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[1] We investigate the two-dimensional (2-D) nature of the coherence between Bouguer
gravity anomalies and topography on the Australian continent. The coherence function or
isostatic response is commonly assumed to be isotropic. However, the fossilized strain field
recorded by gravity anomalies and their relation to topography is manifest in a degree of
isostatic compensation or coherence which does depend on direction. We have developed a
method that enables a robust and unbiased estimation of spatially, directionally, and
wavelength-dependent coherence functions between two 2-D fields in a computationally
efficient way. Our new multispectrogram method uses orthonormalized Hermite functions
as data tapers, which are optimal for spectral localization of nonstationary, spatially
dependent processes, and do not require solving an eigenvalue problem. We discuss the
properties and advantages of this method with respect to other techniques. We identify
regions on the continent marked by preferential directions of isostatic compensation in two
wavelength regimes. With few exceptions, the short-wavelength coherence anisotropy is
nearly perpendicular to the major trends of the suture zones between stable continental
domains, supporting the geological observation that such zones are mechanically weak.
Mechanical anisotropy reflects lithospheric strain accumulation, and its presence must be
related to the deformational processes affecting the lithosphere integrated over time. Three-
dimensional models of seismic anisotropy obtained from surface wave inversions provide an
independent estimate of the lithospheric fossil strain field, and simple models have been
proposed to relate seismic anisotropy to continental deformation. We compare our
measurements of mechanical anisotropy with our own model of the azimuthally anisotropic
seismic wave speed structure of the Australian lithosphere. The correlation of isostatic
anisotropy with directions of fast wave propagation gleaned from the azimuthal anisotropy
of surface waves decays with depth. This may support claims that above �200 km,
internally coherent deformation of the entire lithosphere is responsible for the anisotropy
present in surface wave speeds or split shear waves. INDEX TERMS: 1236 Geodesy and Gravity:

Rheology of the lithosphere and mantle (8160); 1234 Geodesy and Gravity: Regional and global gravity

anomalies and Earth structure; 3299 Mathematical Geophysics: General or miscellaneous; 7218 Seismology:

Lithosphere and upper mantle; 8180 Tectonophysics: Evolution of the Earth: Tomography; KEYWORDS:

anisotropy, lithosphere, wavelets, coherence, isostasy, shear wave speed

Citation: Simons, F. J., R. D. van der Hilst, and M. T. Zuber, Spatiospectral localization of isostatic coherence anisotropy in

Australia and its relation to seismic anisotropy: Implications for lithospheric deformation, J. Geophys. Res., 108(B5), 2250,

doi:10.1029/2001JB000704, 2003.

1. Introduction

[2] The elastic properties of the Earth’s lithosphere range
from its local, instantaneous response to a seismic wave to

the long-term accommodation of topographic loading at
various interfaces. The former is characterized by the elas-
ticity tensor, which represents seismic wave speeds and their
dependence on propagation and polarization direction,
whereas the flexural or mechanical response is reflected in
the admittance [McKenzie and Bowin, 1976] and coherence
[Forsyth, 1985] between gravity anomalies and (surface and
interface) topography. The isotropic and anisotropic seismic
structure of continents [e.g., Silver, 1996; Savage, 1999] and
the isotropic mechanical behavior of the lithosphere are well
studied [e.g., Burov and Diament, 1995; McKenzie and
Fairhead, 1997].
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[3] Finding the relation between seismic and mechanical
structure can shed light on the structure and deformation of
the lithosphere [Griot and Montagner, 1998; Chen and
Özalaybey, 1998; Vauchez et al., 1998; Meissner et al.,
2002; Simons and van der Hilst, 2002]. One hypothesis
holds that seismic anisotropy is predominantly caused by
strain fossilized in the subcontinental mantle since the last
major episode of tectonic activity [Silver and Chan, 1991]
rather than current mantle deformation [Vinnik et al., 1995].
If lithospheric deformation is internally coherent, the struc-
tural geologic trends observed at the surface will be pre-
dictors for the seismic anisotropy [Silver and Chan, 1988].
[4] The hypothesis of vertically coherent deformation was

inspired by the comparison of shear wave splitting measure-
ments to geologic deformation indicators measured at the
surface. Rümpker and Silver [1998], Saltzer et al. [2000], and
others have shown, however, that shear wave splitting gives
an oversimplified view of continental anisotropy. Aniso-
tropic surface wave tomography affords the vertical resolu-
tion lacking in shear wave splitting studies. That the seismic
anisotropy of the Australian lithosphere is indeed complex
was shown by Debayle and Kennett [2000] and Simons et al.
[2002]. On the basis of the pattern and the correlation length
scale of azimuthal anisotropy derived from surface wave
modeling, both groups argue that a regime of ‘‘fossil’’
deformation overlies a zone characterized by a predominant
influence of present-day mantle deformation.
[5] The objective of this paper is to quantify how good a

predictor of the tectonic fossil strain field the observed
seismic anisotropy in the lithosphere is and to which depth
the correspondence between them might be valid. Rather
than relying on surface strain indicators, we infer the
dominant fossil strain field of the lithosphere from the
orientation of gravity anomalies relative to topography. We
will do this in the spectral domain by extracting the azimu-
thal variation of the gravity-topography coherence function.
As a concept, such ‘‘mechanical anisotropy’’ is well docu-
mented in the geological literature [Vauchez et al., 1998;
Tommasi and Vauchez, 2001], but although it has been the
subject of some investigations by spectral methods [Ste-
phenson and Beaumont, 1980; Stephenson and Lambeck,
1985a; Lowry and Smith, 1995; Escartin and Lin, 1998], it
has only recently been studied with fully two-dimensional
(2-D) spectral approaches [Simons et al., 2000].
[6] The robust and unbiased estimation of coherence

functions (depending on space, direction, and wavelength)
between two 2-D fields requires specialized techniques. The
method we present here is aimed at satisfying three design
criteria: first, the correct retrieval of coherence in the spectral
domain (the wavelength dependence); second, the local-
ization of the coherence in the space domain (the spatial
dependence); and third, ensuring an isotropic response of the
spectral estimator in all azimuths (to get an unbiased
estimate of its directional dependence). Traditional ap-
proaches to coherence estimation fail to reach all three goals.
Mirrored periodogram methods and modified periodograms
using a single window yield less stable estimates than
multitaper methods [see, e.g., Percival and Walden, 1993].
Phase-averaging schemes such as isotropic wave number
binning techniques [Bechtel et al., 1987] obliterate the
directionality in the signal. Both problems are overcome
by the Thomson multitaper method [Thomson, 1982]

extended to two-dimensional fields [Liu and van Veen,
1992; Hanssen, 1997]: the average of several periodograms
calculated on data windowed with different Slepian win-
dows [Slepian, 1978] proves to be a good estimator of the
coherence [Scheirer et al., 1995; McKenzie and Fairhead,
1997] and its anisotropy [Simons et al., 2000] for litho-
spheric loading problems.
[7] To enable a local comparison of gravity-topography

coherence anisotropy with predictions from seismic aniso-
tropy, we require a method that has the ability to map out
the spatial variation of the coherence function in great
detail. Lateral and directional resolution come naturally to
seismic surface waves, since they sample the Earth in a
spatially well-defined manner. Spectral properties such as
coherence, on the other hand, are by definition not localized
in space: pure frequencies have infinite extent. Keeping
Thomson’s method, some spatial resolution can be achieved
by assuming local stationarity, and analyzing discrete por-
tions of the data set. In addition to being ad hoc, however,
the assumption of local stationarity can lead to strongly
erroneous results [Frazer and Boashash, 1994; Bayram and
Baraniuk, 1996]. More advanced time-frequency [Flandrin,
1998] and time-scale (wavelet) methods [Mallat, 1998]
have been designed to optimize resolution both in the
spatial and the spectral domain. Such techniques are ideally
suited to analyze processes with temporally or spatially
varying spectral properties.
[8] Wavelet methods are used pervasively for the uni-

variate time-scale characterization and representation of
geophysical fields [Kumar and Foufoula-Georgiou, 1997;
Torrence and Compo, 1998; Bergeron et al., 2000], includ-
ing their anisotropy [Kumar, 1995], but the calculation of
multivariate coherence functions by wavelet transforms is
hampered by the lack of suitable smoothing schemes [Liu,
1994; Meredith, 1999]. A handful of multiwavelet methods
does yield adequate multivariate time and frequency reso-
lution, but these techniques are restricted to 1-D signals
(time series) [Daubechies and Paul, 1988; Lilly and Park,
1995; Olhede and Walden, 2002]. Simons et al. [1997]
formulated a spherical-wavelet-based spatial localization of
the admittance between gravity and topography, but their
method was not designed to measure its anisotropy (though
there is no a priori reason to preclude this method from
being modified to do so).
[9] We compare the capability for spatiospectral local-

ization of a space-scale multiwavelet and a space-frequency
multiwindow method by an analysis of the concentration
domains in the space-frequency plane that are attained by
the wavelets or windows they employ. The method we
prefer uses a set of orthonormal Hermite windowing func-
tions and is capable of detecting both the anisotropy and the
spatial variations of the spectral coherence function in
realistic settings. In our previous study [Simons et al.,
2000], optimal spectral localization of the coherence func-
tion was achieved by using Slepian data windows and the
method due to Thomson [1982], which assumes spatial
stationarity. Bayram and Baraniuk [2001] and Çakrak and
Loughlin [2001] demonstrated that orthonormal Hermite
polynomials used as data windows offer spatial and spectral
localization simultaneously. The additional localization in
the spatial domain, which enables the study of nonstationary
processes, comes at the expense of some spectral resolution
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overall [Parks and Shenoy, 1990], but the benefits are
twofold. First, the spectral resolution is completely isotropic
by construction: the spectral properties of the windowing
tapers are identical in all azimuths and are hence ideally
suited for the detection of possibly anisotropic components
in the coherence. Second, there is a significant reduction in
computational expense with respect to the Thomson-Slepian
method because the need to solve an eigenvalue problem of
the size of the data can be avoided.
[10] We study the mechanical anisotropy of Australia by

calculating coherence functions between topography and
Bouguer gravity anomalies. We discuss the mechanical
properties of the Australian lithosphere in comparison with
the fast directions obtained from high-resolution seismic
surface wave tomography with azimuthal anisotropy
[Simons et al., 2002]. Identifying directions that have
accumulated more than the isotropic average of gravita-
tional anomalies for a given amount of topography, we test
the simple hypothesis that seismic anisotropy is reflected in
the anisotropy of fossil strain.

