Hz.
With each of the first 30 iterations, the frequency range shifts
by 0.1 Hz. Iterations beyond 30 are performed in the range
4–9 Hz. Each supershot is 37.5 s long (T +∆τ ), while a non-
encoded simulation only requires 7.5 s. For 150 sources and a
bandwidth of 5 Hz, this resulted in a speed-up factor of 16× per
iteration (see Tromp and Bachmann, 2019, their equation 58).
The frequency assignment for each iteration and a frequency
heatmap for all sources are shown in Figure 10a and 10c, re-
spectively. Notice the uneven sampling in the low-frequency
range. In Figure 11a solid lines represent the normalized model
misfits, while the blue line in Figure 11b corresponds to the
data phase misfit. The VP and VS models after 237 iterations
are displayed in Figure 12a and 12c, respectively.

Bunks multiscale inversion, undamped

For the Bunks multiscale strategy we use the same time steps
as with the MFB inversion. The first iteration employs waves
in the 1–6 Hz range, increased by 0.1 Hz until iteration 30.
The encoded source number increases until the 30th iteration.
Iterations beyond 30 are performed between 1–9 Hz. A to-
tal of 240 frequencies are encoded simultaneously, ensuring
that at least 90 sources are assigned two frequencies concur-
rently. Figure 10b and 10d show the frequency assignment per
iteration and the heatmap for each frequency of all sources,
respectively. Notice the more balanced sampling of the fre-
quencies. The dashed lines in Figure 11a show the normalized
model misfits for VP and VS . The red line in Figure 11b shows
the phase misfit curve. The Bunks approach uniformly cov-
ers the low frequencies, whereas the MFB strategy favors the
higher frequencies. The preference for low frequencies pro-
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Figure 11: Model and data (phase) misfits. (a) Normalized
model misfits for VP (blue) and VS (red), for the inversion us-
ing the MFB method (solid) and the Bunks (dashed) approach.
(b) Normalized phase misfits for the MFB (blue) and Bunks
(red) frequency assignment.

vides a better update to the low-wavenumber components of
the models, resulting in improved model updates. Figure 12b
and 12d, respectively, show the VP and VS models that result,
after 237 iterations.

Bunks multiscale inversion, damped

We repeat the experiment under the Bunks frequency assign-
ment using the Laplace-domain approach, in three stages, start-
ing with γ = 2.0 s−1, then γ = 0.8 s−1, and finally without
damping, γ = 0, which is equivalent to using the Fourier trans-
form. The damped common-shot gathers are shown in Fig-
ure 9b and 9c. The inversion parameters of the three stages
are presented in Table 1. Note that damping slows the rate of
convergence, offsetting some of the gains in speed made by
source-encoding, and thus needs to be carefully considered.

For the damping term γ = 2.0 s−1, the steady-state time T
and the decoding interval ∆τ are maintained at the common
value, 5.25 s, and only VP is updated because VS is not sen-
sitive to early arrivals. For γ = 0.8 s−1, T and ∆τ are set
to 7.5 s. As the number of encoded sources is always smaller
than the total number of sources available, only a “mini-batch”

Figure 12: Inversion results after 237 iterations using the MFB
in (a) and (c) and the Bunks approach in (b) and (d), for VP

in (a) and (b) and VS in (b) and (d).
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Table 1: Inversion parameters for the Laplace-domain source-encoded FWI of streamer data in the Marmousi model.

stage γ (s−1) band (Hz) δω ωmax shift T (s) ∆τ (s)

1 2.0 0.08 5.25 5.25
2 0.8 1–3 0.08 6 7.50 7.50
3 0.0 0.50 7.50 30.0

Figure 13: Model misfit evolution for the Laplace-domain FWI
of the streamer data for the three-stage inversion tabulated in
Table 1.

Figure 14: Result after 1600 iterations using the Bunks ap-
proach of the three-stage Laplace-domain FWI of Marmousi
streamer data: inverted (a) VP and (b) VS models.

subset (van Herwaarden et al., 2020) of the whole shot is ran-
domly chosen at each iteration. The model misfits are found
in Figure 13. The final FWI VP and VS models are shown in
Figure 14.

