
Geophys. J. Int. (2020) 221, 1145–1164 doi: 10.1093/gji/ggaa063
Advance Access publication 2020 February 13
GJI Seismology

The exponentiated phase measurement, and objective-function
hybridization for adjoint waveform tomography
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S U M M A R Y
Seismic tomography has arrived at the threshold of the era of big data. However, how to
extract information optimally from every available time-series remains a challenge; one that
is directly related to the objective function chosen as a distance metric between observed and
synthetic data. Time-domain cross-correlation and frequency-dependent multitaper traveltime
measurements are generally tied to window selection algorithms in order to balance the ampli-
tude differences between seismic phases. Even then, such measurements naturally favour the
dominant signals within the chosen windows. Hence, it is difficult to select all usable portions
of seismograms with any sort of optimality. As a consequence, information ends up being
lost, in particular from scattered waves. In contrast, measurements based on instantaneous
phase allow extracting information uniformly over the seismic records without requiring their
segmentation. And yet, measuring instantaneous phase, like any other phase measurement, is
impeded by phase wrapping. In this paper, we address this limitation by using a complex-valued
phase representation that we call ‘exponentiated phase’. We demonstrate that the exponenti-
ated phase is a good substitute for instantaneous-phase measurements. To assimilate as much
information as possible from every seismogram while tackling the non-linearity of inversion
problems, we discuss a flexible hybrid approach to combine various objective functions in
adjoint seismic tomography. We focus on those based on the exponentiated phase, to take into
account relatively small-magnitude scattered waves; on multitaper measurements of selected
surface waves; and on cross-correlation measurements on specific windows to select distinct
body-wave arrivals. Guided by synthetic experiments, we discuss how exponentiated-phase,
multitaper and cross-correlation measurements, and their hybridization, affect tomographic
results. Despite their use of multiple measurements, the computational cost to evaluate gradi-
ent kernels for the objective functions is scarcely affected, allowing for issues with data quality
and measurement challenges to be simultaneously addressed efficiently.
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1 I N T RO D U C T I O N

Driven in part by recent advances in numerical wave-propagation algorithms and high-performance computing, full-waveform inversion has
been used to study Earth’s interior at a variety of scales (e.g. Fichtner et al. 2008; Virieux & Operto 2009; Tape et al. 2009; Prieux et al.
2013a, b; Borisov et al. 2016). The quality and resolution with which seismic tomography manages to image the 3-D structure of Earth’s
interior rely on its capability to match the individual observed seismograms—and on overall geographic data coverage (e.g. Nolet et al. 2019).
Despite being at the threshold of a new era of big data in exploration and earthquake seismology, a potentially vast amount of the information
contained in seismograms remains insufficiently usable in our inversions, due to measurement and data assimilation difficulties. The success
of wave-equation-based tomography techniques is inextricably reliant on the nature of the misfit functions that measure the distance between
the forward-computed wavefield and the observations (e.g. Modrak & Tromp 2016), which drive the inversion process. For instance, reducing
traveltime-based misfit functions (Luo & Schuster 1991; Phillips & Fehler 1991; Marquering et al. 1999; Dahlen et al. 2000; Rawlinson &
Sambridge 2003; Zhou et al. 2004; Liu & Tromp 2006; Tape 2009; Burdick et al. 2010) is a popular way to map wavespeed heterogeneity
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within the Earth. To make these measurements, seismic phases with similar shapes are to be selected, for example using explicit measures of
coherence (e.g. Maggi et al. 2009), or increasingly, based on machine-learning approaches (e.g. Chen et al. 2017).

The careful selection of these phases is essential to maximizing the information entering the inversion procedure. It is difficult to find an
optimal set of window-selection parameters by which to include as much signal as possible from all given seismograms while avoiding noisy
portions. Conservative approaches might exclude potentially useful information; more liberal selection criteria could incorporate segments
that reveal themselves as insignificant for the inversion process. Either way, the inclusion of ill-fitting data portions could drive the inversion
to non-convergence. Scattered waves, in particular, are rarely included by such automated procedures, yet they are crucial to resolving
slow-wavespeed anomalies (Rickers et al. 2012), due to the wave phenomenon known as ‘wavefront healing’ (Nolet & Dahlen 2000; Hung
et al. 2001). To conclude: data selection, the choice of misfit function and the judicious combination of multiple observables are as important
now as ever. Next, we report on two particular aspects of these vital steps in the tomographic waveform-inversion process.

1.1 Importance and challenges of using phase information

Various approaches to maximize extraction of information from seismograms have been the subject of previous studies. Fichtner et al. (2008)
discussed full-waveform inversion based on the separation of phase and amplitude through time–frequency analysis (Kristeková et al. 2006).
Their method provides a natural way to include all necessary information from seismograms while reducing the non-linearity caused by the
interaction of phase and amplitude. Bozdağ et al. (2011) proposed tomography based on the use of ‘instantaneous phase’ and envelopes.
Avoiding additional processing when compared to time-domain approaches, the instantaneous phase has been shown to hold an advantage over
cross-correlation in capturing traveltime delays, as discussed by Djebbi & Alkhalifah (2014). Rickers et al. (2012) used instantaneous-phase
measurements successfully to image mantle plumes, which are difficult to resolve by cross-correlation traveltime tomography.

Like all the other phase measurements, calculating instantaneous phase is hampered by ‘cycle skipping’, with the phase wrapped after
one cycle. Phase unwrapping is not trivial, especially for complicated or noisy signals—a sticky problem (Pritt & Ghiglia 1998). An alternative
idea is to measure phase implicitly from complex-valued signals. To estimate phase in the frequency domain, Shin et al. 2003 calculated
the imaginary part of a complex-valued wavefield and its derivative with respect to each frequency. Working in the time domain, Sguazzero
et al. (1987) introduced a normalized complex correlation to estimate stacking velocities for multichannel seismic surveys. Luo et al. (2018)
discussed using a normalized complex form of phase combined with a damping method to tackle the phase wrapping problem.

Along the same lines, we use an implicit approach to extract phase information in the time domain, one that we call ‘exponentiated
phase’. Given the analytic representation of a real-valued signal, after stripping its amplitude, what remains is a complete representation of
its phase information. We show that the exponentiated phase and the adjoint source needed to incorporate it into full-waveform inversion
are naturally connected to the instantaneous-phase methods introduced by Bozdağ et al. (2011). However, in contrast to the measurement
challenges of instantaneous phase, the exponentiated phase utilizes the original phase information from the analytical signal, and measures
phase uniquely, consistently and robustly. Also, it is extremely straightforward to apply the exponentiated phase method to any type of signal
with complex mixtures of waves, rendering it applicable to handle currently available big datasets. However, we show that the exponentiated-
phase misfit function, when the phase difference is too large, does not preserve the desirable convexity of unwrapped instantaneous-phase
and cross-correlation misfit functions. To address this limitation, and to balance the trade-offs between convergence and model recovery, we
propose to combine exponentiated-phase with other phase measurements such as cross-correlation traveltime and multitaper phase. In the
following section, we discuss our ‘objective-function hybridization’ approach.

1.2 Combining multiple observation types

Broadband seismograms typically contain multiple seismic events with distinct spectral-temporal features. To characterize these features,
one can apply hierarchical, multiscale strategies by progressively incorporating data filtered from long to short wavelengths, either through
conventional Fourier transformation (Bunks et al. 1995) or by multiresolution wavelet decomposition (Yuan & Simons 2014; Yuan et al.
2015). Alternatively, one can use different objective functions to capture distinct seismic phases (Maraschini et al. 2010; Bozdağ et al. 2011).
Traveltime tomography (see, e.g. Nolet 2008) can behave robustly while measuring only relatively short-period body waves. To characterize
dispersive body and surface waves, multitaper approaches (Zhou et al. 2004, 2005; Tape et al. 2010) have been eminently suitable. And as
discussed here, the exponentiated phase is capable of including various small-magnitude scattered waves in addition to their primary dominant
phases without windowing data into small segments.