2. Methodology

[11] Sections 2–4 of this paper are concerned with the
methodology of nonstationary coherence estimation. We
illustrate the performance of a method with multiple Her-
mite windows for the univariate as well as multivariate
(cross-)spectral characterization of 1-D and 2-D processes
and, in particular, for a geologically relevant loading sce-
nario. Sections 5–7 deal with the practical application to the
study of the spatial and azimuthal variability of the isostatic
response of the Australian continent, its comparison to
seismic anisotropy, and the implications of our findings
for continental deformation.
[12] Appendix A summarizes how the mechanical proper-

ties of the lithosphere are reflected in the coherence between
Bouguer gravity anomalies and topography. For two non-
stationary random processes {X} (gravity) and {Y} (top-
ography), defined on r in the spatial domain and on k in the
Fourier domain, the coherence-square function relating both
fields, gXY

2 , is defined as the ratio of their cross-spectral
density, SXY, normalized by the individual power spectral
densities, SXX and SYY [Bendat and Piersol, 2000]:

g2XY r; kð Þ ¼ SXY r; kð Þj j2

SXX r; kð ÞSYY r;kð Þ

¼
E ~X r;kð Þ~Y* r;kð Þ
� ��� ��2

E ~X r;kð Þ~X* r;kð Þ
� �

E ~Y r;kð Þ~Y* r; kð Þ
� � : ð1Þ

Here, E denotes an expectation operator, tildes refer to the
Fourier-transformed signal, and the asterisk refers to the
complex conjugate. The periodogram ~X ~X* is a direct
spectral estimator of X, although not a particularly accurate
one [Percival and Walden, 1993].
[13] The coherence is a measure of the consistency of the

phase relationship between both processes. Therefore it
cannot simply be estimated from the ratios of the periodo-
grams, as the periodogram does not record phase informa-
tion. The averaging operators in equation (1) are required to
avoid that gXY

2 = 1 everywhere [Bendat and Piersol, 1993].
Multiwindow or multiwavelet methods (see Appendix B1)

provide a way of smoothing across different, approximately
uncorrelated estimates to obtain a stable average estimate,
rather than smoothing within the spectral or spatial domain
as required by single-window methods [Simons et al.,
2000]. Each individual direct spectral estimate is formed
as a spectrogram or a scalogram (for definitions, see
Appendix B1) obtained with a different window or wavelet.
Windows and wavelets can be designed to afford maximum
resolution while minimizing bias, variance, and spectral
leakage [Percival and Walden, 1993]. Resolution is com-
monly defined by the properties of an operator that concen-
trates the estimate in a well-defined domain on the
frequency axis, the time-frequency plane (in one dimension)
or the space containing spatial dimensions and spatial
frequencies (in two dimensions) (see Appendices B2 and
B3). The multiple eigenfunctions of such operators are the
windowing functions or wavelets that are used to estimate
spectrum and coherence with multiwindow or multiwavelet
methods.
[14] Simons et al. [2000] focused on the analysis of

stationary processes by a multitaper method with Slepian
functions (see also Appendix B2). Here we focus on two
possible extensions to the nonstationary case (see also
Appendix B3). We compare the space-scale concentration
achieved by Slepian wavelets (section 3.1) to the concen-
tration in the space-frequency domain of orthonormal Her-
mite spectral windowing functions (section 3.2).

3. Spatiospectral Localization Properties

3.1. Slepian Wavelets

[15] Lilly and Park [1995] extended Slepian’s frequency
concentration criterion to the time-scale domain and found
wavelets that are eigenfunctions of a time-frequency con-
centration operator (see Appendix B3). To compare the
properties of the Slepian functions (prolate spheroidal wave
functions or pswf) for stationary analysis [see Simons et al.,
2000, Figure 2] with the Slepian wavelets for nonstationary
analysis, we calculated six Slepian wavelets (N samples
spaced �t apart) with a central frequency fc = 3/N/�t and a
half bandwidth W/2 = 2.5/N/�t. Figure 1 shows the wave-
lets in the time domain (Figures 1a–1c) and their magnitude
response in the frequency domain (Figures 1d–1f). Six
wavelets are plotted, grouped in pairs (solid and dashed
lines) with similar magnitude response. The frequency axis
is in terms of the smallest resolvable frequency 1/N/�t [Kay
and Marple, 1981]. For every wavelet of the set the spectral
windows are concentrated in two symmetric bands of width
5, centered at 3 on the duration-times-frequency scale. The
frequency concentration properties of the Slepian wavelets
are fairly similar to those of the pswf, and their multiplicity
enables the averaging required for coherence analysis of
time-varying 1-D signals. The eigenvalues, a measure of the
concentration of energy in the central lobe of the spectral
windows, are extremely close to unity [Lilly and Park,
1995]. However, unlike Slepian functions, Slepian wavelets
do not have 2-D analogues.

3.2. Hermite Windows

[16] Slepian wavelets of length T = N�t and bandwidth
W are localized in a rectangular domain [�T/2, T/2] �
[�W/2, W/2] [Lilly and Park, 1995] of the time-frequency
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plane, but such a rectangular tiling of the (t, f ) plane is not
optimal in the sense that it does not provide maximal
simultaneous concentration of time and frequency [Parks
and Shenoy, 1990]. Circular (t, f ) concentration domains
allow optimal resolution in time and frequency to be
achieved simultaneously, without one being at the expense
of the other. In other words, the estimated spectrum has
isotropic distortion in time and frequency (see Appendix
B1). If the circular symmetry applies, instead of to time and
frequency, to space and spatial frequency (both horizontal
and vertical), the resulting spherical concentration domains
allow the estimation of spatially localized directional spec-
tral properties without anisotropic bias. The spectral reso-
lution is identical in all possible azimuths, and no spurious
anisotropy will be introduced.
[17] The eigenfunctions of operators concentrating in a

disk-shaped time-frequency domain t2 + (2pf )2 � R2 are
orthonormal Hermite functions [Daubechies, 1988; Flan-
drin, 1988]. Their analytic form is given by [Olhede and
Walden, 2002]

hj tð Þ ¼
Hj tð Þe�t2=2

p1=4
ffiffiffiffiffiffiffi
2jj!

p ; ð2Þ

i.e., they are Hermite polynomials, Hj, modulated by a
Gaussian function. Starting from H0(t) = 1 and H1(t) = 2t,
Hermite polynomials can be calculated using the recurrence
relation

Hnþ1 tð Þ ¼ 2tHn tð Þ � 2nHn�1 tð Þ: ð3Þ

The eigenvalues are dependent on the radius of the
concentration region, R, and are given by

lj Rð Þ ¼ 1

j!
g R2=2; jþ 1
� �

; ð4Þ

where g denotes the incomplete gamma function.
[18] The remarkable property of the Hermite functions

and their eigenvalues is that the eigenfunctions of the
concentration operator do not depend on the width R of
the domain; the R dependence is contained in the eigenval-
ues. This makes the Hermite method computationally very
fast. To design a set of windows with a particular time-
frequency resolution, it is sufficient to multiply the hj with
the appropriate lj(R) to make their average concentration lie
within a domain of radius R. This is not the case for the
pswf or Slepian wavelets, where an eigenvalue problem
needs to be solved for every choice of bandwidth and signal
length or central frequency and for every different data
length.
[19] In Figure 2a, five orthonormal Hermite functions are

plotted (again compare with the pswf shown by Simons et
al. [2000, Figure 2]). We let t: �5! +5 in equation (2). The
concentration region R, expressed in the same units, then
corresponds to a time concentration within R/10 multiplied
by the actual physical length of the window. The spectral
windowsH( f; R) are plotted in Figure 2b for varying values
of R. They are calculated as

H f ;Rð Þ ¼ 1

J

XJ�1

j¼0

lj Rð Þ
Z1
�1

hj tð Þe�i2pf t dt

������
������
2

: ð5Þ

On the dimensionless duration-times-frequency scale, the
corresponding frequency concentration (around 10 dB of
bias reduction) lies within the gray shaded regions. The
eigenvalues lj for the three choices of R are plotted in

Figure 1. Six prolate spheroidal (Slepian) wavelets [Lilly
and Park, 1995] in the (a–c) time and (d–f) frequency
domain, grouped in three pairs (solid and dashed lines) with
similar frequency response. The �j(t), j = 0 ! 5, are
centered on a frequency equal to 3 times the fundamental
frequency, fc = 3/N/�t, and have a half bandwidth W/2 =
2.5/N/�t. Their concentration properties are comparable to
those of the prolate spheroidal wave functions of Slepian
[1978], but the band-pass magnitude response enables time-
frequency analysis.

