
On the importance of horizontal components in 
source-encoded elastic full-waveform inversion: 
Multicomponent ocean-bottom-node data

Abstract
Elastic full-waveform inversion (EFWI) is a state-of-the-art 

seismic tomographic method. Recent advances in technology and 
instrumentation, combining crosstalk-free source-encoded FWI 
(SE-FWI) with multicomponent marine data acquisition using 
ocean-bottom nodes (OBNs), enable full-physics wave propagation 
and parameter inversion without the computational burden of 
traditional FWI. With OBN acquisition, P waves, S waves, and 
P-to-S conversions are recorded. It is not well understood to what 
extent adding horizontal components to SE-FWI improves the 
resolution of subsurface modeling. We assess their potential for 
the reconstruction of shear and compressional wave speeds (VP  
and VS) by using a synthetic data set modeled after a recently 
acquired OBN survey in the North Sea. We perform synthetic 
inversion tests to design suitable strategies that leverage the 
information recorded in the horizontal components of the data 
to improve the reconstructed model resolution laterally and in 
depth. We advocate for a hierarchical inversion approach to recover 
the elastic parameters. We exploit the P and P-to-S converted 
waves recorded on the horizontal components to robustly recon-
struct both VP and VS. Adding horizontal components to the 
SE-FWI modeling workflow results in improved spatial resolution, 
enhanced depth coverage, and more accurate elastic wave speed 
estimates.

Introduction
Full-waveform inversion (FWI) is a method used to obtain 

high-resolution descriptions of the physical properties of the 
subsurface. Introduced by Lailly and Bednar (1983) and Tarantola 
(1984), FWI seeks to minimize the differences between synthetic 
and observed data by using an adjoint-state formalism (Tromp et 
al., 2005; Plessix, 2006). Although FWI has been successfully 
applied at the exploration, regional, and global scales, the technique 
is still computationally expensive, scaling linearly with the number 
of seismic sources in the data set. Source “encoding” alleviates 
this issue by combining multiple sources in a single super simula-
tion. Naive approaches introduce crosstalk between the sources, 
which is detrimental to the quality of the images (Romero et al., 
2000; Krebs et al., 2009). Recent source-encoding strategies, 
developed for the discrete-time Fourier domain, become crosstalk-
free after the wavefield reaches steady state (Schuster et al., 2011; 
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Zhang et al., 2018; Tromp and Bachmann, 2019). Because source-
encoded FWI (SE-FWI) in the spectral domain complicates time 
windowing to isolate specific seismic arrivals, Liu et al. (2024) 
proposed a Laplace-domain source-encoding strategy that damp-
ens specific arrivals at a specific rate, gradually feeding later arrivals 
into the inversion.

Ocean-bottom nodes (OBNs) have become the high-end 
acquisition method in marine seismic exploration. Compared to 
classic streamer surveys, OBNs can record high-quality four-
component data (pressure and particle velocity) at longer offsets 
and over wider azimuths (Zhang et al., 2021). Despite these 
advantages, it is still common practice in FWI to only use the 
pressure and the vertical particle motion of the seismic wavefield 
(Solano and Plessix, 2023). Such data restriction is often used to 
justify using the acoustic approximation to reduce nonlinearity 
and computational cost (Pratt, 1999; Operto et al., 2015). However, 
more realistic descriptions of the physical properties of the sub-
surface are needed, particularly due to the rising complexity of 
reservoir targets. In this study, we apply elastic SE-FWI in a 
marine environment using a multicomponent OBN synthetic data 
set (see also Cho et al. [2022]), mimicking a realistic OBN survey 
in the North Sea. We perform different synthetic inversion tests 
to design suitable strategies to leverage the information recorded 
in the horizontal components of the data (in particular, S waves 
and P-to-S conversions) and to improve the reconstructed model 
resolution laterally and in depth. We qualitatively and quantita-
tively analyze the resolution improvement of the elastic model 
parameters.

