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ABSTRACT

We pose and solve the analogue of Slepian’s time-frequency concen-
tration problem for vector fields on the surface of the unit sphere, to
determine an orthogonal family of strictly bandlimited vector fields
that are optimally concentrated within a closed region of the sphere
or, alternatively, of strictly spacelimited functions that are optimally
concentrated in the vector spherical harmonic domain. Such a ba-
sis of simultaneously spatially and spectrally concentrated functions
should be a useful data analysis and representation tool in a vari-
ety of geophysical and planetary applications, as well as in medical
imaging, computer science, cosmology, and numerical analysis.

Index Terms— Spherical vector fields, spatiospectral concen-
tration, prolate spheroidal wave functions

1. INTRODUCTION

Functions cannot be simultaneously bandlimited and spacelimited
to a region of interest. It is possible, however, to design functions
that are bandlimited, but optimally concentrated with respect to their
spatial energy inside the target region.

In a classic series of papers published in the 1960s, Slepian, Lan-
dau, and Pollak solved a fundamental problem in information the-
ory, namely, that of optimally concentrating a given signal in both
the time and frequency domains [1, 2, 3, 4]. The orthogonal fam-
ily of data windows, or tapers, that arise in this context, and their
discrete and multidimensional extensions, are used in the multitaper
method of spectral analysis, which has enjoyed application in a wide
range of physical, computational, and biomedical disciplines, and
form the basis for function representation, approximation interpola-
tion, and extension. Time-frequency and time-scale concentration in
more general settings and a variety of geometries has subsequently
been studied by several authors [5, 6].

A similar concept was brought to the sphere in terms of scalar
spherical functions that are spatially concentrated while bandlim-
ited [7, 8, 9, 10]. Since then, “Slepian functions” have been ap-
plied in fields as diverse as geodesy, geomagnetism, gravimetry, geo-
dynamics, biomedical science, planetary science, and cosmology.
Here we present the beginnings of a complete extension of Slepian’s
spatiospectral concentration problem to vector fields on the sphere,
whereby we note that the first successful attempts at constructing
spatially concentrated bandlimited tangential spherical vector fields
have come from the field of magnetoencephalography [11, 12].

2. PRELIMINARIES

We denote the colatitude of spherical points r̂ by 0 ≤ θ ≤ π and the
longitude by 0 ≤ φ < 2π. The unit vector pointing outwards in
the radial direction will be denoted by r̂, and the unit vectors in the
tangential directions towards the south pole and towards the east will

be denoted by θ̂ and φ̂, respectively. We use R to denote a region
of the unit sphere Ω, of area A =

∫
R
dΩ, within which we seek to

concentrate a bandlimited vector field. The region may consist of a
number of unconnected subregions, R = R1 ∪R2 ∪ . . . , and it may
have an irregularly shaped boundary. The region complementary
to R will be denoted by Ω \R.

Restricting our attention to real-valued vector fields, we use real
vector spherical harmonics, which are constructed from their scalar
counterparts. Each scalar spherical harmonic Ylm has a degree 0 ≤ l
and, for each degree, an order−l ≤ m ≤ l. We choose our spherical
harmonics to be unit-normalized in the sense [13]. From the scalar
spherical harmonics we construct the vector spherical harmonics as

Plm = r̂Ylm,

Blm =
∇1Ylm√
l(l + 1)

=
[θ̂∂θ + φ̂(sin θ)−1∂φ]Ylm√

l(l + 1)
, (1)

Clm =
−r̂×∇1Ylm√

l(l + 1)
=

[θ̂(sin θ)−1∂φ − φ̂∂θ]Ylm√
l(l + 1)

,

where again 0 ≤ l are the degrees and −l ≤ m ≤ l the orders. The
Plm span the radial components and Blm and Clm the tangential
components of the spherical vector field.