Figure 2. Hermite functions and their eigenvalues. (a)
Orthonormal hj(t), j = 0 ! 4. (b) Frequency concentration,
spectral windows H( f; R) (see equation (5)). (c) Eigenva-
lues lR( j) for three different radii of concentration. (d) Time
concentration, energy U(t; R) (see equation (6)).
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Figure 2c. The temporal and spectral resolution of the
multispectrogram estimates is controlled by the length and
overlap of the windows, and by the value of the concentration
radius R. As R becomes larger and resolution degrades, J
grows to reduce the estimation variance (see Appendix B4).
The decreasing number of significantly contributing window
functions with increased resolution (smaller R) is a manifes-
tation of the duality of resolution and variance. In practice, we
take J = R2 tapers [Daubechies, 1988].
[20] As a measure of the concentration of the windows in

the time domain we define their energy as [Walden, 1990a]

U t;Rð Þ ¼ 1

J

XJ�1

j¼0

lj Rð Þh2j tð Þ; ð6Þ

which we plotted in Figure 2d. We have normalized the time
axis by the entire data length, so the energy of the windows
is contained within 0.5 ± R/10 (gray shaded regions). The
even extraction of energy from the signal is achieved by the
calculation of the spectrogram at specific time intervals
corresponding to an effective overlap of the averaging
window.
[21] Besides the ease with which they can be calculated

and the elegance of their construction, perhaps the most
attractive characteristic of the Hermite functions is the fact
that the eigenfunctions of n-dimensional circularly symmet-
ric concentration operators are outer products of the same
Hermite functions [Daubechies, 1988]. The extension from
time-frequency to multidimensional space-frequency analy-
sis therefore becomes practical. Multidimensional exten-
sions to space-scale (wavelet) approaches are conceptually
more difficult [Foufoula-Georgiou and Kumar, 1994]. Con-
centration operator formalisms have been derived for the
space-scale phase plane, but rather than the circularly
symmetric concentration regions of the time-frequency case,
the associated wavelets have complex, nonsymmetrical
concentration domains [Daubechies and Paul, 1988;
Olhede and Walden, 2002].

3.3. Comparison of Concentration Domains

[22] The best way of characterizing and comparing the
effect of windowing or wavelet functions for space-fre-
quency or space-scale analysis is not by their average
periodograms or energy functions (as in Figures 1 and 2)
but by their average Wigner-Ville transform (WV; see
Appendix B1). In Figure 3, we have plotted the alias-free
WV [Jeong and Williams, 1992] of two sets of Slepian
wavelets (Figures 3a and 3b) and of two sets of Hermite
windows (Figures 3c and 3d). We give examples of Slepian
wavelet concentrations at one center frequency for two
different bandwidths and of Hermite concentration regions
for two radii R. The rectangular nature of the Slepian
wavelet concentration domain and the disk-shaped concen-
tration domains of the Hermite functions are well captured
by their WV. The symmetry and smoothness of the Hermite
function kernels make them attractive for their use in time-
frequency coherence analysis. For multidimensional proper-
ties, this symmetry applies to each dimension: for spatial
data, no one direction is favored. This is particularly
important for the estimation of anisotropic processes.
[23] The high concentration and symmetric qualities of

the multiwindow Hermite technique are responsible for its

superior performance compared to traditional (i.e., single-
window) spectrogram methods (an advantage it shares with
the pswf) [Bronez, 1992] and to methods of nonstationary
estimation which employ the pswf in a sliding-window
fashion [Frazer and Boashash, 1994; Bayram and Bara-
niuk, 1996; Mellors et al., 1998]. Section 4 illustrates this
performance advantage with physical examples.

4. Examples of Performance

4.1. Univariate 1-D: Power Spectra of Time Series

[24] We compare the Slepian multiwavelet approach to
the Hermite multiwindow technique for the characterization
of the synthetic signal shown in Figure 4a [see Lilly and
Park, 1995, Figure 5]. The signal consists of a sine-
modulated linear chirp followed by a spike. In Figure 4b,
the Slepian multiwavelet scalogram is plotted (scale was
converted to frequency), calculated with wavelets of center
frequency fc = 7/N/�t and half width W/2 = 3/N/�t. The
number of wavelets used per scale was smaller or equal to
the Shannon number of 2W. This determined the wavelet
length and the maximum resolvable frequency. In Figure 4c,
we have plotted the Hermite multispectrogram, with R = 1.
The window length was 0.13 in units of normalized time,
and the values were calculated at time steps corresponding
to an overlap of the windows of 99%.
[25] An important difference between time-scale and

time-frequency methods is that the time resolution of wave-
lets is inversely proportional to the frequencies at which the
signal is analyzed: the high-frequency components are
analyzed with much shorter wavelets than the low-fre-
quency portions of the signal. This is evident in the typical
pyramidal form generated by discontinuities in the signal. It
also explains the particular efficiency of the wavelet trans-
form for signal representation with a small number of
coefficients [Strang and Nguyen, 1997]. For analysis rather

Figure 3. Concentration of Slepian wavelets and Hermite
functions in the time-frequency plane by their normalized
average Wigner-Ville energy distribution. Contours are
drawn at [0.1:0.2:1]. (a) Slepian wavelets with fc = 6 and
W/2 = 2 and (b) with fc = 6 and W/2 = 3 in dimensionless
units normalized by the fundamental frequency. Concentra-
tion of Hermite functions in the time-frequency plane for
radii (c) R = 2 and (d) R = 4.
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than representation of signals, on the other hand, we prefer
the results generated by the Hermite method.

4.2. Bivariate 1-D: Coherence Between Time Series

[26] We take the synthetic example proposed by Santoso
et al. [1997] to show that the Hermite function approach is
capable of retrieving both the magnitude and the phase of
the coherence between both signals; we can distinguish
variations in time as well as frequency. Santoso et al. [1997]
were unable to provide frequency resolution. The synthetic
signals, plotted in Figures 5a and 5b, consist of two time
segments with a sinusoid at 1/4 and 1/2 of the Nyquist
frequency (Figure 5a), and another at 1/4 and 1/1 of the
Nyquist (Figure 5b), �p/2 radians out of phase with the
first. Uniform random noise (with a signal-to-noise ratio of
5 dB) was added. The localization properties of the Hermite
functions are excellent, both in time and in frequency. This
is evident from the individual power spectral estimations of
both signals, plotted in Figures 5c and 5d, and in the strong
peak of unit coherence in Figure 5e. Where the coherence is
unity the measurement of its phase shown in Figure 5f
correctly yields the input phase difference between both
segments.

4.3. Bivariate 2-D: Coherence Between 2-D Fields

[27] For a 2-D test we follow the method of Lowry and
Smith [1994] to create pairs of real synthetic fields with a
known (an)isotropic coherence between them. Four pairs of
coherent fields were joined together, forming a spatial input
pattern of coherence shown in Figure 6. The Hermite
multispectrogram method was applied on spatially over-
lapping tiles of the data. Figure 6 illustrates how spatially

varying anisotropic coherence functions between two 2-D
fields may be retrieved with confidence.

4.4. A Geologically Relevant Example

[28] Finally, we show a realistic example of a lithosphere
loaded by two statistically independent processes at the
surface and at one subsurface interface. We assume that
isostatic compensation is described by the effective elastic
thickness and operates in an directionally isotropic way. In
this classic loading scenario the equilibrium topography,
Bouguer anomaly, and predicted coherence function can be
predicted by the analytic expressions first derived by For-
syth [1985]. We have generalized these expressions to a
multilayered case in Appendix A.
[29] The purpose of our example is twofold. First, we show

how a coherence function predicted by the loading model is
observed by the Hermite method for various values of the
resolution-variance parameter R (see section 3.2). Second,
we show that anisotropy in either gravity or topography does
not introduce spurious anisotropy in the isostatic response.
By construction, the coherence function represents the aver-
age cross-spectral properties of gravity and topography,

Figure 4. Comparison of the Hermite multiple-spectro-
gram method with the Slepian multiwavelet method. (a)
Synthetic signal [after Lilly and Park, 1995]. (b) Power
spectrum based on the Slepian multiwavelet transform.
Slepian wavelets with fc = 7/N/�t and W/2 = 3/N/�t were
used. (c) Power spectrum from the multispectrogram
method, the concentration region R = 1, window length
L = 32�t = 0.13 N�t, overlap 99%, number of frequency
bins nfft = 256. The thin solid lines in Figures 4b and 4c
correspond to the instantaneous frequency of the input chirp
shown in Figure 4a.

Figure 5. Coherence estimation with the Hermite method.
(a–b) Synthetic signals X and Y [after Santoso et al., 1997]
and (c–d) their time-varying power spectra, SX and SY.
Time-varying coherence-square function (e) g2 and (f) its
phase f. Where the input signals are coherent, between
0.125 and 0.450, the measured coherence equals unity and
the input phase difference of �p/2 is correctly retrieved.
Concentration region R = 3, window length L = 256�t =
0.12 N�t, overlap 99%, nfft = 128.
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normalized by the individual power spectra of both fields,
and hence no such artifacts are expected to occur.
[30] We made two synthetic data sets with power spectra

identical to data observed in central Australia, but with
randomly perturbed phase. The resulting fields have realis-
tic, anisotropic power spectra. The random phase guarantees
that both loading processes are statistically independent, as
required for the coherence method to be valid [Forsyth,
1985]. We applied the topography shown in Figures 7a and
7b as loads to the surface and one interface, respectively, and
added a third, unloaded, compensating density interface.
The wavelength-dependent ratio of bottom-to-top loading
[Forsyth, 1985] has an average of 0.38 and a standard
deviation over all wave numbers of 0.17. The effective
elastic thickness of the lithosphere is Te = 25. The (isotropic)
isostatic compensation leads to an equilibrium surface topo-
graphy shown in Figure 7c, a Bouguer gravity anomaly in
Figure 7d, and predicted coherence between the two in
Figure 7e. Prior to analysis, we added Gaussian random
noise to the equilibrium surface topography (with mean
equal to 50% of the mean absolute value of the topography).
Figures 7f–7h show how the predicted coherence is
retrieved by analyzing the data shown in Figure 7c (top-
ography) and Figure 7d (Bouguer anomaly) with the Her-
mite multiwindow approach, for different values of the
resolution parameter R. As shown in section 3.2, increased
values of R degrade the resolution of the estimate (the
coherence peak is broadened), but at the same time,
the variance of the estimate decreases. The variance of the
coherence estimate is not explicitly shown in Figures 7f–7h,
but its decrease is apparent from the decreasingly oscillatory
nature of the observed coherence in regions where null
coherence is predicted.
[31] Changing R affects the transition wavelength between