Methodology
In this section, we briefly summarize the theory behind 

SE-FWI and discuss our inversion workflow.
Source encoding in the Fourier domain. With SE-FWI, we 

aim to find a model m that minimizes the difference between the 
Fourier coefficients of observed data and synthetics, using a suitable 
metric to reduce cycle skipping and other nonlinearities of the 
inverse problem. Following Tromp and Bachmann (2019) and 
Bachmann and Tromp (2020), a certain data functional 
Φ[s s

i(xr,ωs;m),d s
i(xr,ωs)] measures the difference between Fourier 

coefficients at a single frequency ωs of observed d s
i(xr,ωs) and 

simulated data s s
i(xr,ωs;m) on the i th of Nc components, counting 
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s = 1,...,S sources and r = 1,...,R receivers. The misfit functional 
sums over sources, receivers, and components:

 χ =  1 _ 2   ∑ s=1  S    ∑ r=1     Φ [ s  i  s  ( x  r  ,  ω  s  ; m) ,  d  i  s  ( x  r  ,  ω  s  ) ]    .               (1)

We follow different workflows to process data and synthetics. 
We Fourier transform the observed data d s

i(xr,t) for all labeled 
sources s, receivers r, and components i:

   d  i  s  ( x  r   ,  ω  s  )  =  ∫ 0  T   d  i    ( x  r  , t)   e   −i ω  s    dt,                    (2)

where T is any time greater than the time Tss after which the 
Fourier or Laplace coefficients reach steady state. In general, we 
take the largest Tss across the data set. To compute the synthetic 
data and extract their Fourier coefficients, we use a superposition 
of monochromatic sources with a frequency ωs. These sources are 
combined into a super forward simulation of a seismic wavefield 
s s

i(xr,t ;m) that reaches steady state after Tss. The orthogonality of 
the Fourier basis functions over the finite duration:

 Δτ =   2π _ Δω  =   2π (S)  _  ω  max   −  ω  min  
  ,                          (3)

defined by the number of encoding sources S and the bandwidth 
[ωmin,ωmax], and ensures extraction of the individual Fourier coef-
ficients over the time interval [Tss, Tss + Δτ]: 

  s  i  s   ( x  r   ,  ω  s   ; m)  =   2 _ Δω   ∫  T  ss  
   T  ss  +Δτ   s  i  s  ( x  r   , t ; m)   e   −i ω  s   t  dt  .                (4)

Here, ωs = ωmin + (s − 1)Δω is evenly spaced and uniquely assigned 
to each source s in the super forward simulation. With those, we 
compute the adjoint source-time function for the chosen measure 
Φ, and hence the variation of the misfit functional χ with respect 
to the model parameters    ∂ χ _ ∂ m  . The combination of super forward 
and super adjoint simulations, at randomized frequencies as the 
iterations progress, ultimately incorporates information from all 
sources and stations in the data set over the entire bandwidth. 
The time to reach steady state Tss depends on the spatial dimension 
of the domain and the seismic wavespeeds within it (Bachmann 
and Tromp, 2020; Cui et al., 2023). We determine the steady-state 
time of the simulation by running a super forward simulation and 
monitoring the seismic energy of the wavefield. We assume that 
the simulation has reached steady state when the energy of the 
seismic wavefield has reduced by five orders of magnitude.

Source encoding in the Laplace domain. Although Fourier-
domain SE-FWI has been applied successfully in medical imaging 
and seismic exploration (Bachmann and Tromp, 2020; Liu et al., 
2024), two drawbacks arise. First, time-domain windowing for 
data selection is impossible in the frequency domain, and care 
must be taken not to violate Fourier orthogonality. Second, reach-
ing steady state may be challenging due to the size of the simulation 

domain, source and station geometry, or the recorded duration 
of the observed data.