To optimize the information that can be extracted from every seismic wiggle, we propose combining various objective functions. At the
long periods, we count on the relatively good agreement for major phases to readily take into account scattered waves. At the shorter periods,
the time-domain selection allows for the identification of prominent body-wave arrivals without complicating their measurement due to
non-linearity. Objective-function hybridization embraces data-quality and measurement challenges in a way that moves seismic tomography
towards using any and all information that can be mined from our datasets.

In the literature (e.g. Roy 1971), approaches to blending different objective functions encompass both the hierarchical (Haimes & Li
1988) or the simultaneous (Sabri & Beamon 2000). In this paper, we focus on the latter, as it largely leaves the computational cost in calculating
gradients unaffected, compared to when a single objective function is involved. Furthermore, no measurement order is imposed.
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1.3 Main components of the paper

We review and numerically compare misfit functions based on various traveltime or phase measurements (we do not strictly distinguish
traveltime, t, and phase, φ, information as they are connected for a particular frequency via the relation �φ = −ω�t), including cross-
correlation traveltime, frequency-dependent traveltime, and time-dependent instantaneous phase measurements. We show the importance of
using the temporal phase for scattered waves through balancing waves with different magnitudes, and the challenge of addressing cycle skips
in computing it. We discuss how the alternative, time-continuous phase measurement—the exponentiated phase—successfully circumvents
phase-wrapping, while representing structural information similarly from the viewpoint of small-perturbation theory. Leaning on both
theoretical derivations and numerical examples, we highlight the connections between the exponentiated phase and the instantaneous phase
(Bozdağ et al. 2011; Rickers et al. 2012).

We test the performance of different phase-based measurements in a synthetic model. The differences in their sensitivity kernels inspire
a joint inversion of various objective functions, and the results clearly show great improvement of the inverted models. We test our phase
measurements on a real dataset from one event recorded by the Incorporated Research Institutions for Seismology (IRIS) Global Seismographic
Network (GSN) by computing its ‘event kernel’, the necessary first step for global adjoint seismic tomography, which ultimately will involve
all available earthquakes and recording stations.

In short, we show how, by combining a multitude of different seismic measurements designed to capture all reliable information from
recorded seismograms including body waves, surface waves and even interfering phases, and incorporating it into a single objective function,
the resolution of global seismic models (e.g. French & Romanowicz 2015; Bozdağ et al. 2016) will be improved—without much affecting
the computational cost in the adjoint seismic tomography workflow.

2 O B J E C T I V E - F U N C T I O N H Y B R I D I Z AT I O N

Broad-band seismograms comprise multiple seismic phases (e.g. body-wave arrivals such as direct P and S waves and their reflected, refracted
and converted phases, surface waves, etc.) with different dominant periods. Overall, the period range of interest varies from exploration to
earthquake seismology. In exploration settings, generally seismic frequencies higher than 1 Hz are of interest, while in earthquake (continental
to global-scale) seismology body waves up to 1 Hz dominant frequency, longer-period surface waves and even longer-period normal modes
are considered. In the experiment with real earthquake data, we focus on records within the period range of 17–250 s, the band used in our
own first examples of global adjoint tomography models (e.g. Bozdağ et al. 2016), but these frequency restrictions are not limiting.

2.1 Heuristic motivation

Fig. 1 compares a 180-min-long radial-component observed seismogram from the September 3, 2010 New Zealand earthquake (Mw = 7,
depth 12 km) recorded at station KBL in Afghanistan, over different period bands. The synthetic seismogram was calculated for the Centroid
Moment Tensor (CMT) mechanism 201009031635A by the global spectral-element seismic wave propagation solver SPECFEM3D GLOBE

(Komatitsch & Tromp 2002a, b) in a rotating, elliptical, self-gravitating (under the Cowling approximation) Earth, accommodating the effects
of topography and seafloor bathymetry, ocean loading, and a global adjoint tomography model for 3-D crust and mantle structure, GLAD-M15
(Bozdağ et al. 2016).

As seen in the figure, synthetic seismograms explain the observations adequately at the long periods, but mismatches are increasingly
apparent in the shorter-period bands, where waveform complexity significantly increases. Different segments or portions of the data tend to
be sensitive to different types and domains of subsurface structure in seismic tomography. The frequency-dependent misfits shown in these
records reveal the vast amount of information that remains to be assimilated by ‘full’-waveform inversions, and the progressive waveform
complexity hints at the difficulties likely to be encountered in attempting to do so, as the inverse problem will become significantly non-linear.
No single waveform misfit metric is expected to carry the inversions through the iterations and across the frequency bands, hence our goal is
to derive strategies that are flexible in their choice of objective functions and adept at handling their combination, thereby ultimately aiming
to increase the quantity of information that can be extracted from every seismic trace.

2.2 Hierarchical optimization

A common way to address the non-linearity of full-waveform inversion is to use a hierarchical approach (Roy 1971; Haimes & Li 1988) with
multiple objective functions. The inverse problem starts with a linearization, generally focusing on certain specific major phases, followed
by another objective function that allows for the extraction of additional information. Especially in the case of earthquake seismology,
traveltime/phase misfit is the more commonly considered objective function, as it is more linearly related to wavespeed than amplitude.
Although not utilized in this work, seismic amplitudes do provide good constraints on Earth’s structure (both elastic and anelastic)—together
with phases or time-shifts (e.g. Laske & Masters 1996; Selby & Woodhouse 2000; Dalton & Ekström 2006; Zhu et al. 2013; Karaoğlu &
Romanowicz 2018). In the hierarchical method, the optimal solution to the most preferred objective function is used as a constraint for the
next optimization using a new misfit function, and so on, for a number of levels.
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Figure 1. An example of observed and synthetic waveforms filtered to different period bands: radial-component seismograms, for a station within the Global
Seismographic Network. The solid black lines are the observations, the red traces the computed predictions. The panels show different period ranges arranged
from top to bottom, as the labels indicate. Improving the misfit at the short periods appears as important as it is challenging.

The order in which the objective functions are presented to the optimization suite is fruitfully determined based on physical assumptions.
For example: early-arriving phases are inverted first to correct for shallow structure before involving later signals (Sheng et al. 2006);
near-offsets capturing reflected energy give way to far-offset traces that record transmitted and converted waves; starting from the low
frequencies, seismograms are gradually incorporated into the inversion by filtering to progressively higher frequencies to retrieve subsurface
features at incrementally finer scales (Bunks et al. 1995; Akçelik et al. 2002; Operto et al. 2004; Yuan & Simons 2014); phase mea-
surements are dominantly sensitive to elastic parameters, while the amplitude mismatch can be used to further constrain both elastic and
anelastic properties.

2.3 Simultaneous optimization

A multi-objective optimization problem can also be solved using a simultaneous approach (Sabri & Beamon 2000). In contrast to the
hierarchical process, no strict order of the objective functions is required, which renders the procedure attractive from the standpoint of
computational efficiency. Only one adjoint simulation is needed to evaluate the misfit-gradient kernels when various objectives are combined
into a single, hybrid, objective function.