high and low coherence, a measure often used in inversions
for effective elastic thickness. The value of R (or NW in the
Thomson-Slepian approach) combined with the physical size

of the data determine the effective bandwidth of the estimate
(see section 3.1) [Walden et al., 1995]. The same dependence
is implicitly present in single-window or mirrored periodo-
gram techniques [Simons et al., 2000]. Hence no two esti-
mates of Te should be compared without a comparison of the
resolution bandwidth. The difference in the (average, iso-
tropic) transition wavelength between Figures 7e–7h is on
the order of 100 km, which seriously jeopardizes attempts to
attach absolute values of effective elastic thickness to similar
measurements. For the purposes of analysis of anisotropy in
the isostatic response, however, Figure 7h shows that our
choice of R = 3 affords low-variance estimates of the
coherence, without artificial introduction of anisotropy, even
when the power spectra of the data analyzed are themselves
anisotropic. Higher values of R were not required.
[32] In summary, the Hermite multispectrogram method

allows for unbiased, high-resolution, low-variance coher-
ence calculations in any number of dimensions. It compares
favorably to traditional and Slepian multitaper spectrogram
and multiwavelet scalogram methods of time-frequency
analysis. The (r, k) space is treated as a whole without
sacrificing temporal or spatial resolution to frequency res-
olution. Resolution and variance are at the discretion of the
analyst, who can choose the radius of the concentration
region. The Hermite windows and their eigenvalues are easy
to calculate recursively, and no matrix diagonalization is
required.

5. Gravity and Topography Data of Australia

[33] The continental gravity and topography data sets
used in this study are the same as used by Simons et al.
[2000]. Topography and bathymetry data (see Figure 8) are
from the compilation by Smith and Sandwell [1997]; over
the continent they are identical to the GTOPO30 data set
[Gesch et al., 1999]. Oceanic bathymetry was added to
provide continuity with the continental topography. How-

Figure 6. Retrieval of spatially varying anisotropic coherence functions. Two synthetic fields are related
by a different coherence function in each of four spatial quadrants. (a) Spatial variation of the input
coherence, in wave vector space, with the long wavelengths at the center of the tile. (b) Retrieval with
Hermite multispectrogram method. The measured coherence functions (four in each quadrant) are
centered on the location of the measurement, but measurement regions overlapped spatially by 25%.
Inferred anisotropic directions (solid lines) are compared to the input directions (dashed lines).
Concentration radius R = 3.
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ever, the intricacies involved in the generation of the
bathymetry data from the integration of ship-sounding data
with satellite gravity field measurements (in which an
isotropic coherence function is implicitly assumed by Smith
and Sandwell [1997]) prevent our coherence analyses from
being meaningful over the purely oceanic areas.
[34] The continental Bouguer gravity anomaly map plot-

ted in Figure 9 is from Geoscience Australia (formerly the
Australian Geological Survey Organisation). A crustal den-
sity of 2670 kg m�3 is assumed. A background gravity field
obtained from a spherical harmonic expansion of satellite-
derived geoidal coefficients up to degree 10 was removed
(for details, see Simons et al. [2000]). Over the oceans we
computed Bouguer anomalies with a crustal thickness of
6 km using the method of Parker [1972]. Oceanic and
continental data sets were adjusted to the same baseline. The
data were projected onto a Cartesian grid with a sampling
interval of �5.5 km in both x and y. Figures 8 and 9 also
show the location and size of the analyses boxes used to
generate the results.

6. Results: Coherence Analysis of Australia

[35] We applied the Hermite multispectrogram method to
characterize the coherence between the data sets shown in
Figures 8 and 9. The full extent of the data was subdivided
into square boxes with a size of 720 km and an overlap of

30%. The data were analyzed using 81 different Hermite
tapers (the outer products of 9 tapers in each dimension) and
a concentration region of R = 3. We follow two approaches
for extracting the directional dependence of the 2-D coher-
ence function.

6.1. Long-Wavelength Response

[36] The first method concentrates on the longest-wave-
length parts of the coherence and is directly related to the
traditional method of determining the elastic thickness, or
Te, of the continental plate [Watts, 2001]. The primary
diagnostic to distinguish mechanically weak from strong
plates (the ‘‘weak’’ direction being the one which has
accumulated most of the deformation for a given amount
of topography) is the transition wavelength at which the
change occurs from isostatically compensated loads (and,
thus, high coherence of the Bouguer anomaly with the
topography) to uncompensated loads supported by the
elastic strength of the plate (low or zero coherence) [For-
syth, 1985]. For every coherence estimate g

2(k) we deter-
mine the wavelength l1/2(q) at which the coherence drops to
half of its maximum (long-wavelength) value as a function
of the azimuth q of the profile defined in (kx, ky) space. This
transition wavelength l1/2(q) is well defined if the coherence
falls off as predicted by simple compensation modeling of
elastic plates (see Appendix A), and the function l1/2(q)
should show a clear minimum if there is a dominant

Figure 7. Predicted and observed coherence for a realistic loading scenario. The model has three
interfaces at depths z = (0,15,35) km, density contrasts of �R = (2600, 300, 400) kg m�3, an effective
elastic thickness Te = 25 km, Young’s modulus E = 1.78 � 1011 and Poisson’s ratio n = 0.25. Loading
topography is applied at the top two interfaces (Figures 7a and 7b), and the isotropic isostatic
compensation produces an equilibrium topography, shown with noise added (see text), and Bouguer
gravity anomaly (Figures 7c and 7d). The predicted coherence function, with the longest wave numbers at
the center, is plotted in Figure 7e. Observed coherence, calculated with after tapering the data with
Hermite windows, is shown in Figures 7f–7h for varying values of the resolution parameter R. The
optimal value is R = 3, when the isotropic coherence is most faithfully retrieved.
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direction of weakness in the plate. The interpretation with
respect to standard curves for varying Te can then be
verified by comparing g

2(k, qs) (in the strongest direction
qs) and g

2(k, qw) (in the weakest direction qw).
[37] In Figure 10, we give three examples of results

obtained using this approach. From left to right, Figures
10a–10c consist of a 720 � 720 km2 tile of topography,
h(x, y), the corresponding Bouguer gravity anomaly, B(x, y),
and the coherence function, g2(k) = g

2(kx, ky). The scale
of the g

2(k) = g
2(kx, ky) panel is linear in (kx, ky), with the

longest resolvable (also known as Rayleigh) wavelength,
lR = 720 km, in the center, and a wavelength of ±2lN = 20
km, equal to twice the shortest resolvable (Nyquist) wave-
length, on the sides. Next is the azimuth-dependent transition
wavelength, l1/2(q), where l is in km and q in radians,
measured anticlockwise from the equatorial line through the
center of the g

2(k) = g
2(kx, ky) panel. The maximum and

minimum l1/2(q) define a ‘‘strong’’, or least deformed (solid
line), and a ‘‘weak’’, or most deformed (dashed line) direction
of the plate. Last, the coherence is shown as a function of the
wave number, for the interpreted strongest (g2(k, qs), solid
lines) and weakest (g2(k, qw), dashed lines) directions.
Because the 2-D plots in (kx, ky) space are symmetric through
the center, only half of the coherence needs to be plotted (here
we use positive wave numbers only). Also plotted are the
error bars on the coherence measurements (see Appendix
B4). From the shape of the minimum of l1/2(q), we can see
that the direction corresponding to the minimum transition
wavelength is not always unambiguous; a conservative
estimate of its uncertainty can be as large as 45�. On the

other hand, the plots of g2(k) for the strongest and the weakest
direction show a significant difference in the coherence, and
such coherence behavior will correspond to an interpretable
difference in Te of several km (for sample curves, see Figure
7b of Forsyth [1985]). We also note that the error bars were
obtained for a unique azimuth without averaging in (kx, ky)
space. They could be further reduced by considering the
coherence in a small azimuthal range, as opposed to a single
azimuth, but we have not found it necessary to do so.
[38] The noticable difference in transition wavelength can

be interpreted as a directional dependence of the effective
elastic thickness, Te, but due to the complexity of the
assumptions involved [e.g., Burov and Diament, 1995;
Lowry and Smith, 1995; Banks et al., 2001], we prefer to
show only the coherence data rather than calculate actual
values for Te in various directions. Perhaps the most striking
difference between theory and actual observations of con-
tinental gravity/topography coherence is the failure of the
coherence to reach unity at the longest wavelengths. Among
the possible reasons are the influence of erosional processes
on the spectral content of the data [McKenzie and Fairhead,
1997], the improper accounting of dynamic topography due
to deeper mantle processes [D’Agostino and McKenzie,
1999], or the displacement of interfaces due to tectonic
stresses which do not result in complete isostatic compen-
sation even at large wavelengths (M. P. Doin, personal
communication, 2002). Furthermore, the longest-wave-Figure 8. Topography and bathymetry of Australia and its

surrounding areas, in km. Data from Smith and Sandwell
[1997]. Inverted triangles indicate center of analysis boxes.
Box size and overlap are plotted top left. The boxes labeled
a–c correspond to the regions analyzed in Figure 10.