Time-damping applied from the first-arrival time can be
viewed as a heuristic way to select aperture angles of P-waves
in the data (Brossier et al., 2009). For large γ, only arrivals

close in time to the first arrivals are used in the inversion, which
corresponds to wide-aperture P-wave events. According to the
P-to-P wave scattering pattern from elastic wave-speed pertur-
bations (Tarantola, 1986), those wide-aperture P-wave events
mostly come from perturbations in VP instead of from VS per-
turbations. Hence, in Figure 13, we exclusively update the
VP model when γ = 2.0 s−1. As γ becomes smaller, the
phases beyond the first-arrival traveltimes become dominant in
the inversion, which corresponds to shorter-aperture P-wave
events and converted waves. Because aperture angle is an ad-
ditional parameter to frequency in controlling the spatial reso-
lution of FWI (Brossier et al., 2009; Sirgue and Pratt, 2004),
our Laplace-domain method implements a second level of hi-
erarchy in FWI in addition to that naturally introduced by fre-
quency selection through aperture selection.

We perform our tests on a workstation, Clenardus, equipped
with an 8 GB NVIDIA GTX2080Ti GPU and twenty 2.20 GHz
Intel Xeon Silver 4210 CPUs with 64 GB of memory. The sim-
ulation has a time step of 0.75 ms. Compute times per iteration
for stages 1, 2, and 3 are 59.6 s, 73.52 s, and 160.9 s, respec-
tively.

Offshore Couple Acoustic-Elastic FWI of Mar-
mousi Multi-Component OBN Data

In this section, we will examine the Laplace-domain source-
encoded acoustic-elastic FWI for the inversion of a multi-
component ocean-bottom node (OBN) dataset. The cou-
pled acoustic-elastic spectral-element implementation can ac-
curately simulate the full wavefield at and near the seafloor. It
correctly handles fluid-solid boundary conditions (Komatitsch
et al., 2000), which has significant advantages for imaging
and inversion applications that use amplitude information for
model building.

We will investigate how the data damping can affect the in-
version process. The true and initial Marmousi models are
again those already depicted in Figure 8. The source is po-
sitioned 10 m below the sea surface and a total of 150 sources
are evenly distributed with a spacing of 60 m. At the seafloor,
46 OBN receivers are placed with a spacing of 200 m and two
components per node are recorded. Exploiting reciprocity, as
there are twice more physical sources than OBN receivers, it is
more efficient to perform two simulations per vertical and hor-
izontal geophone (treated as vertical and horizontal forces) to
build the gradient. Therefore, a total of 92 virtual sources will
be used. The recording time spans 11.25 s with a time step of
0.75 ms. The simulated common-receiver gather for the verti-
cal and horizontal components is shown in Figure 15a and 15b,
respectively. Figures 15c–f show the damped wavefields.
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Figure 15: Seismograms for the vertical (left column) and hori-
zontal (right column) data computed in the Marmousi model
with different damping factors: (a–b) zero damping, γ =
0 s−1, (c–d) γ = 1 s−1, (e–f) γ = 2 s−1. Time damping is
applied from the first arrival onward to preserve long-offset in-
formation.

We first apply the Bunks multiscale strategy without damp-
ing, γ = 0. The first iteration utilizes waves in the 1–3 Hz
range with a steady-state time T = 7.5 s and an integration
interval ∆τ = 30 s. In the initial iteration, 60 of the virtual
sources are randomly chosen for inversion. For each subse-
quent iteration, the maximum frequency is increased by 0.1 Hz
until reaching iteration 60. After that, iterations are performed
between 1–9 Hz. A total of 240 frequencies are encoded simul-
taneously, allowing some sources to be assigned two or three
frequencies at the same time. The normalized model misfits are
shown in Figure 16a. The VP and VS models resulting after 700
iterations are displayed in Figure 17a and 17c, respectively.

We repeated the experiment with two damping terms, γ =
2.0 s−1 and 1.0 s−1. The inversion parameters are unchanged
from Table 1, except γ = 1 s−1 in the second stage. The
damped vertical and horizontal gathers are shown in Fig-
ure 15. The model misfits are shown in Figure 16b. The fi-
nal VP and VS models, obtained using the damped Laplace-
domain source-encoded FWI method, are found in Figures 17b
and 17d.