A generic expression for the simultaneous combination of objective functions into χH(m), a hybrid metric on the model space containing
the parameters m, can be written as:

χH(m) =
Nc∑
c

wc
χc(m)

σ 2
c

, (1)

where wc is a weighting factor to balance the relative importance of measurement classes through their individual objective functions χc(m).
Our expression contains an explicit term representing the measurement uncertainty, σ c. In the following pages we will discuss how to select
or measure these parameters, and illustrate our choices through numerical experiments.
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3 O B J E C T I V E F U N C T I O N S A N D T H E I R A D J O I N T S O U RC E S

We begin by briefly revisiting the traveltime/phase measurements that have been widely used in waveform-based seismic tomography to date.
Our purpose is to evaluate their scope of application and their contribution towards the assimilation of ‘all’ the available information from
the seismograms. We call upon numerical examples to demonstrate how to make these measurements and construct their adjoint sources, and
discuss limitations and challenges.

3.1 Cross-correlation traveltime [CC]

In regional and global seismology, the use of cross-correlation to measure the traveltimes of compressional (P) and shear (S) body waves has
long been the cornerstone in the tomographic mapping of elastic wavespeed variations in the crust and mantle. In exploration geophysics,
traveltime tomography or refraction tomography, using first arrivals picked manually or automatically (e.g. Gelchinsky & Shtivelman 1983),
similarly often provide initial velocity models for subsequent pre-stack depth migration or full-waveform inversion.

Cross-correlation traveltime �t and amplitude �lnA measurements are carried out in the time domain on the seismograms, and typically
target specific seismic phases via time-window selection, whether based on preset criteria (e.g. Maggi et al. 2009), or, lately, from machine
learning (e.g. Chen et al. 2017). Considering only the cross-correlation traveltime, we measure the time delay between a synthetic, s(t) and
an observation, d(t), over a window of length T, by when their waveform cross-correlation function is maximized,

�t = arg max
τ

∫ T

0
s(t + τ )d(t) dt. (2)

A positive �t indicates that the data waveform d(t) is advanced relative to the synthetic s(t), meaning that the wavespeed model that generates
the synthetics is slower than the truth. Hence, to reduce the mismatch between d(t) and s(t), one needs to increase the wavespeeds in the
model. In the optimization step, the wavespeed parameters are tuned until our objective function, the sum of squares of traveltime shifts for
all sources s and receivers r, in other words:

χCC = 1

2

∑
s,r

[�ts,r ]2, (3)

is minimized. From the Fréchet derivatives of the terms in the cross-correlation traveltime misfit function in eq. (3), as shown by various
authors (e.g. Luo & Schuster 1991; Marquering et al. 1999; Dahlen et al. 2000), Tromp et al. (2005) derive an adjoint source in the form, for
each earthquake source (omitting the subscript s),

f †
CC(x, t) =

∑
r

�tr

[
∂t sr (T − t)∫ T

0 ∂2
t sr (t) sr (t)dt

]
δ(x − xr ). (4)

This virtual source takes care of injecting the cross-correlation traveltime misfit information into the adjoint wave-propagation simulations
that drive the inversion, for all receivers r.

To maximize the information entering the tomographic inversion workflow to achieve optimum illumination, window selection is key. But
optimal design of selection criteria and parameters is not trivial. Only clearly identifiable phases with similar waveforms in both observed and
computed seismograms can be selected for the cross-correlation traveltime measurement. Therefore, many useful signals including various
interfering waves, which are valuable to constrain small-scale structure, are often removed during automated data selection procedures. Even
when the signals are successfully picked, the majority of the selected information will not be fully utilized, as cross-correlation only measures
a single value in a window that will be primarily influenced by the largest-amplitude pulse.

On the one hand, coupled with a robust window selection algorithm, cross-correlation traveltime tomography will behave almost linearly
and perform excellently for well-recognized and non-dispersive body waves. On the other hand, the tomographic resolution that it can
ultimately achieve will be limited, as a significant amount of information in the waveforms will be either missed, not adequately considered,
or bluntly lumped together.

3.2 Multitaper frequency-dependent traveltime [MT]

For strongly dispersive waves such as surface waves, frequency-dependent measurements of traveltime and amplitude relations are commonly
made using a multitaper technique (Laske & Masters 1996; Zhou et al. 2005; Hjörleifsdóttir 2007), which has been successful in revealing
structural information in tomographic models beyond what can be achieved by typical applications of time-domain cross-correlation methods.

The frequency-dependent (at angular frequency ω) traveltime measurement, �t(ω), and the amplitude measurement, �lnA(ω), are
attributes of a frequency-domain transfer function between the data and the synthetics. This transfer function is estimated via the multitaper
method, which, prior to Fourier transformation, tapers the time-domain records s(t) and d(t) using a set hT 


k (t) of prolate spheroidal functions
(Slepian 1978; Thomson 1982; Simons 2010). These are uniquely defined for a particular window length T and a desired frequency half-
bandwidth 
, and commonly, k = 1, ..., [T
/π ] − 1. Details on the measurement can be found in Appendix A1.
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Limiting ourselves to the traveltime measurements �t(ω)—for considerations on amplitude, see Zhou et al. (2004) and Tape (2009)—our
misfit function summing over all frequencies ω, sources s and receivers r, is

χMT = 1

2

∑
s,r

∑
ω

Wt (ω) [�ts,r (ω)]2, (5)

with a certain weighting function Wt(ω). As shown in Appendix A1, the adjoint source for the frequency-dependent time-delay misfit function
for a single event is given by

f †
MT(x, t) =

∑
r

∑
k

hT 

k (t)F−1

{
Wt (ω) �ts,r (ω)

[
i

ω

s∗
k (ω)∑

k′ sk′ (ω)s∗
k′ (ω)

]}
(t) δ(x − xr ), (6)

whereF−1 is the inverse Fourier transform operator, and the sk denote the tapered modeled traces, omitting for clarity the identifying subscripts
s and r.

As with the cross-correlation method, application of the multitaper method also demands window selections. However, the multitaper
approach is capable of extracting more information from each selected window.

3.3 Instantaneous phase [IP]

Bypassing the need for restrictive window selection and Fourier transformation required for the multitaper method, Bozdağ et al. (2011)
discussed a method to isolate phase directly in the time domain. With sa(t) and H{s(t)} denoting the analytic signal and the Hilbert transform
of a real signal s(t), φs(t) and Es(t) stand for its instantaneous phase and amplitude or envelope, following

sa(t) = s(t) + iH{s(t)} = Es(t) eiφs (t). (7)

It is worthwhile to note that here we follow the definition of the analytic signal in Oppenheim & Lim (1981), which has a different sign in the
imaginary part of eq. (15) in Bozdağ et al. (2011). We have

φs(t) = arctan
H{s(t)}

s(t)
, and Es(t) =

√
s2(t) + H2{s(t)}. (8)

The instantaneous-phase misfit relies on the measurement between data d(t) and synthetics s(t),

�φ(t) = φd (t) − φs(t), (9)

once again summing over all sources s and receivers r, integrated over a time window T,

χIP = 1

2

∑
s,r

∫ T

0

[
�φs,r (t)

]2
dt. (10)

The adjoint source for an individual event can be written, without the subscripts, as

f †
IP(t) =

∑
r

[
�φ(t)

E2
s (t)

H{s(t)} + H
{

�φ(t)

E2
s (t)

s(t)

}]
δ(x − xr ). (11)

See Bozdağ et al. (2011) and Yuan et al. (2015) for the equivalent expressions regarding the envelope.
As can be seen in eq. (11), the instantaneous-phase adjoint source takes into account amplitude effects by a normalization involving the

square of the signal envelopes. Sensitivity kernels for the high-amplitude and low-amplitude segments within a single seismogram remain
amplitude-independent. Practitioners are recommended to add a ‘water level’ term ε, some small percentage of its peak amplitude (e.g. 0.1-5
per cent), to the denominator, to avoid numerical instabilities and to regularize noisy portions.