Figure 9. Oceanic and continental Bouguer gravity
anomalies, in mGal (1 mGal = 10�5 m s�2). Continental
Bouguer anomaly data from the Australian Geological
Survey Organisation. Over the oceans, Parker’s [1972]
method was used to compute the Bouguer correction with
an average crustal thickness of 6 km. The boxes labeled A–
C correspond to the regions analyzed in Figure 11.
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length value of the coherence, as well as the exact position
of the transition wavelength are, as we have argued in
section 4.4, directly related to the size of the analysis
window. With decreasing window size, the effective aver-
aging bandwidth of the coherence estimation broadens. This
results in a lowered coherence at the longest resolvable
wavelength and a transition wavelength that is shifted to
shorter values. Our analysis cautions against the comparison
of absolute values of Te between studies performed with
different window sizes, but leaves the interpretation of
relative variations and anisotropic components sound.
[39] We may assess the significance of our results by

comparing them with realistic synthetic topography and
gravity. Two random phase realizations of data with power

spectra identical to those observed in central Australia are
shown in Figure 10d. The coherence shows no particular
pattern. The transition wavelengths are erratic and no
unique minimum can be found. The wave number coher-
ence is near zero for all wavelengths. Furthermore, we
checked the reproducibility of our measurements by rotating
circularly tapered data sets over a set of angles q, and
verifying that the coherence pattern as well as the inter-
preted directions rotated over approximately the same angle.
We have also checked the consistency of the results by
shifting the centers of the data boxes (inverted triangles in
Figures 8 and 9).
[40] The analysis described above was carried out on all

topography/gravity tiles, and ‘‘good’’ measurements (such

Figure 10. (a–c) Coherence anisotropy between Bouguer gravity and topography for the regions shown
in Figure 8 and (d) a synthetic example with random phase data. From left to right: topography, Bouguer
anomaly (tick marks every 100 km), coherence square function and transition wavelength, in km, in
function of the azimuth q. Minimum transition wavelength at qw represents the weakest direction of the
plate (dashed lines). Maximum at qs indicates strongest direction (solid lines). Right panel on every row
shows strong and weak coherence with their error in function of the wave number. Figure 10d indicates
that if the phase relation of topography to gravity was purely random, no directional differences would be
detectable.
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as the examples of Figure 10) were separated from ‘‘fair’’
measurements with less well defined minima. ‘‘Bad’’ meas-
urements were rejected. We summarize the results in
section 7.

6.2. Short-Wavelength Response

[41] The anisotropy measured by the transition wave-
lengths described in section 6.1. probably involves the
deeper parts of the elastic lithosphere. Besides from the
transition wavelengths we can extract directional variability
from the shorter-wavelength portions of the coherence.
Isostatic compensation can be aided by shallow, crustal
processes such as faulting [Bechtel, 1989; Lowry and Smith,
1995]. If this occurs in a preferred direction the coherence in
that direction will be higher than the isotropic average.
Disregarding the long-wavelength parts of the coherence
spectrum, or the wavelengths longer than 150 km, we
attempt to find the direction in which the average coherence
exceeds the value of the other directions.
[42] Figure 11 shows three examples of short-wavelength

coherence anisotropy in Australia. Figures 11a–11c show
actual data taken from the locations labeled in Figure 9, For
comparison, Figure 11d shows a synthetic example with
random phase topography unrelated to the gravity anomaly
(taken from central Australia). The first two left panels
show the topography and gravity fields, whereas the third
panel shows the coherence-square function without its long-
wavelength portion. The right panel gives the average
coherence as a function of azimuth with 68% and 95%
confidence intervals. The direction of maximum coherence,
the weaker or more easily isostatically compensated direc-
tion of the continental plate is marked by a dashed line. On
the basis of the peaks in the average coherence we identify
(‘‘good’’ measurements), along with more ambiguous peaks
(‘‘fair’’), and reject ‘‘bad’’ or ‘‘null’’ measurements. All
results are summarized in section 7.

7. Discussion

7.1. Mechanical Anisotropy and Zones of Weakness

[43] The ‘‘weak’’ directions obtained from the transition
wavelengths are plotted in Figure 12b. The directions where
the coherence is higher than average in the short wavelength
range are shown in Figure 12c. High-quality measurements
are shown with thick solid lines, and fair ones with thin
solid lines.
[44] The western two thirds of the Australian continent

are a Precambrian amalgamation of numerous continental
fragments [Rutland, 1976; Myers et al., 1996] joined by
weak zones characterized by extensively reworked crust,
which are often manifest as strong gradients in the gravity
and magnetic anomaly maps [Wellman, 1998] (Figure 12a).
Precambrian Australia comprises the Archean Western
Australian craton (notably the Yilgarn and Pilbara cratons),
a North Australian craton which extends into the offshore
areas of the continental platform [Zielhuis and van der Hilst,
1996; Simons et al., 1999], and a South Australian craton
containing the Archean-Proterozoic Arunta and Gawler
units. The eastern third of Australia accreted during the
Paleozoic and has been the scene of intense orogenic
activity with a predominantly N-S oriented strike. The
Central Australian region, which extends to the northwest

and separates the western and southern from the northern
Australian mega-elements, is an extensively reworked zone
with major collisional and other boundaries, which are
oriented predominantly E-W in the central parts of Australia
[Wellman, 1998; Shaw et al., 1995].
[45] Figure 12a [after Wellman, 1998] shows the location

of major geological and geophysical boundaries. Such
zones represent substantial rheological heterogeneities.
Their role of weak zones has been invoked to explain the
relative stability of the cratonic parts they circumscribe
[Vauchez et al., 1998; Lenardic et al., 2000; Tommasi and
Vauchez, 2001]. The short-wavelength anisotropy (Figure
12c) correlates well with these suture zones. With some
exceptions, the weak direction is indeed oriented nearly
perpendicularly to the trend directions mapped in Figure 12.
In addition, several long-wavelength weak directions are
oriented at high angles to the ocean-continent boundary.
This may be a manifestation of the rheological weakness
associated with the junction of oceanic and continental
crust.

7.2. Mechanical Anisotropy and Lithospheric Stress

[46] The clear N-S anisotropy of the central Australian
lithosphere evident in the short-wavelength coherence of
Figure 12c corroborates the findings of Simons et al. [2000],
who tentatively related the N-S direction of weakness to the
presence of pervasive E-W running zones of faulting
[Lambeck et al., 1988] and rheological effects due to
differential sediment burial rates [Sandiford and Hand,
1998].
[47] If the above average isostatic compensation in the

N-S direction observed in central Australia is interpreted as
a lowered effective elastic thickness [Simons et al., 2000],
then it could be explained as an effect of the regional N-S
pattern of maximum compressive stress [Lambeck et al.,
1984; Lowry and Smith, 1995]. Similarly, an explanation for
mechanical anisotropy elsewhere could be sought in relation
to the contemporaneous intraplate stress field. However,
regional stress indicators for Australia (e.g., borehole break-
outs [Hillis et al., 1998, 1999] or focal mechanisms [Lam-
beck et al., 1984; Spassov, 1998; Spassov and Kennett,
2000]) are poorly consistent with each other, and Australia
has very low seismicity. In addition to the difficulty of
identifying a representative stress direction responsible for
anisotropic isostatic compensation, there is no a priori
causal relationship between them. Loading of an elastic
plate and the creation of gravity anomalies might have
reflected the stress state of the plate at the moment the
loading and deformation took place, but from the preserved
gravity structure it is not possible to derive the present-day
stress field, unless the present-day stress and fossil strain are
still related, which seems to be the case in central Australia,
or in some areas of the continental United States [Lowry and
Smith, 1995].

7.3. Mechanical Anisotropy and Lithospheric Strain

[48] An interpretation of coherence anisotropy in terms of
strain is more promising. Finite strain causes lattice pre-
ferred orientation (LPO) of anisotropic mantle minerals and,
hence, seismic anisotropy [Mainprice and Silver, 1993].
Experimental [e.g., Zhang and Karato, 1995] and theoret-
ical [e.g., Ribe, 1992] studies have shown that the [100] axis
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of olivine becomes oriented parallel to the extensional
direction, or perpendicular to the shortening direction but
parallel to transpressional structures [Nicolas and Poirier,
1976; Tommasi, 1998]. If deformation has operated in a
vertically coherent way, the fast polarization direction of
SKS splitting or the direction of maximum propagation
speed of azimuthally anisotropic surface waves will be
parallel to the structural trends, or nearly perpendicular to
the compression direction in the case of large-scale con-
tinental collision [Silver, 1996]. By inference, the fast axis
will be perpendicular to the direction that has accumulated
the most deformation per unit of topographic loading: the

‘‘weak’’ direction from our coherence analysis, in which
deformation is most easily accommodated by folding,
faulting or buckling (Figure 13). We will compare the weak
plate directions with the fast seismic axes and investigate to
which extent they are indeed at right angles to each other,
and to which depth.
[49] Interpreting anisotropic isostatic compensation as a

function of the strain directions it records arguably provides
a better handle on the dominant deformation mechanism
than a surface mapping of geologic trends (strike of faults,
province boundaries, stress directions, etc.) alone. Isostatic
compensation involves all of the elastic lithosphere, and the

Figure 11. Coherence anisotropy for the shortest wavelengths. (a–c) Data examples (see boxes A–C in
Figure 9 for location). (d) A synthetic example with random phase topography unrelated to the gravity
anomaly (taken from central Australia). Topography and gravity fields are plotted together with the short-
wavelength part of their coherence function. The average coherence per azimuth is plotted with 1s and
2s error bars (dark and light shadings). ‘‘Weak’’ directions are found by looking for a well-identified
peaks and direction of higher than average coherence (dashed lines).
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isostatic response thus represents the time- and depth-
integrated dominant mode of deformation. This interpreta-
tion is not unique, however, as we need to assume that the
observed topography and gravity are in static equilibrium
with each other. Ideally, the flexural response and erosion
should be studied as coupled processes [Stephenson, 1984;
Stephenson and Lambeck, 1985b]. However, an alternative
model, in which the topography is altered by erosion with-
out affecting the subsurface loads might give rise to
anisotropic coherence and cannot be discarded without
further study.
[50] Both body wave [Clitheroe and van der Hilst, 1998;