Figure 16: Model misfits for (a) the (undamped) Fourier- and
the (b) (damped) Laplace-domain source-encoded FWI of the
OBN Marmousi data.

In Figure 16a, using (undamped) Fourier-domain source-
encoding of OBN data, we notice that the VS model receives
more updates than VP . In contrast, with the inversion of
streamer data in Figure 11a, we observed more updates to VP .
This behavior may indicate that the OBN data contain more
S-wave information beneficial to VS modeling. However, in
real-world situations, we may suffer from bad initial VS mod-
els leading the inversion to a local minimum. Thus, a Laplace-
domain method is necessary to fit the early arrivals, mainly in-
verting VP , and then gradually updating the VS model as shown
in Figure 16.

We perform these tests on a cluster, Della, equipped with an
80 GB NVIDIA A100 GPU and forty-eight 2.8 GHz 1000 GB
Intel Ice Lake CPUs with 1000 GB of memory. Compute times
for stages 1, 2, and 3 are 59.6 s, 64.46 s, and 105.6 s, respec-
tively, per iteration.

Onshore Elastic FWI of Foothills Data

In this section, we will demonstrate the effectiveness of the
Laplace-domain source-encoded elastic FWI method for land
data. FWI of land data poses challenges due to increased non-
linearity introduced by free-surface effects such as the propaga-
tion of surface waves in the heterogeneous near-surface. Addi-
tionally, the presence of short wavelengths in the shear wave-
field necessitates an accurate VS starting model, particularly
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Figure 17: Inverted (a–b) VP and (c–d) VS models by (a,c)
Fourier (undamped) and (b,d) damped Laplace-domain source-
encoding of OBN Marmousi data, 700 iterations.

Figure 18: (a) True and (b) initial VP wave speed Foothills
models.

Figure 19: (a) Seismograms computed in the Foothills model
for the vertical component particle velocity. The shot is located
at a horizontal distance of 0.1 km. A free-surface condition
is applied at the top of the model. (b) As in (a) except after
imposing an absorbing boundary condition at the top of the
model.

when low frequencies are unavailable in the data.
To illustrate the efficacy of Laplace-domain source-encoded

elastic FWI, we consider a 2-D onshore Foothills model (Bren-
ders et al., 2008) measuring 5.5 km×15 km. The model in-
corporates various challenging geological features, including
rough topography, alluvial surface deposits, and complex struc-
tures resulting from compressive fold-and-thrust tectonics as-
sociated with mountain building. The VP model shown in Fig-
ure 18a is modified from Figure 2a of Brenders et al. (2008).
A corresponding VS model is constructed using a constant
Poisson ratio, i.e., VS = VP /1.732. A uniform density of
2600 kg/m3 is assumed to be known during the inversion. A
free-surface is imposed at the top of the model.

We simulate an onshore survey with 300 explosive sources
spaced every 50 m, 25 m below the surface. Recordings are
made on the surface with 601 vertical geophones spaced every
25 m. Observed and synthetic data are computed with an iden-
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Figure 20: Seismograms for the vertical data computed in the
Foothills model with different damping factors: (a) γ = 0 s−1,
(b) γ = 3 s−1, (c) γ = 2.35 s−1, (d) γ = 1 s−1, and (e) γ =
0.8 s−1. We mark the first-break times in (a) and show two
offset ranges, tsr0 ≤ 1 s and tsr0 ≤ 2 s, respectively.

tical algorithm. The source signature is assumed to be known.
An elastic shot gather is displayed in Figure 19a. A shot gather
computed with an absorbing boundary condition applied to the
top of the model is shown in Figure 19b to highlight the ad-
ditional wave complexities introduced by free-surface effects,
such as surface waves and body-wave reflections from the free
surface.