3.4 Adjoint-source heuristics

In the previous paragraphs we (re-)introduced three different types of waveform-based time or phase measurements that relate observed and
synthetic traces: cross-correlation traveltime (CC), multitaper traveltime (MT) and instantaneous phase (IP). We discussed objective functions
based upon them, and the adjoint sources that they lead to. In this section we use a simple example to highlight similarities and discrepancies
between these three approaches, with an eye towards evaluating their suitability for capturing small-magnitude signals in the seismogram.

The solid line in Fig. 2(a) shows an ‘observed’ seismic trace, and the dashed line a synthetic prediction. Both are modeled using
SPECFEM 2D. The purple shadow reveals a selective time window. In Fig. 2(b-I), CC corresponds to a constant time delay between the
observed and the predicted seismograms within the selected window, representative of the time-shift of the peak pulse around the center of
the window. Fig. 2(b-II) shows the adjoint source for the CC traveltime misfit function, computed using eq. (4). In Fig. 2(c-I), the multitaper
method calculates traveltime delays between the observed and the synthetic seismograms at different frequencies within the selected time
window. Instead of displaying the measurements in the time domain, the MT traveltime information is plotted in the frequency domain (the
horizontal axis is the period from 30 to 3 s for this example, and the vertical axis is the time-shift in seconds at each frequency or period).
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Figure 2. Similarities and discrepancies between cross-correlation (CC) time delay, frequency-dependent multitaper traveltime (MT) and instantaneous phase
(IP) measurements between seismic traces. (a) An example of ‘observed’ (solid black line) and ‘synthetic’ (dashed red line) seismograms used to study different
traveltime/phase measurements and their adjoint sources. The time window within which CC and MT measurements will be made is shaded purple. (b-I) The
CC time delay between data and synthetics is constant over the time window. (b-II) The adjoint source for the CC traveltime. (c-I) MT traveltime difference
measures variable time-shifts at different periods inside the purple time window. The MT traveltime information is plotted in the frequency domain (the purple
time window is not rendered here) and the horizontal axis ranges linearly over periods from 30 down to 3 s. (c-II) The MT adjoint source is subtly different
from the CC adjoint source in (b-II) due to the frequency-varying time delays. (d-I) Time-domain IP difference between the waveforms captures their phase
discrepancies over the entire trace, without window selection. (d-II) The IP adjoint source naturally integrates information from the main signal and from
subsequent minor arrivals into a single measurement.

What we observe is that MT computes relatively larger time delays at low frequencies and smaller shifts at higher frequencies. The MT adjoint
source in Fig. 2(c-II) has a fairly good agreement with the adjoint source in Fig. 2(b-II) that uses the constant CC traveltime quantity, but it
includes richer high-frequency information due to the frequency-dependent traveltime variations contained in the seismograms. Different from
CC and MT, IP does not require strict window selection or segmentation of traces, thus we calculate the time-continuous phase differences (in
terms of phase angles: �φ = −ω�t for a specific frequency) between the observed and the synthetic waveforms in the entire time domain,
which we show in Fig. 2(d-I). The adjoint source of IP in Fig. 2(d-II) is calculated using eq. (11), which involves a normalization term defined
by the squared envelope of the synthetics, leading to relatively balanced sensitivities for small- and large-magnitude signals, thus both the
main and the following minor signals are naturally included in one adjoint source.

3.5 Instantaneous phase: measurement challenges

Time-continuous phase measurements are appealing for many reasons discussed above. The measuring of instantaneous phase, however, can
be challenging in practice. First, referring to eq. (8), the division causes numerical instability when signal magnitude is small, which requires
regularization. In addition, the measured instantaneous phase can be discontinuous due to the non-uniqueness of the arc-tangent function
in eq. (8), which is defined in the interval of (−π /2, π /2]. When signals cross zero, the measured phase wraps back onto the (−π /2, π /2]
interval. Instead of measuring the two individual phases separately (which involves two potentially unstable divisions and inverse tangents)
and then subtracting them, one can preempt phase wrapping somewhat by alternatively computing the equivalent to eqs (8)–(9),

�φ(t) = arctan

[
s(t) H{d(t)} − d(t) H{s(t)}
d(t) s(t) + H{d(t)} H{s(t)}

]
. (12)
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Figure 3. Phase wrapping and phase unwrapping. (a) A radial-component seismogram (solid) recorded at station NOQE from the August 25, 2008 Xizang
earthquake (Mw = 6.7, depth 17 km), and the synthetic trace (dashed). Both data are filtered within the 45–110 s period band. (b) Their instantaneous phase
difference shows clear phase jumps from −π to π marked by yellow lines. (c) Phase measurements after regularized unwrapping.

The phase-wrapping condition is less likely to be triggered by the single expression above, since d(t) and s(t) would have to be identical,
crossing zero in close proximity to ensure that both signals enter or exit a new cycle before their phase difference exceeds ±π /2 (±π in
this example as we use the two-argument arc-tangent). To further improve the phase calculation, Rickers et al. (2012) suggested taking the
multiplication of the complex conjugate of the synthetic analytic signal with the observed analytic signal normalized by their amplitudes
(their eq. 8), and using the arc-sine to replace the arc-tangent, as the arc-sine function does not switch sign as soon as the value grows out of
the interval limits.

We use a real example to demonstrate a situation where phase jumps occur while calculating phase difference using eq. (12). The black
line in Fig. 3(a) depicts a radial-component displacement seismogram from the Global Seismographic Network for the August 25, 2008
Xizang Tibet earthquake (Mw = 6.7, depth 17 km, CMT 200808251322A) recorded at station NOQE; the red line displays the seismic trace
computed using SPECFEM3D GLOBE. The purple window is a window selected using FLEXWIN. In Fig. 3(b), we observed two types of phase
jumps (locations marked by yellow lines). The first type happens after one of the signals has one more zero crossing, which brings it into a new
cycle while the other signal is still in the old cycle. This causes their phase difference to exceed the π limit and leads to the phase jump. The
first two phase jumps in Fig. 3(b) at 4104 and 4405 s are examples of this type of discontinuity. The second type of phase jump occurs when
two signals have zero crossings at similar times, but enter into opposite cycles. The phase jump at 4633 s in Fig. 3(b) shows such an example
when the observed data switches from negative to positive while the synthetic data goes from positive to negative. We successively unwrap
these phase jumps by shifting all signals after the first discontinuity point by −2π , then shifting all signals after the second discontinuity
point by −2π , and finally shifting all signals after the third discontinuity point by +2π . The unwrapped phase measurement is displayed in
Fig. 3(c). Through this example, we aim to demonstrate the challenges related to measuring IP and the non-local effects of the unwrapping
process. These issues are aggravated in the presence of noise, because even small perturbations in amplitude can cause phase jumps and
therefore significant fluctuations in the phase estimate, which will then propagate to affect the entire measurement.

4 E X P O N E N T I AT E D P H A S E [ E P ]

We normalize the analytic signal underlying the phase calculation by its corresponding envelope, to yield a new expression which we term
the ‘exponentiated phase’ (EP),

s̃(t) = s(t)

Es(t)
+ i

H{s(t)}
Es(t)

= eiφs (t), (13)

which defines phase completely, but implicitly.