Girardin and Farra, 1998; Özalaybey and Chen, 1999] and
surface wave [Debayle and Kennett, 2000; Simons et al.,
2002] studies suggest that the seismic anisotropy of the
Australian lithosphere is more complex than either end-
member model, vertically coherent deformation [Silver and
Chan, 1988] or present-day mantle deformation [Vinnik et
al., 1995] would predict. Measurements of the birefringence
of SKS phases in Australia by Clitheroe and van der Hilst
[1998] and Özalaybey and Chen [1999] are at odds with
each other. Whereas Clitheroe and van der Hilst [1998]
attribute the splitting they observe at high frequencies ( f >
0.3Hz) to a small amount of azimuthal anisotropy at shallow
depths, Özalaybey and Chen [1999] contend they are a
result of scattering associated with heterogeneities at depth.
The splitting of body phases poorly constrains the depth
range of lithospheric anisotropy [Savage, 1999], but surface
waves enable us to detect horizontal as well as vertical
variations in anisotropy and wave speed. However, we
emphasize that surface wave studies are conducted at lower
frequencies than shear wave splitting studies. Hence surface
wave models represent averages of seismic structure over
several hundred kilometers.
[51] The two most detailed waveform tomographic mod-

els to date, by Debayle and Kennett [2000] and Simons et
al. [2002] both indicate a change in anisotropic nature in the
midlithosphere. Above 150–200 km depth, the highly
variable nature and relatively strong amplitudes of azimu-
thal anisotropy are suggestive of a regime of frozen strain,
whereas the smoother, weaker anisotropy below 200 km is
more consistent with active mantle convective processes
deforming the lowermost lithosphere and aligning the fast
axes with the direction of absolute plate motion. Elsewhere
[Simons et al., 2002] we present a model of the 3-D S wave
heterogeneity and azimuthal anisotropy from Rayleigh
waves propagating in the Australian upper mantle, placing
particular emphasis on the construction of the model, its
robustness and error structure, and comparing the differ-
ences between our model and that of Debayle and Kennett

Figure 12. (opposite) (a) Major trend directions on the
Australian continent [from Wellman, 1998]. Measurements
of anisotropy in the coherence between Bouguer anomalies
and topography. (b) Long-wavelength weak directions
corresponding to the azimuths of minimum transition
wavelength. (c) Short-wavelength weak directions from
the azimuth with higher than average coherence in the range
from 20 to 150 km. ‘‘Good’’ measurements are indicated by
thick solid lines; ‘‘fair’’ measurements are indicated by thin
solid lines.
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[2000] in detail. The qualitative agreement between both
models and the interpretation based on them is encouraging,
but many differences remain at the small scales. Conse-
quently, we will focus on our own seismic model for the
comparison with mechanical anisotropy as a first-order
exercise, and reserve the detailed comparison between
seismic models for the more specialized literature.
[52] We have averaged the anisotropy model of Simons et

al. [2002] over equally sized, similarly overlapping regions
of the continent as we used in the coherence analysis. The
fast axes for various depths are shown in Figure 14 (black
lines scaled to the magnitude of the anisotropy). Overlaying
these results, we plot the long-wavelength directions of
mechanical weakness (gray lines) in Figures 14a–14d
(corresponding to the thick solid lines in Figure 12b), and
the short-wavelength results in Figures 14e–14h (the thick
solid lines of Figure 12c). We show this comparison only
for the locations of the best measurements of the coherence
anisotropy.
[53] In most cases the mechanical and seismic anisotropy

are at large angles. For different depths, we quantify this by
calculating the percentage of weak directions that falls in the
quadrant containing the perpendicular to the fast axis of
seismic anisotropy. Figure 15 suggests there is indeed some
agreement between the predictions based on the long-wave-
length mechanical anisotropy and the seismically aniso-
tropic directions. Although the resolution of the seismic
model at 30 km depth is arguably the worst, the seismic
directions are perpendicular to the directions of mechanical
weakness for about 60% of the measurements, while only

10% of the weak directions are parallel to the fast axis of
anisotropy. With increasing depth, these figures change to
about 30% (perpendicular) and 20% (parallel) at 200 km
depth. For the mechanical anisotropy derived from the high-
frequency component of the coherence, the relation with
seismic anisotropy is more ambiguous. As we have argued
before, its origin probably lies in the shallow crust.
[54] In addition to comparing the directions of mechan-

ical weakness with the depth-dependent directions of sur-
face wave anisotropy, we have compared them with splitting
directions from SKS, SKKS, and PKS phases [Clitheroe and
van der Hilst, 1998; T. Iidaka et al., unpublished data,
2001]. Shear wave splitting times in Australia are, in
general, small. Of the 89 measurements reported in the
above two studies, only 13 display splitting times equal than
or larger than 1 s. At only four stations a corresponding
high-quality measurement of coherence anisotropy could be
made, and for three out of those four cases, the mechanical
anisotropy was very nearly perpendicular to the splitting
direction. As shear wave splitting measurements are much
influenced by shallow structures [Saltzer et al., 2000], this
perpendicular relationship is in agreement with the infer-
ence made from Figure 15 that such a relationship holds
predominantly for the uppermost upper mantle.

8. Conclusions

[55] Continental deformation is recorded by topography
and gravity anomalies, and the coherence function relating
them is a wavelength-dependent measure of the amount of
flexure experienced by density interfaces in the lithosphere
due to loading by a unit of topography. The 2-D nature of
the coherence is an expression of the elastic strength or
weakness of the plate. The azimuth in which the transition
from high to low coherence occurs at the shortest wave-
length indicates a direction of mechanical weakness or
strain concentration. We can further identify directions of
preferential isostatic compensation on the basis of their
anomalously high coherence with respect to the isotropic
average. Used as a directional deformation indicator, the
coherence can supplant the limited and ambiguous mapping
of surface trend directions. We can thus infer the litho-
spheric deformation direction dominant over time and
integrated over depth (the ‘‘fossil’’ strain).
[56] Multiwindow methods are necessary to study the

anisotropic coherence of 2-D fields. To study variations of
coherence with space, multiwavelet or multispectrogram
methods are required. The spatiospectral concentration
properties of windows or wavelets are evident from their
average Wigner-Ville transform (WV). Using the WV, we
have shown that Slepian sequences and Slepian wavelets
tile the (r, k) space with rectangular concentration regions.
A better way of analyzing space-varying spectral properties
is with Hermite windowing functions. Their concentration
regions are circular and treat the phase space as a whole,
without trading spatial for spectral resolution. Our multi-
spectrogram method of coherence analysis uses Hermite
data windows and is able to retrieve spatial, azimuthal and
wavelength-dependent variations of coherence, in a compu-
tationally efficient way.
[57] We have investigated the spatial variations and aniso-

tropy of the coherence between Bouguer gravity anomalies

Figure 13. Vertically coherent deformation of the litho-
sphere [modified after Silver, 1996] (with permission from
the Annual Review of Earth and Planetary Sciences, vol. 24,
copyright 1996 by Annual Reviews www.annualreviews.
org) and the relation between seismic and mechanical
anisotropy.
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and topography on the Australian continent. Some of our
measurements appear to be at large angles to boundaries
between stable continental cratons, which is consistent with
the notion that such boundaries are mechanically weaker.
[58] We have compared the 3-D distribution of fast axes

of seismic anisotropy obtained from surface wave waveform
tomography to the locally dominant deformation directions

from the gravity-topography coherence analysis. Down to
about 200 km most mechanically weak and seismically fast
directions of anisotropy are at high angles to each other, but
at large depth this relationship vanishes. This observation is
consistent with the notion that large-scale deformation
processes have affected the lithosphere coherently to about
200 km depth. The pattern of anisotropy at 200 and 300 km

Figure 14. Seismic and mechanical anisotropy. (a–d) Long-wavelength mechanical anisotropy (weak
directions from Figure 12b, in gray) compared to the fast axis of seismic anisotropy at different depths
[from Simons et al., 2002], proportional to its magnitude. (e–h) Short-wavelength mechanical anisotropy
(weak directions from Figure 12c, in gray) compared to seismic fast axes.
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depth may reflect the approximately northward motion of
the Australian plate.

Appendix A: Flexure, Admittance, Coherence

A1. Flexure of the Elastic Lithosphere

[59] In one dimension, the equation describing the deflec-
tion n(x) due to a load l(x) of a thin elastic plate overlying a
fluid substrate is given by [Turcotte and Schubert, 1982]:

d4

dx4
þ�R

D
g


 �
n xð Þ ¼ ��Fg

D
l xð Þ: ðA1Þ

The interface being loaded is represented by the density
contrast �F across it (the driving force), and �R is the
restoring force exerted by the interfaces being flexed. The
flexural rigidity is denoted by D, and g is the gravitational
acceleration. The effective elastic thickness,Te, relates toDby

D ¼ ET3
e

12 1� n2ð Þ ; ðA2Þ

where E is Young’s modulus and n is Poisson’s ratio.

[60] For a wave number k = 2p/l, the Fourier transform
of the equilibrium load L(k) is related to the Fourier trans-
form of the deflection N(k) by

N kð Þ ¼ �L kð Þ �F

Dk4

g
þ�R

: ðA3Þ

[61] Let us examine the driving and restoring forces in a
four-layer (three-interface) density case composed of a layer
of air or water (density rw), an upper (ru) and a lower crust
(rl), and a half-space mantle (rm). The density jumps at the
interfaces are then ru � rw = �1, rl � ru = �2 and rm � rl =
�3. We denote the topography on interface i by Wi, its
topographic surface expression after flexure by iH (see
Table A1), and the resulting Bouguer gravity anomaly
observed at the surface by iGB. For loading at the surface,
the equilibrium topography is identical to the surface
expression of the load. Furthermore, the deflection due to
loading on interface i > 1 is assumed to be expressed
equally at all interfaces j 6¼ i. As L(k) and N(k) represent
equilibrium values, the initial applied topography I(k) is
given by the difference of the equilibrium topography and
the deflection [Forsyth, 1985].
[62] Neglecting finite amplitude effects, the Bouguer

gravity anomaly associated with a warped density interface
Wi located at depth zi is given by �i2pGWi(k)e

�kzi, where G
is the gravitational constant [Turcotte and Schubert, 1982].
To obtain the free-air anomaly, the surface contribution is
taken into account by adding �12pGiH(k).