For this example we design a combined Fourier/Laplace ap-
proach. For the first three stages, we employ (undamped)
Fourier-domain source-encoded FWI. However, due to their
strong energy, the inversion is dominated by surface waves in
the inversion. To address cycle skipping, we limit the maxi-
mum offset to traces with a first-break time tsr0 ≤ 1 s. Subse-
quently, we limit the traces to those with tsr0 ≤ 2 s, and finally,
we include all traces in the inversion (see Figure 20a). The
steady-state time T = 8 s and decoding interval ∆τ = 60 s.
The starting frequency range is 1–3 Hz, and each subsequent
iteration increases the maximum frequency by δω = 0.1 Hz.
The maximum frequency shift ωmax shift = 5 Hz. The inverted
VP and VS models are presented in Figure 21a and 21c, re-
spectively. The model misfits are shown in Figure 22. Only the
shallow part of the VS model in Figure 21c is well recovered
due to the presence of surface waves, while the inversion of the
VP model is not satisfactory.

After these three Fourier-domain stages, we switch to the
Laplace domain and we set the damping factors γ to 3.0 s−1,
2.35 s−1, 1.7 s−1, and 0.8 s−1, see Figure 20. For larger values
of γ, such as 3.0 s−1, the total simulation time is limited due
to the use of a 4-byte data type (float32). Consequently, we
can only include the near-offset traces with a first-break time
smaller than 1 s. For γ = 2.35 s−1, we include traces with
a first-break time smaller than 2 s. As γ decreases, a larger
simulation time (nominally 99 s) can be set to include all traces
in the inversion. The inversion parameters are listed in Table 2.

The inverted VP and VS models are displayed in Figures 21b
and 21d. Our Laplace-domain source encoding method ef-
fectively attenuates surface waves, enabling better updates of
the VP and VS models compared to traditional Fourier-domain
source encoding strategies. Notably, significant reductions in
model misfit are observed in stage 4 of the inversion process,
as shown in Figure 22.

Another benefit expected from using complex-valued fre-
quencies is the damping during the early FWI iterations of con-
verted P-S waves, free-surface multiples, and surface waves,
which introduces additional nonlinearities into the inversion.
In practice, this second level of hierarchy can be imple-
mented by progressively relaxing the time damping during
each frequency-group inversion.

We perform our tests on the aforementioned Della cluster.
Compute times, per iteration, for stages 1, 2, and 3 are 262.2 s,
230.5 s, and 496.7 s, respectively. For stages 4, 5, 6, 7, and 8,
compute times are 84.7 s, 106.6 s, 98.3 s, 129.56 s, and 202.4 s,
respectively.

CONCLUSIONS

To reduce the computational time of elastic full-waveform
inversion (FWI) using time-domain solvers, we develop a new
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Table 2: Inversion parameters for the (un)damped source-encoded FWI of land data in the Foothills model.

stage γ (s−1) band (Hz) δω ωmax shift T (s) ∆τ (s) max tsr0 (s)

1 1.0
Fourier 2 0.0 1–3 0.1 5 8.0 60 2.0

3 99

4 3.0 1–3 0.0063 5 3.0 3.6 1.0
5 2.35 1–3 0.05 5 4.0 4.4 2.0

Laplace 6 1.7 1–3 0.1 7 6.0 7.0 99
7 0.8 1–3 0.1 8 7.5 18.5 99

Fourier 8 0.0 1–6 0.1 5 8.0 60 99

Figure 21: Inverted (a-b) VP and (c-d) VS models by (a,c)
Fourier (undamped) and (b,d) damped Laplace-domain source-
encoded FWI of Foothills land data.

version of source encoding that assigns to each source at ran-
dom for each iteration a unique complex frequency, and that
includes a damping factor to attenuate late arrivals. The mis-
fit criterion is the sum of squared errors in the scaled Laplace
coefficients between observed and synthetic data. The source-
time function takes the form of a weighted cosine or sine with
exponentially increasing amplitude.