4.1 Misfit function and adjoint source

We next define the ‘exponentiated-phase misfit function’ as the difference between the observed and the synthetic normalized analytic signals,
denoted d̃(t) and s̃(t), as in eq. (13), summed over all sources s and receivers r,

χEP = 1

2

∑
s,r

∫ T

0

∥∥d̃(t) − s̃(t)
∥∥2

dt = 1

2

∑
s,r

∫ T

0

[‖�R(t)‖2 + ‖�I (t)‖2
]

dt, (14)
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where �R(t), the difference in the real part, and �I(t), the difference in the imaginary part, are given by

�R(t) = d(t)

Ed (t)
− s(t)

Es(t)
, and �I (t) = H{d(t)}

Ed (t)
− H{s(t)}

Es(t)
. (15)

Gradient-based methods require the derivative of the misfit function in eq. (14),

δχEP = −
∑
s,r

∫ T

0

[
�R(t) δ

( s(t)

Es(t)

)
+ �I (t) δ

(H{s(t)}
Es(t)

)]
dt. (16)

Using the product rule of differentiation, the definition eq. (8), and the fact that the Hilbert transform is anti-self adjoint and commutes with
the derivative operator (see also Yuan et al. 2015), we rewrite the derivative of χEP in eq. (16) as

δχEP =
∑
s,r

∫ T

0

[
�I (t)

s(t)H{s(t)}
E3

s (t)
− �R(t)

[H{s(t)}]2

E3
s (t)

]
δs(t)dt

+
∑
s,r

∫ T

0

[
H

{
�I (t)

s2(t)

E3
s (t)

− �R(t)
s(t)H{s(t)}

E3
s (t)

}]
δs(t)dt. (17)

To numerically evaluate the gradient for an event located at xs in eq. (14), the adjoint sources to be back-propagated can be expressed as

f †
EP(x, t) =

∑
r

[
�I (t)

s(t)H{s(t)}
E3

s (t)
− �R(t)

[H{s(t)}]2

E3
s (t)

+ H
{
�I (t)

s2(t)

E3
s (t)

− �R(t)
s(t)H{s(t)}

E3
s (t)

}]
δ(x − xr ). (18)

Similarly to eq. (11), we add a regularization term ε to the denominator to avoid numerical instabilities. In addition to being used as
absolute measurements in eq. (14), the exponentiated phase can be used in a differential manner for pairs of signals, adopting the approach
of double-difference adjoint seismic tomography introduced by Yuan et al. (2016). For additional information, we recommend reading
Appendix A2.

4.2 Pros and cons of the exponentiated phase

Before applying the exponentiated-phase measurements on a real dataset, we illustrate its advantages and disadvantages through the analysis
of simple synthetic signals.

The first example, shown in Fig. 4, uses a Gaussian signal, d1 (blue), and a noisy trace, d2 (orange) by adding 1 per cent random noise
(green) generated from a uniform distribution [−0.01, 0.01]. The example is designed to test the robustness of IP and EP to the presence
of noise. For these datasets, we calculate IP in Fig. 4(b): IP of d1 does not have phase jumps and is used as a reference, but we experience
multiple phase wraps while measuring IP of d2. The unwrapping procedure removes the discontinuities by scanning and shifting phases by
±π , but it also results in non-local effects to the entire phase measurements (green). In contrast, EP does not show this limitation: Fig. 4(c)–(d)
calculate consistent real and imaginary components of EP, with and without noise. Through this simple example, we further demonstrate the
challenges of measuring IP robustly: the presence of only 1 per cent noise (maximum noise level) leads to significant changes in IP, preventing
its straightforward application to real problems. On the other hand, the robustness of EP makes it practical in handling currently available big
datasets characterized by noisy and complex wave trains.

A comprehensive analysis of the relationships between IP and EP can also be found in Appendix A3 and we summarize here: EP is
similar to unwrapped IP because both measure continuous phase, and it is also similar to wrapped phase as neither distinguishes the number
of ‘cycles’ while characterizing phase. That being said, EP may not preserve the good convexity of the unwrapped IP misfit function. To
show this, we offer another example in Fig. 5 to analyse the shape of the misfit function of IP and EP with respect to time-shift. In Fig. 5(a)
we use a simple Ricker wavelet (in black, wavelet temporal resolution TR = 0.45 s) and gradually shift it beyond the wavelet resolution
(examples in colours); in Fig. 5(b)–(d) we calculate the IP and EP (real and imaginary part, respectively) phase change due to the time-shift,
which provide the curves of their misfit functions on the right panel. A much smaller time-shift interval is used to get smooth misfit curves
and the sampled examples on the left panel are marked by circles. To have all misfit functions at a comparable level for clear comparison,
we normalize their misfit curves by their maximum values in Fig. 5(e). As clearly demonstrated, EP does not show the good convexity of
CC and IP after the time-shift exceeds one period. It is worth mentioning that at this point, IP starts to have phase jumps, but here we only
show the best case where the phase is carefully unwrapped and no noise is present. The misfit curves before normalization at small time-shift
in Fig. 5(f) tell us that IP and EP are identical when the time-shift is within a quarter period (the detailed mathematical derivations can be
found in Appendix A3). Through these two examples, we learn that EP has both pros and cons compared to IP: although EP is able to handle
the discontinuities while measuring phase, the misfit function shows non-convexity at large phase difference. The awareness of its limitation
motivates us to combine EP with CC and MT to strike a good balance between model recovery and convergence when the initial model is not
adequate. However, as suggested in Fig. 5(f), the misfit functions could be at different orders of magnitude, which requires proper weighting
to ensure each of them contribute equally in the hybridization.
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Figure 4. A synthetic test to compare the robustness to noise of instantaneous-phase (IP) and exponentiated-phase (EP) measurements, showing that IP can be
very sensitive to noise, resulting in non-local effects to the entire phase measurement. (a) A simple Gaussian signal, d1, without noise and d2 after the addition
of 1 per cent random noise in green. (b) The instantaneous phase, φ1, for the noise-free data d1, and φ2, the instantaneous phase for the noisy record d2, which
exhibits discontinuities in phase. The unwrapped phase (in green), removes the discontinuities, but is nevertheless significantly shifted from the noise-free
phase φ1. The real (c) and imaginary (d) components of the complex EP for d1 and d2 show that EP is more robust to noise.

Figure 5. A synthetic test of Ricker signals with different time-shifts (left-hand panel) to compare the convergence behaviour of CC, IP and EP (right-hand
panel). (a) An ‘observed’ trace in black and the time-shifted ‘synthetics’ in colours. (b) Their instantaneous phase difference measurements after the unwrapping
process. (c) and (d) Their exponentiated phase difference measurements in real and imaginary parts. (e) Normalized misfit function curves of CC, IP (noise-free,
unwrapped) and EP with time-shifts beyond one period demonstrate EP does not have the good convexity of IP and CC at large time/phase differences. (f) The
unnormalized misfit function curves show that EP and IP are identical when time-shifts are within a quarter period.
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Figure 6. Wavespeed and acquisition geometry for our synthetic experiments. (a) The target model. (b) A homogeneous starting model, where we denote the
source by a star and receivers by open circles. (c) Long-wavelength and (d) short-wavelength features which sum together to the target model in (a).

5 N U M E R I C A L E X P E R I M E N T S

We conducted numerical experiments using a 2-D synthetic model. We solve the wave equation at finite frequencies in a zero-thickness
surface model, using the ‘membrane wave’ as an analog to seismic surface waves (Peter et al. 2007). We created a target model of shear
wavespeeds Vs as shown in Fig. 6(a) by adding the long-wavelength velocity variations of Fig. 6(c) and the short-wavelength perturbations
of 6(d) to the homogeneous initial model in Fig. 6(b). The source and receiver configuration used in this synthetic example is shown in
Fig. 6(b), where open circles represent receiver arrays, equidistant at 45 km spacing, and the central red star denotes a single seismic source.