A2. Response of Gravity to Topography

[63] From equation (A3) and Table A1, surface loading of
a multilayered system produces warped interfaces, Wi>1 at
zi, related to the loading topography, 1H, as

Wi ¼ �1H
�1

Dk4

g
þ
P
j>1

�j

" # ; i > 1: ðA4Þ

The Fourier transform of the Bouguer gravity anomaly due
to top loading, 1GB, is the sum of the individual gravity
anomalies �i2pGWie

�kzi generated by the surface load.
Hence the ratio of gravity anomaly to its surface expression,
the Bouguer admittance, Z1, is expressed as

Z1 ¼ �2pG
�1

Dk4

g
þ
P
i>1

�i

� � X
i>1

�ie
�kzi : ðA5Þ

Similarly, the free-air admittance is given by Z1 + 2pG�1.
LoadingWi > 1 on an interface different from the surface and

Figure 15. Relationship between mechanically weak
directions and fast axes of seismic anisotropy. Percentage
of long (squares, solid lines) and short-wavelength
(triangles, dashed lines) weak directions that falls in the
quadrant containing (a) perpendicular or (b) parallel to the
seismic fast axis.

Table A1. Forcing (�F) and Restoring (�R) Density Contrasts,

Interface Deflections (N), and Equilibrium (L) and Initial (I)

Applied Topography for Loading on Interface i

i �F �R L(k) N(k) I(k)

1 �1 �2 + �3 1H W2 = W3 1H � W2

2 �2 �1 + �3 W2 2H W2 � 2H
3 �3 �1 + �2 W3 3H W3 � 3H
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the subsequent deflection of all other interfaces Wj 6¼i

(expressed identically at the surface as iH ) are related as

iH ¼ �Wi

�i

Dk4

g
þ
P
j6¼i

�j

" # ; i > 1: ðA6Þ

[64] For such subsurface loading scenarios, we get a
contribution to the gravity anomaly from the loading term,
�i2pGWie

�kzi. In addition, there is a contribution from the
deflections of the other interfaces, which, by assumption,
are all identical to iH, thus �j2pGiHe

kzj . The Bouguer
admittance thus becomes

Zi>1 ¼ 2pG
X
j6¼i;j>1

�je
�kzj � e�kzi

Dk4

g
þ
X
j6¼i

�j

" # !
; ðA7Þ

and the free-air admittance is given by Zi > 1 + 2pG�1.

A3. Predicting Coherence

[65] Combining equations (A4) and (A6) and Table A1,
the initial applied loads, Ii(k), relate to their surface expres-
sions, iH(k), as

1H ¼

Dk4

g
þ
P
i>1

�i

Dk4

g
þ
P
i

�i

0
B@

1
CAI1; ðA8Þ

iH ¼ � �i

Dk4

g
þ
P
j

�j

0
B@

1
CAIi ; i > 1: ðA9Þ

Note that to obtain the actual load (in Pa), Ii (which is
expressed in m) needs to be multiplied by g�i. The total
equilibrium topography resulting from different loading
processes is the sum of the individual iH, and the total
Bouguer anomaly by the sum of iGB = iHZi. For the
example of Figure 7, Figures 7a and 7b represent two levels
of loading, I1 and I2, and the equilibrium topography of
Figure 7c was obtained by adding equations (A8) and (A9).
The individual Bouguer anomaly contributions were
obtained from equations (A5) and (A7) and equations
(A8) and (A9). If the loading processes and the noise are
statistically uncorrelated [Forsyth, 1985], the coherence
square is obtained from

g2 ¼

P
i

iH kð Þj j2Zi

 �2

P
i

iH kð Þj j2
P
i

iH kð Þj j2Z2
i

: ðA10Þ

This paper focuses on the estimation of nonstationary g
2(r,

k), when spectral coherence varies spatially as well.

Appendix B: Spectral Windows and Wavelets

B1. Multiwindow and Multiwavelet Methods

[66] All multiple window or wavelet methods have in
common that a spectral estimate is made with each different
wavelet or window. The results are averaged.

[67] The qualities desired of a set of J direct spectral
estimators, Ŝj, j = 0 ! J � 1, of the spectral density, S, are
unbiasedness (equation (B1a)), a low estimation variance
(equation (B1b)), and the minimization of leakage from
adjacent wave vectors (equation (B1c)):

8k : E Ŝ kð Þ
� �

¼ S kð Þ; ðB1aÞ

lim
J!1

Var Ŝ kð Þ
� �

¼ 0; ðB1bÞ

8k0 6¼ k : Cov Ŝ k0ð Þ; Ŝ kð Þ
� �

¼ 0: ðB1cÞ

[68] In the following, for the clarity of the presentation we
will write the relations for 1-D signals, x(t), defined in the
time-frequency plane, (t, f ). For stationary signals, the
criteria represented by equations (B1a)–(B1c) are met by
a class of quadratic spectrum estimators [Mullis and Scharf,
1991] consisting of an average of J modified (windowed)
periodograms acting on data windowed by different tapers,
hj. The multitaper spectral estimate, ŜMT( f ), is defined as
[Thomson, 1982]

ŜMT fð Þ ¼ 1

J

XJ�1

j¼0

Z1
�1

hj tð Þx tð Þe�i2pf t dt

������
������
2

: ðB2Þ

Satisfying equation (B1a), the first moment of ŜMT is the
true spectrum, S, smoothed in frequency space by a kernel,
H, which is the average periodogram of the windowing
functions hj(t) [Percival and Walden, 1993]:

E ŜMT fð Þ
� �

¼ S fð Þ � H fð Þ: ðB3Þ

Frequency domain convolution is denoted by �. The
explicit form of the kernel function is

H fð Þ ¼ 1

J

XJ�1

j¼0

Z1
�1

hj tð Þe�i2pf t dt

������
������
2

: ðB4Þ

The desired (as per equation (B1b)) reduction of estimation
variance is obtained by the averaging of more than one
direct spectral estimate, while the requirements contained in
equation (B1c) can be met by an appropriate choice of the
windowing functions hj(t) (see Appendix B2).
[69] For the estimation of nonstationary spectra, we must

first introduce three time-frequency distributions [Mallat,
1998]. They are the Wigner-Ville transform (PWV), the
windowed Fourier transform (PWF), and the wavelet trans-
form (PWT):

PWV x½ � t; fð Þ ¼
Z1
�1

x t þ t
2

� �
x t � t

2

� �
e�i2pf t dt;

PWF x½ � t; fð Þ ¼
Z1
�1

h t� tð Þx tð Þe�i2pf t dt;

PWT x½ � t; sð Þ ¼
Z1
�1

x tð Þ 1ffiffi
s

p y
t� t

s

� �
dt:

ðB5Þ
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Here, � is a real-valued wavelet, and s a scaling parameter
which can be thought of as a proxy for frequency [Kumar
and Foufoula-Georgiou, 1997]. The WV is a quadratic
energy distribution. It is the Fourier transform of a local
autocorrelation function. The energy density function
associated with the windowed Fourier transform is called
the spectrogram and given by

PWF t; fð Þj j2: ðB6Þ

The wavelet energy density function is termed the
scalogram and is given by

PWT t; sð Þj j2: ðB7Þ

In analogy with equation (B2), Bayram and Baraniuk
[1996] proposed a multitaper spectrogram, ŜWF(t, f ):

ŜWF t; fð Þ ¼ 1

J

XJ�1

j¼0

Z1
�1

x tð Þhj t� tð Þe�i2pf t dt

������
������
2

: ðB8Þ

On the other hand, Lilly and Park [1995] proposed
a multiwavelet scalogram, ŜWT(t, s), to estimate S(t, f ):

ŜWT t; sð Þ ¼ 2

J

XJ�1

j¼0

x tð Þ � 1ffiffi
s

p yj

�t

s

� �����
����
2

: ðB9Þ

Note that we have rewritten the continuous wavelet
transform as a convolution with the time-reversed wavelet.
The parallelism between equations (B9) and (B3) can be
extended as follows: the time-varying spectrum, S(t, f ), is
the expectation of the WV [Mallat, 1998]:

S t; fð Þ ¼ E PWV t; fð Þf g: ðB10Þ

Both the scalogram and the spectrogram are members of a
Cohen’s [1989] class: they can be obtained by time-
frequency or time-scale (affine) smoothing of the WV
[Rioul and Flandrin, 1992; Frazer and Boashash, 1994].
For any such estimator Ŝ,

Ŝ ¼ PWV x½ � � � 1

J

XJ�1

j¼0

PWV hj
� �

: ðB11Þ

Consequently, the expectation of either equation (B8) or
(B9) is the true spectrum, S, smoothed by a kernel which is
the average WV of the windowing functions hj(t) or
wavelets yj(t). Convolution in time is denoted by � and
frequency or scale domain convolution by �. Comparing
equations (B10) and (B11) with equation (B3), we see that
the WV takes the role of the periodogram in stationary
spectrum analysis. The properties of the WVof the wavelets
(see section 3.1) or windows (see section 3.2) used
determine the distortion of the estimate with respect to the
true properties.