The expansion of a real bandlimited vector field g(r̂) on the unit
sphere Ω can be written in this basis as

g =

L∑
lm

UlmPlm + VlmBlm +WlmClm, (2)

where
∑L
lm :=

∑L
l=0

∑l
m=−l whenever Plm or Ulm are involved

and
∑L
lm :=

∑L
l=1

∑l
m=−l for Blm, Clm, Vlm or Wlm. The

radial and tangential expansion coefficients Ulm, Vlm and Wlm are
collected in the spectral vector g. The bandwidth is L.

3. SPATIAL CONCENTRATION

To maximize the spatial concentration within a region R of a band-
limited vector field g(r̂), we maximize the ratio

λ =
‖g‖2R
‖g‖2Ω

=

∫
R

(g · g) dΩ∫
Ω

(g · g) dΩ

. (3)

The variational problem (3) is analogous to the one-dimensional
problem [1] and the scalar spherical problem [7]. Here, as there,
the ratio 0 < λ < 1 is a measure of the spatial concentration. The
maximization of (3) is equivalent to requiring that

λ =
gTKg

gTg
= maximum, (4)
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whereby the spectral-domain matrix

K =

P 0 0
0 B D
0 DT C

 (5)

is composed of the matrix entries defined by

Blm,l′m′ :=

∫
R

Blm ·Bl′m′ dΩ, (6)

Clm,l′m′ :=

∫
R

Clm ·Cl′m′ dΩ, (7)

Dlm,l′m′ :=

∫
R

Blm ·Cl′m′ dΩ. (8)

Problem (4) can be solved by satisfying

Kg = λg. (9)

Hence we can construct optimally concentrated functions using
the coefficients obtained from (9) in the manner of (2). Since the op-
timization problem for the radial components is decoupled from the
tangential optimization problem, it is possible to solve the two inde-
pendently. The radial concentration problem is exactly equivalent to
the scalar optimization problem on the sphere [7].

Solving the eigenvalue problem (9) does not only return the best-
concentrated function associated with the largest eigenvalue, but an
entire orthogonal basis equivalent to the bandlimited set of vector
spherical harmonics, if we solve for all eigenvalues. The new ba-
sis of vector-valued Slepian functions can be ordered with respect
to their energy concentration inside the region of interest. Usually,
there is a number of well-concentrated (λ ≈ 1) Slepian functions,
followed by a transition to a number of Slepian functions that focus
almost exclusively on the complement of the region (λ ≈ 0). The
number of well-concentrated Slepian functions can be approximated
by the “Shannon number”, (L + 1)2A/(4π) for the radial problem
and [2(L+ 1)2− 2]A/(4π) for the tangential problem [Plattner and
Simons, manuscript in preparation].

4. VECTOR SLEPIAN FUNCTIONS

In the special case of spherical polar caps the entries of the ker-
nel K in (5) have analytic expressions. Additionally, the matrix K
assumes a block-diagonal shape. Each pair of vector spherical har-
monic orders ±m leads to two blocks and the maximum block size
is 2L × 2L. Hence the eigenvalue problem can be solved very ef-
ficiently. Figure 1 shows such an example, of a spherical polar-
cap vector Slepian function for maximum degree L = 18, orders
m = ±1 and a cap opening angle of Θ = 40◦.

For more general regions, as for example Earth’s continents, the
matrices B, C and D can no longer be assembled analytically due
to their irregular shape. However, the decoupling of the radial and
tangential problems still holds.

Figure 2 shows the ten best-concentrated tangential Slepian
functions for Africa, with bandlimit L = 18. Figure 3 shows the
concentration values λ for tangential Slepian functions constructed
for a series of regions on Earth and for two different bandwidths L.
With the tangential Slepian functions, each concentration value
appears twice. Both Slepian functions associated with this concen-
tration value share the same intensity pattern and their directions are
pointwise perpendicular.