These issues can be alleviated by switching to the Laplace 
domain. Source encoding for FWI in the Laplace domain is 
described in detail by Liu et al. (2024) and briefly summarized 
here. The Laplace coefficients for observed d s

i(xr,zs) and synthetic 
data ss

i(xr,zs) are computed similarly to equations 2 and 4, that is,

   d  i  s   ( x  r  ,  z  s  )  =  e   γ t  0  si    ∫ 0   T   d  i   ( x  r  , t)   e   − z  s    dt ,                    (5)

   s  i  s  ( x  r  ,  z  s   ; m)  =  e   γ t  0  si     2 _ Δτ   ∫  T  ss  
   T  ss  +Δτ   s  i  s  ( x  r  , t ; m)   e   − z  s  t  dt .       (6)

Here, zs = γ + iωs is the complex argument, and γ and ωs are 
real-valued. The Laplace coefficients induce an exponential damp-
ing function e−γ(t−t0), and γ is adjusted throughout the inversion, 
typically focusing on early arrivals before gradually decreasing to 
include later phases, in multiscale inversion fashion (Bunks et al., 
1995; Shin and Cha, 2009). Additionally, the damping factor γ 
reduces the time to reach steady state, decreasing the computational 
time of both forward and adjoint super simulations. The times  
t0

si  can be selected for each source-receiver pair to keep specific 
seismic wave types (e.g., converted waves, free-surface reflections, 
or surface waves) in order to reduce the nonlinearity of the inverse 
problem.

SE-FWI inversion workflow
Our inversion workflow is divided into the following steps:

1) Initial model building
2) Data preprocessing (Laplace coefficients at randomized 

frequencies)
3) Forward (super) simulation and adjoint-source computation 
4) Adjoint (super) simulation and gradient computation 
5) Postprocessing (regularization and model update)
Steps 2–5 are performed iteratively to minimize the misfit 
function.

Target model. To perform the numerical examples, we use a 
realistic model from the North Sea (Figure 1). The model is 16 
km long and 6 km deep, and seafloor depth is approximately 400 
m. Because the model was initially defined in terms of compres-
sional wave speed (VP), we employ an empirical relation to build 
shear wave speed (VS) and density (ρ) models (Gardner et al., 1974; 
Castagna et al., 1985). The empirical rules were approximated by 
borehole data in the region of study VS = 0.7263VP −728 and 
ρ = 0.33VP0.2525. There are two main target formations. The first 
is associated with interlayered sandstones and claystones at a depth 
of about 4000 m. This formation contains water, gas, and oil. The 
second formation is located at about 4225 m depth, saturated with 
gas and water. To simulate these geologic formations in our target 
model, we add VP and VS relative perturbations of ±10% and ±25% 
respectively, with respect to the background model. In Figure 2, 
we show a common receiver gather from the target model (hori-
zontal and vertical components). We observe the direct P-wave 
arrival, P-to-S conversions at the seafloor, and more complex 
events (reflections and refractions).

Initial model. The initial wave speed models are built by 
smoothing the true models with a 2D Gaussian function, with 
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vertical and horizontal standard deviation of about 250 m, resulting 
in a wavelength resolution of about 500 m (Figure 1). The water 
layer is considered to be known, to reduce any error in the fluid/
solid boundary condition, important for seismic amplitudes. To 
compare the initial and target models, 
we extract logs from the models at 10 
km horizontal distance (Figure 3).

Data preprocessing. We consider a 
multicomponent marine data acquisition 
using OBNs with a maximum offset of 
13 km, 10 OBNs spaced 1 km, and 150 
sources spaced 150 m. The depth of the 
pressure source is 10 m below the sea 
surface. The target data are simulated 
by a Ricker source wavelet with a domi-
nant frequency of 5 Hz. The frequency 
range of the simulations lies between 2 
and 9 Hz, and the record length for each 
shot is 10 s.

We transform the observed data to 
the Laplace domain, selecting a variable 
damping parameter γ through the inver-
sion, and t0

si   given by the first-break time 
for each source-receiver pair, computed 
using an average velocity and the dis-
tance from the source to the receivers.

Forward simulation. To compute 
the synthetic Laplace coefficients, we 
run a super forward simulation, in 
which we encode a randomly selected 
subset of sources. Each source is 
assigned to a specific frequency ωs 
within the available band in the fre-
quency range of the inversion, following 
a sinusoidal time function with ampli-
tude increasing exponentially according 
to the (un-) damping parameter γ. 