We simultaneously activate all the sources and carry out one
source-encoded forward simulation followed by one source-

encoded adjoint simulation, using a time-domain solver. The
encoded forward and adjoint wavefields are run past their
steady state. The gradient is calculated through zero-lag cross-
correlation between the steady-state encoded forward and ad-
joint wavefields over a decoding time interval proportional to
the inverse of the encoded frequency spacing. Owing to the
orthogonality between the trigonometric terms of the encoding
operator, no crosstalk is introduced during gradient calculation,
and there are no requirements or limitations on acquisition ge-
ometry. By tuning the damping factor, we can time-window the
data even when only one or a few sparse frequencies are being
sampled. Time-windowing allows for the selection of specific
arrivals during the various stages of the inversion.

The new version of source encoding can reduce the com-
putational cost of elastic FWI with time-domain solvers. Us-
ing our method, a practicing geoscientist can implement elas-
tic FWI on a small workstation. All shot gathers are “encoded”
into one “supergather”, instead of needing to distribute the seis-
mic sources over the processors of multiple computers in paral-
lel systems that require high-performance computational plat-
forms.
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APPENDIX A

ALTERNATIVE MISFITS

We consider three formulations in addition to the misfit cri-
terion in equation 21.

Phase measurement
We define

ss(xr, t
sr
0 ) = As(xr) exp(ıθ

s(xr)), (A-1)
ds(xr, t

sr
0 ) = As

obs(xr) exp(ıθ
s
obs(xr)), (A-2)
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Figure 22: Model misfits for the Fourier-domain (stages 1–3, 8) and Laplace-domain (stages 4–7) source-encoded FWI of land data
from the Foothills model.

where

θs(xr) = arctan

[
I
{
ss(xr, t

sr
0 )
}

R
{
ss(xr, tsr0 )

}] , (A-3)

θsobs(xr) = arctan

[
I
{
ds(xr, t

sr
0 )
}

R
{
ds(xr, tsr0 )

}] , (A-4)

and

As(xr) = |ss(xr, t
sr
0 )| (A-5)

=
√
[R
{
ss(xr, tsr0 )

}
]2 + [I

{
ss(xr, tsr0 )

}
]2,

As
obs(xr) = |ds(xr, t

sr
0 )| (A-6)

=
√
[R
{
ds(xr, tsr0 )

}
]2 + [I

{
ds(xr, tsr0 )

}
]2.

The phase misfit function is defined as

χθ =
1

2

S∑
s=1

Rs∑
r=1

(∆θsr)
2, (A-7)

where ∆θsr is the differential phase measurement,

∆θsr = arctan

 I
[ ss(xr,t

sr
0 )

ds(xr,tsr0 )

]
R
[ ss(xr,tsr0 )
ds(xr,tsr0 )

]
 (A-8)

= θs(xr)− θsobs(xr), (A-9)

where the last equality holds modulo 2π. This phase misfit
function has variation,

δχθ = R
S∑

s=1

Rs∑
r=1

∆θsrδθ
s(xr), (A-10)

= R
S∑

s=1

Rs∑
r=1

∆θsr [A
s(xr)]

−2 (A-11)

× [−ıss∗(xr, t
sr
0 )]δss(xr, t

sr
0 ),

where we can define the weighted data residual as

∆ss∗(xr, t
sr
0 ) = ∆θsr [A

s(xr)]
−2 (A-12)

× [−ıss∗(xr, t
sr
0 )](ifs)

= ∆θsr [A
s(xr)]

−2ss∗(xr, t
sr
0 )fs (A-13)

so that

∆ss(xr, t
sr
0 ) = ∆θsr [A

s(xr)]
−2ss(xr, t

sr
0 )fs∗, (A-14)

so we can get the adjoint

f̃†(xr, t) = f†
i (xr, T +∆τ − t), (A-15)

= R
{ S∑

s=1

δs̃s(xr, t
sr
0 )eıωs(T+t)

}
e−γ(T+t),

(A-16)

where we can define

∆s̃si (xr, t
sr
0 ) = eγt

sr
0 ∆ssi (xr, t

sr
0 ). (A-17)
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Exponentiated Phase

We also consider the exponentiated phase misfit function
(Yuan et al., 2019),

χθ =
1

2

S∑
s=1

Rs∑
r=1

| exp[ıθs(xr)]− exp[ıθsobs(xr)]|2 (A-18)

= 2

S∑
s=1

Rs∑
r=1

sin2
(
1

2
∆θsr

)
, (A-19)

and its perturbation

δχθ =

S∑
s=1

Rs∑
r=1

sin(∆θsr)δθ
s(xr), (A-20)

= R
S∑

s=1

Rs∑
r=1

sin(∆θsr)[A
s(xr)]

−2 (A-21)

× [−ıss∗(xr, t
sr
0 )]δss(xr, t

sr
0 ).