5.1 An experiment with a good initial model

In the first experiment, we started with a reasonably good initial model: a homogeneous layer with V s = 3500 m s –1, as in Fig. 6(b). We used
the target model in Fig. 6(a) to numerically generate synthetic observations, and the homogeneous model to simulate initial-model synthetics.
We computed their cross-correlation (CC), multitaper (MT) and exponentiated (EP) time and phase differences, as well as their corresponding
adjoint sources at each receiver location. We iteratively computed the event kernels to form the gradients by back-propagating these adjoint
sources from all receivers, and updated the velocity model until it converged, or until the saturation of the misfit function reduction. The
inversion results with CC (Fig. 7a) and MT (Fig. 7b) recover the long-wavelength structure, where the direct waves are dominant, but fail
to see any of the small-scale information. In contrast, the inversion with EP (Fig. 7c) reveals significant fine structure in the true model,
picking up both the main phases and the small-magnitude scattered waves generated by the small-scale model perturbations. In this noiseless
synthetic experiment, we used a water level of 0.1 per cent of the maximum amplitude in the measured data, but readers are encouraged to
look up the additional inversion examples shown in Fig. A4 in Appendix A3, where we further discuss the choice of water level.

5.2 An experiment with a poor initial model

In the second experiment, we start with a relatively poor initial model: a homogeneous layer with shear wavespeed of 3000 m s–1. Similarly
to the previous experiment, we used the same termination criteria and performed iterative inversions using CC, MT and EP individually. In
this experiment, both CC (Fig. 8a) and MT (Fig. 8b) did converge to recover the long-wavelength structure. However, EP (Fig. 8c) failed
while trying to recover the small-scale heterogeneities, likely because of the non-convexity of the EP misfit function discussed previously. In
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Figure 7. Inversion results using three different types of measurements starting from a relatively good homogeneous model with VS = 3500 m s–1, via
(a) cross-correlation (CC), (b) multitaper traveltime (MT) and (c) exponentiated phase (EP) measurements.
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Figure 8. Inversion results as in Fig. 7, but starting from a relatively poor homogeneous model with VS = 3000 m s–1, via (a) cross-correlation (CC),
(b) multitaper traveltime (MT) and (c) exponentiated phase (EP) measurements. Despite the poor initial model, CC and MT still successfully resolve the
long-wavelength structure in Fig. 6(c). However, the EP approach fails to converge due to the non-convexity of its misfit function for large phase differences.

the following section, we will use this experiment to explore the hybridization approach by taking advantage of CC and MT to exploit their
merits of good convergence, and of EP for its capability to recover fine structure.

5.3 Objective-function hybridization

The simultaneous hybridization approach allows us to combine each individual type of measurement into an overall misfit function whose
gradient can be computed at once, without the cost of evaluating all of the individual gradients separately. We rewrite the generic expression
of eq. (1) to hybridize the three specific CC, MT and EP measurement classes,

χH(m) = wCC
χCC(m)

σ 2
CC

+ wMT
χMT(m)

σ 2
MT

+ wEP
χEP(m)

σ 2
EP

, (19)

where σ CC, σ MT and σ EP are measurement uncertainties, to be estimated from the predicted and observed waveforms; and wCC, wMT and wEP

are additional weighting constants that serve to balance the relative importance of each measurement type in the hybridization.
The CC measurement returns the time-shift by which the observed and modeled waveforms are most alike, but even shifted by �t and

scaled by �lnA, the synthetic waveforms will not perfectly match the observations. The remaining waveform residual provides an estimate of
the CC measurement error. We use the approach advocated by Tape et al. (2010), determining our σ 2

T from their eqs (A6) and (A7), adopting
σ CC = σ T. The MT method provides multiple approximately uncorrelated measurements, and we estimate the measurement uncertainty σ MT

via the jackknife approach (Efron & Stein 1981; Thomson & Chave 1991). As to EP, since we have been arguing that it provides a nearly
complete description of all portions of the signal, we maintained σ EP = 1 throughout the experiment.

Since MT does not provide any additional structural information compared to CC in this experiment, we omitted MT measurements in
the hybridization, wMT = 0. As suggested by Fig. 5(f), the misfit values of CC and EP could be orders of magnitude different. Proper weighting
ensures the inversion does not focus on one misfit function at the expense of the other. Here we are able to perform a series of inversions to
find the optimal weight. We conducted an iterative binary search for wCC between 0 and 1 (wCC+wEP=1). The gallery of results using the
hybrid misfit function is shown in Fig. 9, clearly demonstrating the effect of weighting on the inversions. Visually, wCC = 0.98 gives the best
result. Plotting data and model misfits in Fig. 10 confirms that wCC = 0.98 is best. With the standard deviations of CC and EP measurements
very different, their misfit values are not of the same order, which likely results in the large weight in this experiment. For the first-iteration
misfits χ CC(m0) and χEP(m0), the weighted misfits for CC and EP are 0.98 × 1.2 = 1.18 and 0.02 × 56.58 = 1.13, respectively. This suggests
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Figure 9. Inversion experiments with varying wCC (wEP = 1 − wCC) by hybridizing CC and EP. Each plot is the final inverted velocity model. Using wCC =
0.98 obtains the result that is most faithful to the known truth in this synthetic experiment.

Figure 10. Data and model misfit evolution for the experiments in Fig. 9. The graph of CC versus EP data misfit is shown on the left, and the model misfit against
the weights used in the inversion is shown on the right for the final models, illustrating the optimality of the weight wCC = 0.98 for the misfit hybridization.
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Figure 11. Map views taken at 120 km depth of 3-D global shear wavespeed event kernels Kβ for CC, MT and EP measurements presented from two different
viewing angles. The kernels are computed using data from the August 25, 2008 Xizang earthquake (Mw = 6.7, depth 17 km) filtered within the 45–110 s period
band. The event kernels were smoothed and normalized.

that we get the best results when CC and EP contribute similarly to the total misfit. A real experiment could consider the scale-length of
heterogeneities to be resolved while determining the measurement weights. With a poor initial model, hybridization with weights properly
balancing each measurement is more advantageous than using either objective function alone.

6 D I S C U S S I O N A N D C O N C LU S I O N S

Seismic tomography relies on being able to extract a maximum of information from every seismogram while managing data quality and
measurement challenges. In this work, we discussed various objective functions, and their combination, to benefit full-waveform tomography.
We focused on seismic measurements of traveltime and phase. We reviewed and numerically compared several phase-based measurements
including cross-correlation (CC), multitaper (MT) and instantaneous phase (IP). Evaluating their scope of application and exploring their
limitations, we showed the importance and challenges of using time and phase information from the entire seismogram, and the necessity to
combine different measurements through objective-function hybridization.

We introduced a new type of phase measurement, the exponentiated phase (EP), an implicit device to calibrate phase information in
the time domain for which the selection of windows targeting each phase, required for the CC and MT approaches, is no longer necessary.
We compared the advantages and disadvantages of EP compared to IP in terms of measurement stability and inversion convergence. The
enhanced measurement stability of EP will facilitate progress towards using all of the main attributes of the available seismograms in real-
world applications, and an awareness of its limitation motivated our notions of objective-function hybridization. We propose to combine EP
measurements with classical CC approaches to capture short-wavelength body waves, and with MT for dispersive waves.

Our synthetic experiments demonstrate the advantages and limitations of each measurement type. EP is able to reveal detailed structural
information but is less suited for characterizing large phase differences between observations and synthetics, while CC and MT are nicely
complemented by EP in robustly characterizing short-wavelength features from seismic data.