Because the number of OBNs is smaller than the number of 
sources, we use reciprocity to further reduce the computational 
cost. The duration of the simulation is the time to reach steady 
state Tss plus the decoding time Δτ, which depends on the 

Figure 1. (a) VP target model. (b) VP initial model. (c) VS target model. (d) VS initial model.

Table 1. Inversion stages for vertical component inversion.

Stage Data type Inversion 
parameters

Misfit Damping Iteration numbers Offset t 0
si Frequency Band

S1 Z VP χθ 1.1 s−1 250 3 s 2–5 Hz

S2 Z VP, VS χθ 0.6 s−1 100 4 s 2–5 Hz

S3 Z VP, VS χθ 0.6 s−1 100 5 s 2–9 Hz

S4 Z VP, VS χθ 0.3 s−1 300 5 s 2–9 Hz

Table 2.  [Caption needed].[Caption needed].

Stage Data type Inversion 
parameters

Misfit Damping Iteration numbers Offset t 0
si Frequency Band

S1 Z VP χθ 1.1 s−1 250 3 s 2–5 Hz

S2 Z VP, VS χθ 0.6 s−1 100 4 s 2–5 Hz

S3 X,Z VP, VS χθ 0.6 s−1 100 5 s 2–9 Hz

S4 X,Z VP, VS χθ 0.3 s−1 300 5 s 2–9 Hz
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frequency band and the number of sources (equation 3). In all 
the numerical experiments, we keep the same steady-state time 
Tss = 10 s and decoding time Δτ = 20 s. These specific parameters 
allow us to encode 140 sources simultaneously. For all simulations, 
we apply absorbing and free-surface boundary conditions around 
the domain and at the top, respectively.

Adjoint simulation. FWI is an ill-posed inverse problem, 
hence multiple models may fit the data, and its nonlinear nature 
requires a reliable starting model and a suitable metric to compare 
the observed and synthetic data to prevent cycle skipping and 
avoid getting stuck in local minima. To alleviate the nonlinearity, 
we separate phase and amplitude information. The phase misfit 
function is

 
  χ  θ   (m)  =  1 _ 2   ∑ s=1  S    ∑ r=1  R    ∑ i=1   N  c      w  rsi     { 

ℑ [ s  i  s  ( x  r  ,  z  s  ; m)  /  d  i  s  ( x  r  ,  z  s  ) ] 
  ____________  ℜ [ s  i  s  ( x  r  ,  z  s  ; m)  /  d  i  s  ( x  r  ,  z  s  ) ]  }    

2

     ,  (7)

and the amplitude misfit is

  χ  A   (m)  =  1 _ 2   ∑ s=1  S    ∑ r=1  R    ∑ i=1   N  c      w  rsi     log   [ | s  i  s  ( x  r  ,  z  s  ; m) |  /  | d  i  s  ( x  r  ,  z  s  ) | ]    2  . (8)

where the weight wrsi for each source-station pair and component 
helps improve the convergence rate and is chosen to balance the 
contributions of short and long offsets. Although we can combine 
phase and amplitude information, here we only use the phase 
information. The phase information is stable and less affected by 
errors in the source location and magnitude in realistic data 
inversions.

Postprocessing. To improve the convergence rate and ill-
posedness of FWI, we regularize the inversion in the model space. 
Therefore, we smooth the gradient of the misfit function by 
convolution with a 2D Gaussian gradient. The scale length is 
decided by the minimum length resolved by our simulations.

Numerical experiments
We conduct different synthetic experiments to evaluate the 

added contribution of the horizontal components in SE-FWI. We 
compare models derived by two-component inversion with those 
that use only one component. In all experiments, density is assumed 
to be known. No pressure channels are being considered.

Vertical-component inversion. We analyze the resolution and 
sensitivity of using only the vertical component of the data to 
invert for elastic subsurface parameters. We conduct an elastic 
SE-FWI using the phase misfit χθ of equation 7. For all experi-
ments, we perform the same number of iterations. For our mul-
tiscale strategy, in the first stage (S1), we use data in the frequency 
range of 2–5 Hz, increased by 0.06 Hz at each iteration. For the 
second stage (S2), we decrease the damping γ = 0.6 s−1 and 
increase the offset by the first-break time t 0

si ≤ 4s. This stage 
assimilates later arrivals and also allows for larger scattering-angle 
perturbations. In the third stage (S3), the frequency band is 
broadened to 2–9 Hz, and the first-break times t 0

si ≤ 5s. This 
bandwidth allows us to encode more sources in our simulation. 
Higher frequencies enable imaging smaller features. Finally, in 
the last stage (S4), we decrease γ = 0.3 s−1, allowing for later 
reflections from deeper structures.