B2. Stationary Spectral Analysis

[70] Slepian [1978] discovered that windowing functions
hj(t) could be found that, notwithstanding the finite data

length, are optimally concentrated in the frequency domain.
Their narrow central lobe and low sidelobe level assure low
bias and leakage, while their multiplicity reduces the
variance of the estimate when used as in equation (B2).
[71] It is straightforward to see how a finite data length, T,

implies the action of a time projection operator T:

T h tð Þf g ¼ h tð ÞRT=2
�T=2 tð Þ; ðB12Þ

where R�T/2
T/2 denotes a boxcar function of length T. A low-

pass projection within a bandwidth W is achieved by the
operator L [Flandrin, 1988]:

L h tð Þf g ¼
Z W=2

�W=2

ĥ fð Þei2pft df : ðB13Þ

As is easily shown, the combined effect of both operators is

TL h tð Þf g ¼
Z T=2

�T=2

sinpW t � tð Þ
p t � tð Þ h tð Þ dt: ðB14Þ

The Shannon number, TW, is the number of optimally
concentrated windows hj(t) that can be found as the
eigenfunctions of equation (B14). These hj(t) are known as
prolate spheroidal wave functions (pswf) or Slepian
functions [Slepian, 1983]. In our previous paper [Simons
et al., 2000], we have outlined their properties, and for more
information we refer to Percival and Walden [1993].

B3. Timescale Analysis

[72] By construction, the spectral windows H( f ) associ-
ated with the pswf hj(t) are low-pass filters concentrated in
a domain j f j � W/2. As shown by Lilly and Park [1995],
wavelets are obtained when equation (B14) is rewritten to
find band-pass filters centered around a frequency fc as j f �
fcj � W/2. From symmetry considerations (compare with
equation (B14)), they are the eigenfunctions of

ZT=2
�T=2

sin 2p fc þW=2ð Þ t � tð Þ
p t � tð Þ � sin 2p fc �W=2ð Þ t � tð Þ

p t � tð Þ

� �
y tð Þ dt

ðB15Þ

The Shannon number is now 2TW. (The factor of 2 arises
from using both positive and negative frequency intervals in
the optimization condition; it is also present in equation
(B9)). The 2TW solutions yj(T, fc, W; t) are indeed wave-
lets: they are asymptotically self-similar, and as their length
increases their sensitivity shifts to lower frequencies and
smaller bandwidths. Lilly and Park [1995] have called them
Slepian wavelets. Examples of their usage are shown by
Bear and Pavlis [1997, 1999].

B4. Statistics of Multiwindow Coherence Estimates

[73] The statistics of coherence square estimators have
been studied extensively [e.g., Carter, 1987; Thomson and
Chave, 1991]. Munk and Cartwright [1966] and Bendat
[1978] derive ad hoc expressions for the bias and variance
of the estimator ĝ2. If ĝ2 is calculated as the average of J
uncorrelated direct estimates (such as the expression in
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equation (B8)), its first and second moments can be
expressed in terms of the true coherence square function
g
2 as

E ĝ2
� �

¼ g2 þ 1� g2ð Þ2

J
; ðB16Þ

s2 ĝ2
� �

¼ 2g2
1� g2ð Þ2

J
: ðB17Þ

[74] Munk and Cartwright [1966] and Bendat [1978] do
not agree on the expression for equation (B16), but as we
state it, equation (B16) constitutes the best approximation of
the exact expressions of Carter et al. [1973] and Touzi et al.
[1999] (see Figures B1a and B1b). Equation (B16) implies
the estimate is positively biased. The bias is accentuated for
low coherences based on few estimates. The effect of the
overestimation of the coherence, which, with traditional
windowed periodogram methods, occurs mostly in the
long-wavelength range of the spectrum, motivated Simons
et al. [2000] to reevaluate the single-taper Australian
coherence measurements by Zuber et al. [1989] with a
multiple-taper technique. The more tapers are included in
the calculation of the spectrogram, the lower the variance of
the estimate. However, as we have seen, the �1/J decrease
in the estimation variance is achieved at the expense of
widening the concentration region R =

ffiffiffi
J

p
, which degrades

the spectral resolution. The individual estimates based on
data windowed with orthonormal windows are indeed all
approximately uncorrelated, as long as the frequency is not
too close to 0 or the Nyquist frequency, the number of tapers
is less than the Shannon number, and furthermore, if the true
spectral density function is smoothly varying [Thomson,
1982; Percival and Walden, 1993; Walden et al., 1994].
[75] The approximate result stated in equation (B17) is a

Cramer-Rao lower bound on the variance which is asymp-
totically achieved by maximum likelihood estimates [Sey-

mour and Cumming, 1994; Touzi et al., 1999]. Exact
expressions for bias and variance are based on distribution
theory [Carter et al., 1973; Touzi et al., 1996]. The
distribution functions for the coherence square estimator
of two Gaussian processes are complicated expressions
involving gamma functions and generalized hypergeometric
functions. Some approximations are given by Walden
[1990b]. The validity of these expressions has been verified
experimentally in Monte Carlo experiments [Guarnieri and
Prati, 1997].
[76] We compare the exact and the approximate (Cramer-

Rao) expressions for the bias (plotted in Figures B1a and
B1c) and standard deviation (Figures B1b and B1d) of the
coherence-square estimate in function of the number of
uncorrelated estimates, J. Note that, in two dimensions, a
concentration radius of R = 3 gives rise to J = R2 tapers per
dimension, which amounts to J = R4 approximately uncor-
related spectral estimates from which the coherence func-
tion is calculated.
[77] From Figure B1 we conclude the following. First, our

estimates based on several approximately uncorrelated
tapered estimates are nearly unbiased, and this holds for all
coherence values and for all regions in the wave vector
plane. There is no need for a bias correction, as needed for
mirrored or single-window estimates [Munk and Cartwright,
1966; Zuber et al., 1989]. Second, when basing our estimates
on nine different windowing functions in each of two
dimensions (leading to 81 two-dimensional windows), we
may safely quote the easily computed approximate error of
equation (B17), calculated with the coherence-square esti-
mate instead of the true, unknown, coherence-square func-
tion. As a cautionary note, we add that even when formal
error estimates are available, the significance of our results
has to be assessed by experiments on the data, as described
in the text.
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Figure B1. Bias and variance of coherence square estimates with multiwindow methods. (a)
Expectation and (b) standard deviation of the estimator ĝ2 in function of the true g

2, from distribution
theory. (c) Approximate expectation and (d) standard deviation of ĝ2 used in this paper.
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Lenardic, A., L. Moresi, and H. Mühlhaus, The role of mobile belts for the
longevity of deep cratonic lithosphere: The crumple zone model, Geo-
phys. Res. Lett., 27, 1235–1238, 2000.

Lilly, J. M., and J. Park, Multiwavelet spectral and polarization analyses of
seismic records, Geophys. J. Int., 122, 1001–1021, 1995.

Liu, P. C., Wavelet spectrum analysis and ocean wind waves, in Wavelets in
Geophysics, edited by E. Foufoula-Georgiou and P. Kumar, pp. 151–166,
Academic, San Diego, Calif., 1994.

Liu, T.-C., and B. D. van Veen, Multiple window based minimum variance
spectrum estimation for multidimensional random fields, IEEE Trans.
Signal Process., 40, 578–589, 1992.

Lowry, A. R., and R. B. Smith, Flexural rigidity of the Basin and Range-
Colorado Plateau-Rocky Mountain transition from coherence analysis of
gravity and topography, J. Geophys. Res., 99, 20,123–20,140, 1994.

Lowry, A. R., and R. B. Smith, Strength and rheology of the western U.S.
Cordillera, J. Geophys. Res., 100, 17,947–17,963, 1995.

Mainprice, D., and P. G. Silver, Interpretation of SKS-waves using samples
from the subcontinental lithosphere, Phys. Earth Planet. Inter., 78, 257–
280, 1993.

Mallat, S., A Wavelet Tour of Signal Processing, Academic, San Diego,
Calif., 1998.

McKenzie, D. P., and C. Bowin, The relationship between bathymetry and
gravity in the Atlantic Ocean, J. Geophys. Res., 81, 1903–1915, 1976.

McKenzie, D. P., and J. D. Fairhead, Estimates of the effective elastic
thickness of the continental lithosphere from Bouguer and free air gravity
anomalies, J. Geophys. Res., 102, 27,523–27,552, 1997.

Meissner, R., W. D. Mooney, and I. Artemieva, Seismic anisotropy and
mantle creep in young orogens, Geophys. J. Int., 149, 1–14, 2002.

Mellors, R. J., F. L. Vernon, and D. J. Thomson, Detection of dispersive
signals using multitaper dual-frequency coherence, Geophys. J. Int., 135,
146–154, 1998.

Meredith, R. W., Coherence estimation for high-frequency narrowband cw
pulsed signals in shallow water, J. Acoust. Soc. Am., 106, 828–836, 1999.

Mullis, C. T., and L. L. Scharf, Quadratic estimators of the power spectrum,
in Advances in Spectrum Analysis and Array Processing, edited by
S. Haykin, vol. 1, pp. 1–57, Prentice-Hall, Old Tappan, N. J., 1991.

Munk, W. H., and D. E. Cartwright, Tidal spectroscopy and prediction,
Philos. Trans. R. Soc. London, Ser. A, 259, 533–581, 1966.

Myers, J. S., R. D. Shaw, and I. M. Tyler, Tectonic evolution of Proterozoic
Australia, Tectonics, 15, 1431–1446, 1996.

Nicolas, A., and J.-P. Poirier, Crystalline Plasticity and Solid State Flow in
Metamorphic Rocks, John Wiley, New York, 1976.

ETG 8 - 20 SIMONS ET AL.: LOCALIZATION OF ISOSTATIC COHERENCE ANISOTROPY



Olhede, S., and A. T. Walden, Generalized morse wavelets, IEEE Trans.
Signal Process., 50, 2661–2670, 2002.
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