To gain better insight into how EP behaves when applied to real data, we computed global event kernels by CC, MT and EP measurements
using teleseismic seismograms recorded by the Global Seismographic Network. In Fig. 11 we present sample horizontal cross-sections of
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shear wavespeed global event kernels at 120 km depth computed for CC, MT and EP misfits. We used data from the 25 August 2008 Xizang
earthquake (Mw = 6.7, depth=17 km, CMT 200808251322A) recorded by 200 stations distributed worldwide. Synthetics were calculated
using the 3-D global wave propagation solver SPECFEM3D GLOBE (Komatitsch & Tromp 2002a, b) using the 3-D global model GLAD-M15
(Bozdağ et al. 2016). We filtered both observed and synthetic data within the period range of 45–110 s and used FLEXWIN (Maggi et al.
2009) to pick measurement windows. We adjusted FLEXWIN to favour large windows in order to work on wave trains where CC and MT
measurements may recover larger-amplitude signals. We used a water level of 1 per cent of the maximum amplitude over the EP measurement
windows, and the kernels were smoothed by a Gaussian operator with a halfwidth of 80 and 25 km in the horizontal and vertical directions,
respectively. We observe that the EP measurements behave robustly in the 3-D global setting. The EP kernel represents structural variations
consistently with those of CC and MT, but it reveals richer structural information off the dominant path, where the EP measurements better
emphasize the effect of scattered waves.

Future work can use CC and MT to measure readily identifiable body- and surface-wave arrivals. Once the major phases are in good
agreement EP measurements made on larger time windows then can be included to take the small-magnitude scattered waves into account.
Alternatively, simultaneous objective-function hybridization is promising to improve convergence through joint gradients, whose calculation
does not affect the computational cost of numerical simulations, given that multiple measurements are combined at the stage of the construction
of adjoint sources.

Our discussions have been limited to waveform metrics that primarily capture elastic properties of the subsurface. We look forward to the
further extension of our methods to allow for the measurement and hybridization of the counterparts of these phase measurements, including
cross-correlation amplitude, multitaper amplitude and waveform envelopes, and to their use for a second-stage inversion for the elastic and
anelastic properties of the subsurface.
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A P P E N D I X : S U P P L E M E N TA RY M AT E R I A L

In this Appendix we provide additional detail on the material presented in this paper. Appendix A1 is modelled after the material presented
by Yuan et al. (2016), which in turn borrows heavily from work presented elsewhere (notably Laske & Masters 1996; Hjörleifsdóttir 2007),
rewritten here for completeness without any claim to originality. Appendix A2 provides the double-difference versions of the exponentiated-
phase equations, and Appendix A3 illustrates the equivalence of a modified instantaneous-phase measurement to that of the complex
exponentiated phase.

A1 Multitaper phase measurements for adjoint tomography

With the multitaper technique the frequency-dependent traveltime anomaly �t(ω) and amplitude anomaly �lnA(ω) can be linked to a complex
frequency-domain ‘transfer function’ that maps the Fourier-domain synthetic traces s(ω) to the observations to d(ω) by modulating traveltime
and amplitude using the measurements �t and �lnA in the following manner:

d(ω) = T (ω)s(ω) = e�lnA(ω)−iω�t(ω)s(ω). (A1)

Here, we only consider the frequency-dependent traveltime measurements �t(ω). For those interested in using �lnA(ω) in the adjoint method,
we recommend reading Zhou et al. 2004 and Tape 2009. The above linear mapping can be optimally estimated with the multitaper method,
the asterisk denoting complex conjugation,

T (ω) =
∑

k dk(ω)s∗
k (ω)∑

k sk(ω)s∗
k (ω)

= argmin
T (ω)

∑
k

[dk(ω) − T (ω)sk(ω)]2 , (A2)

where sk(ω) and dk(ω) are frequency-domain versions of sk(t) and dk(t), approximately uncorrelated versions of s(t) and d(t) obtained after
individually tapering them by multiplication with an orthonormal set of k = 1, . . . , �T
/π� − 1 prolate spheroidal functions hT 


k (t), designed
for a particular window length T and an angular frequency half-bandwidth 
, in the manner of Thomson (1982).

To optimize the multitaper-traveltime weighted misfit function of eq. (5), we need access to its derivative

δχMT =
∑
s,r

∑
ω

Wt (ω) �ts,r (ω) δ�ts,r (ω), (A3)

where δ�ts, r(ω) denotes the perturbation of the frequency-dependent traveltime measurement due to the model perturbation, for a particular
source s and receiver r. In the linear regime, when the approximation dk(ω) ≈ sk(ω) + δsk(ω) is valid, we can rewrite eq. (A2) as

T (ω) =
∑

k[sk(ω) + δsk(ω)]s∗
k (ω)∑

k sk(ω)s∗
k (ω)

= 1 +
∑

k δsk(ω)s∗
k (ω)∑

k sk(ω)s∗
k (ω)

. (A4)

Taking the first-order Taylor expansion of eq. (A1) and combining it with the above eq. (A4), we can link the traveltime perturbation δ�t(ω),
dropping the subscripts, to the wavefield perturbation δsk(ω) via

δ�t(ω) = Re

{
i

ω

∑
k δsk(ω)s∗

k (ω)∑
k sk(ω)s∗

k (ω)

}
= Re

{∑
k

δsk(ω)pk(ω)

}
, (A5)

introducing the frequency-dependent partial traveltime derivative

pk(ω) = i

ω

s∗
k (ω)∑

k sk(ω)s∗
k (ω)

. (A6)

Using the above relations (A5)–(A6), we recast the Fréchet derivative defined in eq. (A3) as, again using the subscripts,

δχMT =
∑
s,r

Re

( ∑
ω

Wt (ω) �ts,r (ω)
∑

k

pk(ω) δsk(ω)

)
(A7)

=
∑
s,r

∑
k

hT 

k (t)F−1

{
Wt (ω)�ts,r (ω) pk(ω)

}
(t) δs(t)dt, (A8)

after transforming the sum over frequencies to the time-domain using the inverse Fourier operator F−1. From this follows the final expression
for the adjoint source of the frequency-dependent traveltime misfit function for a single event, which was previously quoted as eq. (6).
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Figure A1. Observed and computed radial-component seismograms at station AFI (a-I), and station ABKT (a-II). The double-difference adjoint sources for
station AFI (left-hand panel) and and ABKT (right-hand panel) with CC (b), MT (c) and EP (d) measurements.

A2 Double-difference exponentiated phase measurements

The double-difference exponentiated-phase misfit function made on any pair of seismograms i and j can be defined as

χ dd
EP(m) = 1

2

∑
i, j

∫ T

0

∥∥[
s̃i

a(t) − s̃ j
a (t)

] − [
d̃ i

a(t) − d̃ j
a (t)

]∥∥2
dt = 1

2

∑
i, j

∫ T

0

[∥∥��Ri j (t)
∥∥2 + ∥∥��Ii j (t)

∥∥2
]

dt, (A9)

��Ri j (t) =
(

si (t)

Esi (t)
− s j (t)

Es j (t)

)
−

(
di (t)

Edi (t)
− d j (t)

Ed j (t)

)
, (A10)

��Ii j (t) =
(
H{si (t)}

Esi (t)
− H{s j (t)}

Es j (t)

)
−

(
H{di (t)}

Edi (t)
− H{d j (t)}

Ed j (t)

)
. (A11)

We omit the detailed derivations, and summarize the final adjoint sources for a pair i and j as follows:

f †
i (x, t) =

∑
j

[
��Ri j (t)