For analysis and quality control of the models reconstructed 
after the inversion, we use two different metrics: the relative model 
error,

Figure 2. (a) Horizontal and (b) vertical common receiver gather of the target data.

Figure 3. Vertical profiles at 10 km inline distance. VP target (black line) and initial model 
(blue line). VS target (black dashed line) and initial model (blue dashed line).
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 ϵ (m)  =   1 _  N  m     ∑ i=1   N  m     
 | m  i  R  −  m  i  T |  _  m  i  T                              (9)

and the model correlation coefficient

  R(m) =   
 ∑ i=1   N  m     ( m  i  R  −  ‾  m   R  )  ( m  i  T  −  ‾  m   T  )  

   _________________   
 √ 
________________

    ∑ i=1   N  m      ( m  i  R  −  ‾  m   R  )    
2
   ∑ i=1   N  m      ( m  i  T  −  ‾  m   T  )    

2
    
     .              (10)

Here, mR is the reconstructed model parameter, mT is the target, 
and   ‾  m   R    and   ‾  m   T    is their respective means (for Nm the number of 
model mesh nodes). We compute both metrics for subregions 
within the model where the highest resolution is attained (dashed 
black square in Figure 4a). These are summarized in Figure 5.

In Figures 4b–4e, we show the models reconstructed (VP, VS) 
by using the vertical component of the data. The VP model is 

relatively well reconstructed at shallow depths (about 3 km), yet 
the model quality degrades with depth due to the spatial coverage. 
At 4–5 km depth, the model is only updated in the central part, 
recovering the high wave speed anomaly at this depth without 
reaching the correct magnitude and size. In the vertical profile 
shown in Figure 6a, the VP reconstruction appears sharp down 
to about 4 km depth, after which the resolution decreases due to 
the maximum offset restriction in the data (13 km), which results 
in a mispositioned reflector (about 5 km depth). The shear wave 
speed (VS) target perturbations are underestimated. As shown in 
Figure 6a, the perturbations are well located (1.5 km, 4–5 km 
depth), but their amplitudes are smaller than in the target model.

Vertical-and-horizontal-components inversion. To analyze the 
resolution improvement achieved by incorporating the horizontal 
components into the inversion, we now perform elastic SE-FWI 
using both components of the data. We follow a similar inversion 
workflow as the vertical component inversion (phase misfit, mul-
tiscale approach, and same number of iterations). In the first stage 
(S1), we use a damping term γ = 1.1 s−1, the vertical component, 
and update only the compressional wave speed. Also, to avoid cycle 

Figure 4. (a) VP target model. (d) VS target model. (b and e) VP and VS reconstructed models 
using the vertical components only. (c and f) VP and VS reconstructed models using both 
the vertical and horizontal components. Black dashed square depicts the region used to 
quantify the quality of the reconstructed models.

Figure 5. (a) Relative errors ϵ(m) for models reconstructed using only the vertical (Z) 
or both horizontal and vertical (XZ). Smaller values mean better model reconstruction. 
(b) Correlation coefficients R for models reconstructed. Larger values signify better 
reconstruction.

Figure 6. Vertical profiles at 10 km inline distance. (a) Target (black), initial (blue), and 
reconstructed (red) models of VP (solid) and VS (dashed) using vertical component inversion. 
(b) Target, initial, and reconstructed models using vertical and horizontal components. 
Arrows point to the principal model perturbations.
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skipping, we restrict the offset with a maximum first-break time 
t0

si ≤ 3s. In stage 2 (S2), we add the horizontal component to the 
inversion to include P-to-S conversions. Additionally, we update 
both the compressional and the shear wave speed in the inversion 
(VP, VS), reduce the damping (γ = 0.6 s−1) to include later arrivals, 
and increase the first-break time to     t0

si ≤ 4s. For stage 3 (S3), we 
widen the bandwidth of the inversion from maximum frequency 
5 to 9 Hz, and the break time to t0

si ≤ 5s. In the last stage (S4), we 
allow for later reflections from deeper structures.