Now define

∆ss∗(xr, t
sr
0 ) = sin(∆θsr)[A

s(xr)]
−2[−ıss∗(xr, t

sr
0 )](ifs),

= sin(∆θsr)[A
s(xr)]

−2ss∗(xr, t
sr
0 )fs,

(A-22)

so that

∆ss(xr, t
sr
0 ) = sin(∆θsr)[A

s(xr)]
−2ss(xr, t

sr
0 )fs∗. (A-23)

We can then get the adjoint,

f̃†(xr, t) = f†
i (xr, T +∆τ − t), (A-24)

= R
{ S∑

s=1

∆s̃s(xr, t
sr
0 )eıωs(T+t)

}
e−γ(T+t),

(A-25)

where

δs̃si (xr, t
sr
0 ) = eγt

sr
0 ∆ssi (xr, t

sr
0 ). (A-26)

Double-Difference Phase

We next consider the misfit function (Yuan et al., 2016)

χDD
θ =

1

2

S∑
s=1

Rs∑
r=1

Rs∑
r′>r

wrr′ [∆∆θsrr′ ]
2, (A-27)

where wrr′ is a suitably chosen weighting function, and ∆δθsrr′
is the “double-difference” phase measurement,

∆δθsrr′ = ∆θsr −∆θsr′ , (A-28)

= arctan


I
[ ss(xr,t

sr
0 )ds(xr′ ,t

sr′
0 )

ds(xr,tsr0 )ss(xr′ ,t
sr′
0 )

]
R
[ ss(xr,tsr0 )ds(xr′ ,t

sr′
0 )

ds(xr,tsr0 )ss(xr′ ,t
sr′
0 )

]
 , (A-29)

where the last equality holds modulo 2π. This phase misfit
function has the variation

δχDD
θ = R

S∑
s=1

Rs∑
r=1

Rs∑
r′>r

wrr′∆∆θsrr′ [δθ
s(xr)− δθs(xr′)],

(A-30)

= R
S∑

s=1

Rs∑
r=1

Rs∑
r′>r

wrr′∆∆θsrr′ [A
s(xr)]

−2 (A-31)

× [−ıss∗(xr, t
sr
0 )]δss(xr, t

sr
0 )

−R
S∑

s=1

Rs∑
r=1

Rs∑
r′>r

wrr′∆∆θsrr′ [A
s(xr′)]

−2 (A-32)

× [−ıss∗(xr′ , t
sr′

0 )]δss(xr′ , t
sr′

0 ),

= R
S∑

s=1

Rs∑
r=1

Rs∑
r′ ̸=r

wrr′∆∆θsrr′ [A
s(xr)]

−2 (A-33)

× [−ıss∗(xr, t
sr
0 )]δss(xr, t

sr
0 ), (A-34)

where we can define the weighted data residual as

∆ss∗(xr, t
sr
0 ) =

Rs∑
r′ ̸=r

wrr′∆∆θsrr′ [A
s(xr)]

−2 (A-35)

× [−ıss∗(xr, t
sr
0 )](ifs),

=

Rs∑
r′ ̸=r

wrr′∆∆θsrr′ [A
s(xr)]

−2ss∗(xr, t
sr
0 )fs,

(A-36)

so that

∆ss(xr, t
sr
0 ) =

Rs∑
r′ ̸=r

wrr′∆∆θsrr′ [A
s(xr)]

−2ss(xr, t
sr
0 )fs∗,

(A-37)
so we can get the adjoint,

f̃†(xr, t) = f†
i (xr, T +∆τ − t) (A-38)

= R
{ S∑

s=1

δs̃s(xr, t
sr
0 )eıωs(T+t)