λ
1
 =1.000; m = ±1 λ

1
 =1.000; m = −1

Fig. 1. Bandlimited tangential Slepian function g(θ, φ), of spherical
harmonic orders m = ±1, optimally concentrated within a polar
cap of radius Θ = 40◦. The dashed circle denotes the cap boundary.
The bandwidth is L = 18. The color denotes the absolute value
of the vector field, ranging from white for values below 1% of the
maximum to red for the maximum value. The direction of the field
is indicated by open circles and accordingly oriented strokes.

5. LOCALIZATION OF GLOBAL FIELDS

In order to demonstrate the spatial focusing capabilities of the band-
limited spatially optimized vector Slepian fields, we reconstruct a
global tangential vector field, u, by approximating it with fields v
that use an increasing number, J , of vector Slepian functions

v =

J∑
α=1

uαgα, (10)

where the coefficients uα are obtained by forming the inner product
of u with the α best-concentrated vector Slepian functions gα. The
error over the domain, and the leakage to its complement, defined by

error =

√
‖u− v‖2R
‖u‖2R

, bias =

√√√√‖v‖2Ω\R
‖u‖2Ω\R

, (11)

are used to assess the performance of the reconstruction. The er-
ror shows how far the reconstruction using only a limited number of
Slepian fields strays from perfectly representing the original func-
tion; it decreases with increasing J . The bias captures the amount of
bleeding into the complement to the domain R. It increases as the
number of Slepian functions used gets larger. Our goal is to obtain a
small reconstruction error within the region R while simultaneously
keeping the outside leakage bias small.

Figure 4 shows the outcome of such an experiment conducted
on a geophysical data set (the NGDC-720-V3 terrestrial crustal field
model). The upper panel of Figure 5 shows the input tangential field
expanded in all harmonics up to degree L = 72. The lower panel
shows the reconstruction using the 924 best-concentrated tangential
vector Slepian functions.
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Fig. 2. Ten tangential Slepian functions, g1, g2, . . . , g10, bandlim-
ited to L = 18, optimally concentrated within Africa. The concen-
tration factors λ1, λ2, . . . , λ10 are indicated. The rounded Shannon
number is N = 42. Order of concentration is left to right, top to
bottom. Intensity and direction are rendered as in Figure 1.
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Fig. 3. Eigenvalue spectra for the tangential concentration problem
to various continental regions. Two different bandwidths are con-
sidered, L = 6 (upper panel), and L = 18 (lower panel). The
horizontal axis in each panel is truncated; the total number of eigen-
values 2(L+1)2−2 = 96, or 720, appears to the right of the arrow.
Vertical grid lines and the five leftmost ordinate labels specify the
rounded tangential Shannon numbers.
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Fig. 4. Reconstruction error and bias over Africa, as defined in (11),
versus the number of vector Slepian functions used to describe the
global vector field shown in the upper panel of Figure 5, quoted as a
multiple of the Shannon number, N = 620.
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Fig. 5. A tangential geophysical vector field (top panel) and its
reconstruction (bottom panel) using vectorial Slepian functions de-
signed to maximize their spatial concentration in Africa. The band-
limit for both the original field and the Slepian basis, L = 72. There
thus are 10656 vectorial basis functions in the original field, and the
same number of Slepian functions from which to choose for the re-
construction. The bottom panel shows a reconstruction using the
924 best-concentrated Slepian functions for Africa. The error and
bias over Africa, as defined in (11), are 0.4% and 14%, respectively.
The Shannon number N = 620.

6. CONCLUSIONS

Vectorial Slepian functions on the sphere are an emerging tool for
the analysis and representation of essentially space- and bandlimited
vector-valued functions on the surface of the unit sphere. In this con-
tribution we have sketched the key elements in their construction,
shown various examples, and suggested their use in the construc-
tive approximation of vectorial signals on the sphere, as may arise,
for instance, in the fields of geophysics and planetary science. We
expect that the impact of vectorial Slepian functions on multidimen-
sional vectorial signal processing will be as profound as the classical
prolate spheroidal wave functions have been, and continue to be, in
the study of time series, and this in a wide variety of scientific and
engineering fields.
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