Discussion
By leveraging OBN seismic data acquisition technologies and 

the efficiency of source encoding for FWI, we investigate the 
improvement in resolution of  (VP, VS) model reconstruction by 
incorporating horizontal components into our elastic SE-FWI 
workflow. The OBN’s horizontal components are sensitive to P and 
P-to-S converted waves. S waves travel at a different speed than P 
waves. They sample different regions of the subsurface and provide 
additional information in terms of the elastic parameters (Ji et al., 
2000; Bartana et al., 2024). We show that adding the horizontal 
component to the inversion improves the resolution for VP and VS 
models (Figures 4c–4f). Specifically, the VP model perturbations 
at 4–5 km are better resolvable by the two-component inversion 
compared to the one-component inversion (Figure 4c). Additionally, 
the two-component inversion shows better quality compared to 
the one-component inversion, as evidenced by the relative percentage 
error ϵ(m) and the correlation coefficient R(m) (Figures 5a and 5b). 
The oscillatory effect observed in the deepest (4–5 km) VP anomaly 
in the vertical component inversion (Figure 6a) is being corrected 
by adding the horizontal component to the inversion (Figure 6b). 
In the case of the VS model reconstruction, the vertical component 
inversion underestimates the magnitude of the anomalies. However, 
the main perturbations are well positioned at depth (about 4–5 km; 
Figure 6a). Conversely, while the two-component inversion under-
estimates the magnitude of model anomalies at both shallow and 
deep depths (Figures 4f and 6b), it provides a more accurate estimate 
compared to the one-component inversion.

Conclusion
Compared to traditional vertical component SE-FWI, incor-

porating the horizontal components in SE-FWI has shown better 
and more robust results in the reconstruction of the elastic param-
eters of the subsurface. The improvement in model resolution 
highlights the importance of shear seismic waves, which are 
recorded mainly on the OBN horizontal components (Sears et 
al., 2008; Bartana et al., 2024). However, to exploit this new 
information, suitable inversion strategies have to been designed. 
The main objective of the inversion strategies is to gradually 
assimilate the information. Specially, with multicomponent OBN 
seismic acquisition, the data are dominated by P waves, resulting 
in greater sensitivity to compressional wave speed than shear wave 
speed (Sears et al., 2008). Therefore, as we showed in our experi-
ments, inverting first for the VP structure using the vertical com-
ponent of the data, we can recover the long-wavelength perturba-
tions by fixed VS model, which acts as a second-order parameter 
in the inversion (Tarantola, 1984; Operto et al., 2013). Then, by 

gradually increasing the offset, it is possible to recover deeper 
anomalies in the model. Additionally, because at wide aperture 
angles the data are also sensitive to the shear wave speed perturba-
tions due to their diffraction radiation pattern, although to a lesser 
extent compared to VP (Tarantola, 1984; Sears et al., 2008; Operto 
et al., 2013), we jointly update the VS and VP parameters in S2. In 
S3 and S4, P-to-S converted phases are inverted by adding the 
horizontal component of the data in the inversion. This new 
information improves the VP and VS models by adding small-scale 
features. The increase in quality demonstrates the P-to-S wave 
sensitivity to high-wavenumber features in the model parameters, 
specifically to VS. Sears et al. (2008) have advocated for the use 
of horizontal components in ocean-bottom cable data to obtain 
VP and VS models. We have demonstrated the benefits of multi-
component OBN data in combination with source-encoded FWI 
and designed suitable inversion strategies for improving the resolu-
tion of reconstructed elastic parameters of the subsurface. The 
horizontal components of seismic data allow us to incorporate 
shear-wave information into FWI, resulting in a robust elastic 
model amenable to geologic interpretation. 
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