}
e−γ(T+t),

(A-39)

where we can define

δs̃si (xr, t
sr
0 ) = eγt

sr
0 ∆ssi (xr, t

sr
0 ). (A-40)
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APPENDIX B

SIMULTANEOUS-SOURCE FORWARD AND ADJOINT
WAVEFIELD

Foward Wavefield and Source

To reduce the second factor (II) of equation 30, we derive,
via equation 31

uj(x, t+ T ) = R
{
¯̃u
s
j(x)e

zs(t+T )
}
, (B-1)

= R
{
(−ı)n̂m(xs)e

zs(t+T )G̃s
jm(x,xs)

}
,

(B-2)

= R

{
(−ı)n̂m(xs)e

zs(t+T ) (B-3)

×
∫ ∞

0

Gjm(x,xs, t
′)e−zst

′
dt′
}
,

= R

{
(−ı)n̂m(xs) (B-4)

×
∫ ∞

0

Gjm(x,xs, t
′)ezs(T+t−t′) dt′

}
,

= R

{
(−ı)n̂m(xs) (B-5)

×
∫ T+t

−∞
Gjm(x,xs, T + t− t′)ezst

′
dt′
}
,

=

∫ T+t

−∞
Gjm(x,xs, T + t− t′) (B-6)

×R
{
(−ı)n̂m(xs)e

zst
′
}
dt′,

=

∫ T+t

−∞
Gjm(x,xs, T + t− t′) (B-7)

×R
{
(−ı)n̂m(xs)e

zst
′
}

︸ ︷︷ ︸
source

dt′,

where the source term is defined as

fm(xs, t) = R
{
(−ı)n̂m(xs)e

zst
}
, (B-8)

= n̂m(xs)e
γtR

{
(−ı)eıωst

}
, (B-9)

= n̂m(xs)e
γt sinωst. (B-10)

Adjoint Wavefield and Adjoint Source

To reduce the first factor (I) of equation 30, we define a
wavefield, summed over all sources and receivers, using the
Laplace transform definition and the reciprocity of the Green’s

function, and for t ∈ [0, δτ ],

ϕj(x, t+ T ) = R
{
eγt0∆̄ũsr

i
∗e−zs(t+T )G̃s

ij(xr,x)
}
,

(B-11)

= R

{
eγt0∆̄ũsr

i
∗e−zs(T+t) (B-12)

×
∫ ∞

0

Gji(x,xr, t
′)e−zst

′
dt′
}
,

= R

{
eγt0∆̄ũsr

i
∗e−zsT (B-13)

×
∫ ∞

0

Gji(x,xr, t
′)e−zs(t+t′) dt′

}
,

= R

{
eγt0∆̄ũsr

i
∗e−zsT (B-14)

×
∫ ∞

t

Gji(x,xr, t
′ − t)e−zst

′
dt′
}
,

=

∫ ∞

t

Gji(x,xr, t
′ − t) (B-15)

×R

{
S∑

s=1

eγt0∆̄ũsr
i

∗e−zs(T+t′)

}
dt′.

Letting t′ = T +∆τ − t′, we have

ϕj(x, t+ T ) =

R∑
r=1

∫ T+∆τ−t

−∞
Gji(x,xr, T +∆τ − t− t′)

×
S∑

s=1

eγt0R
{
∆̄ũsr

i
∗e−zs(2T+∆τ−t′)

}
︸ ︷︷ ︸

adjoint source

dt′, (B-16)

where the adjoint source term is defined as

f†
i (xr, T +∆τ − t′) =

S∑
s=1

eγt0R

{
∆̄ũsr

i
∗e−zs(2T+∆τ−t′)

}
,

(B-17)

=

S∑
s=1

eγt0R

{
∆̄ũsr

i e−z∗
s (2T+∆τ−t′)

}
,

(B-18)

=

S∑
s=1

eγt0 (B-19)

×R

{
∆̄ũsr

i e(ıωs−γ)(2T+∆τ−t′)

}
,

= R

{ S∑
s=1

eγt0∆̄ũsr
i eıωs(2T+∆τ−t′)

× e−γ(2T+∆τ−t′)

}
. (B-20)
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