[H{si (t)}]2

E3
si

(t)
− ��Ii j (t)

si (t)H{si (t)}
E3

si
(t)

+H
{

��Ri j (t)
si (t)H{si (t)}

E3
si

(t)
− ��Ii j (t)

s2
i (t)

E3
si

(t)

}]
δ(x − x j ), (A12)

f †
j (x, t) =

∑
i

[
−��Ri j (t)

[H{s j (t)}]2

E3
s j

(t)
+ ��Ii j (t)

s j (t)H{s j (t)}
E3

s j
(t)

+H
{

−��Ri j (t)
s j (t)H{s j (t)}

E3
s j

(t)
+ ��Ii j (t)

s2
j (t)

E3
s j

(t)

}]
δ(x − xi ). (A13)

We demonstrate an example of differential time/phase measurements and their adjoint sources via the pairing of two stations at AFI and
ABKT, shown in Fig. A1(a-I) and (a-II), with black lines representing observed seismograms and red lines computed seismograms. Fig. A1(b-
I) and (b-II) are the adjoint sources at station AFI and ABKT, respectively, using their differential CC measurements (DD CC); Fig. A1(c-I)
and (c-II) are the adjoint sources for the differential MT (DD MT); Fig. A1(d-I) and (d-II) are the adjoint sources for the double-difference
EP (DD EP). Similar to the absolute phase measurements, DD CC uses a single value to characterize the difference between the time-shift
of observations at AFI and ABKT and that of their synthetics, while DD MT captures the difference of the frequency-dependent differential
traveltime measurements, and DD EP tracks the time-continuous differential phase mismatch.

A3 The relationship between the instantaneous and the exponentiated phase

We offer two numerical examples to demonstrate the relationships that tie together the instantaneous (IP) and exponentiated (EP) phase
measurements and their adjoint sources in representing phase information.

To understand whether the proposed EP method can adequately handle the discontinuities in phase which occur while measuring IP,
we turn to Example I in Fig. A2, where the seismogram is from the Global Seismographic Network for the August 25, 2008 Xizang Tibet
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Figure A2. The relationship between instantaneous-phase (IP) and exponentiated-phase (EP) measurements. The left-hand column is Example I, a scenario
when the phase difference between observations and synthetics exceeds the ±π limit (the 2-argument arc-tangent was used). The right-hand column shows
Example II, a scenario when the phase difference remains within the ±π interval. (a-I) Observed and computed seismograms. (b-I) Instantaneous phase
difference measured between the observed and the synthetic traces, with the phase jump highlighted by the yellow window. (c-I) Real (solid line) and imaginary
(dashed line) parts of the normalized difference of the analytic observed and synthetic signals, that is the exponentiated phase difference. (d-I) The adjoint
source for the EP difference. (a-II) Observed and computed seismograms. (b-II) Measured instantaneous phase difference of the observed and the synthetic
traces. (c-II) Real (solid) and imaginary (dashed) components of the EP difference. (d-II) The adjoint source of the EP difference (red) compared to the adjoint
source of the IP phase difference (black).

earthquake (Mw = 6.7, depth= 17 km, CMT 200808251322A) recorded at station TLY. We measure the real and the imaginary phase
difference in Fig. A2(c-I) using eq. (15). The discontinuity present in the IP, in Fig. A2(b-I), is tuned to be continuous in the complex EP.
Therefore, the EP method addresses phase discontinuities while measuring phase. Fig. A2(d-I) shows the resulting adjoint source.

To further understand the relationships between IP and EP we turn to Example II in Fig. A2, in which the phase difference lies within
the ±π interval, and thus phase wrapping is not present in IP. Fig. A2(a-II) displays the data (black line, station AFI) and the synthetic trace
(red line). We measure their phase difference using both IP in Fig. A2(b-II) and EP in Fig. A2(c-II). Although it is difficult to discern any
similarities between IP and EP in terms of measurements, their adjoint sources in Fig. A2(d-II) betray their connections. When the phase
difference, as in Fig. A2(b-II), is small (within ±π /4), IP and EP adjoint sources are closely aligned. However, when the phase difference is
large, EP tends to taper the big phase change, and thus smooth out the sharp rises and falls in the adjoint source.

A mathematical explanation for our observations can be found by taking the sine of the phase difference term, φd − φs in eq. (11),

f †(t) =
∑

r

[
sin [φd (t) − φs(t)]

E2
s (t)

H{s(t)} + H
{

sin [φd (t) − φs(t)]

E2
s (t)

s(t)

}]
δ(x − xr ). (A14)

Subsequently, we rewrite eq. (18) as

f †
EP(x, t) =

∑
r

([
�I (t)

s(t)

Es(t)
− �R(t)

H{s(t)}
Es(t)

] H{s(t)}
E2

s (t)

+H
{[

�I (t)
s(t)

Es(t)
− �R(t)

H{s(t)}
Es(t)

]
s(t)

E2
s (t)

})
δ(x − xr ), (A15)

where we use eq. (15) to simplify

�I (t)
s(t)

Es(t)
− �R(t)

H{s(t)}
Es(t)

=
[H{d(t)}

Ed (t)
−�

�
��

H{s(t)}
Es(t)

]
s(t)

Es(t)
−

[
d(t)

Ed (t)
−�

��

s(t)

Es(t)

] H{s(t)}
Es(t)

(A16)

= H{d(t)}
Ed (t)

s(t)

Es(t)
− d(t)

Ed (t)

H{s(t)}
Es(t)

(A17)

= sin[φd (t)] cos[φs(t)] − cos[φd (t)] sin[φs(t)] (A18)

= sin[φd (t) − φs(t)] = sin[�φ]. (A19)
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Figure A3. Left-hand panel: the behaviour of arctan[tan(�φ)] and arcsin[sin(�φ)] explains the phase wrapping observed in measuring phase explicitly in the
IP method: the blue line demonstrates how the arc-tangent function leads to phase jump once �φ exceeds the limit, and the red line shows that arc-sine avoids
the phase jump but still has cycle skips. Right-hand panel: the behaviour of sin (�φ) versus �φ shows the tapering effect of the sin function in the EP method.
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Figure A4. Inversion results using EP measurements with different water level values demonstrate the effect of water level (wtr). This experiment, as in Fig. 7,
starts from a homogeneous initial model with VS = 3500 m s–1.

In that case eq. (A15) becomes identical to eq. (A14), thus showing that the sine of the modified IP adjoint source and the proposed EP adjoint
source in eq. (18) are each other’s equivalent.

Fig. A3 demonstrates the difference and connections of the explicit IP approach discussed by Bozdağ et al. (2011) (left-hand panel, blue
line), the modified IP method of Rickers et al. (2012) (left-hand panel, red line) and our proposed EP (right-hand panel, blue line). Fig. A3
(left-hand panel) shows the discontinuities in phase that arise while measuring phase explicitly. Both the arc-tangent and arc-sine are uniquely
defined in the ±π /2 interval. As opposed to the arc-tangent function, the arc-sine does not switch sign immediately upon exceeding the
limit, thus avoiding rapid phase changes. Clearly, it still suffers from phase jumps, and Fig. A3 (right-hand panel) explains how the proposed
EP approach turns large phase measurements into tapered continuous quantities. For small phase measurements, all three approaches are
expected to give similar results.

The choice of water level will also influence the tapering effect. We conducted inversions for the experiment in Fig. 6, by using different
water level values. The result in Fig. A4 shows that a larger water level would taper small-magnitude waves and result in the fine-scale
structure unresolved, and a smaller water level tends to boost small signals and reveal detailed fine structure. However, in real observations
with the presence of noise, we have to adjust the water level properly to intentionally downweight any data below noise level.
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