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Theme 2/26

“If we are to make progress in data

analysis, as it is important that we

should, we need to pay attention

to our tools and our attitudes.

If these are adequate, our goals

will take care of themselves.”

Tukey, 1962



Theme 3/26

“The greatest value of a picture is

when it forces us to notice what we

never expected to see.”

Tukey, 1962
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• Fast and flexible programming for exploratory data analysis

• Partially and noisily observed scalar and vector fields

• Suitable for time series, in the plane, on the sphere, and in the ball

Inverse problems, and spectral-estimation problems

1. Linear problems: given the data, what is their source?

d = G(m) + n → what is m?

2. Quadratic problems: what is the correlation structure of the source?

d = G(m) + n → what is 〈mTm〉?
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• Researchers, from students to experts, demand and deserve total control

• Readers, from colleagues to the layperson, require reproducible research

• Skeptics need the ability to question any and all assumptions

• Coders need modularity, flexibility, scalability, and transparency

• When data change, so must the model, and the interpretation — fast!

An article about [...] science in a scientific publication is not the scholarship

itself, it is merely advertising of the scholarship. The actual scholarship is

the complete software development environment and the complete set of

instructions which generated the figures.

Sussman & Wisdom, 2001
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Computational algorithms are used to communicate precisely [...]. Ex-

pressing the methods [...] in a computer language forces them to be un-

ambiguous and computationally effective. [...] Once formalized as a pro-

cedure, a mathematical idea becomes a tool that can be used directly to

compute results.

A growing number of tools lends itself to our goals.

$50 code, free book

Fomel & Claerbout, 2009
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18  //  Eos 1 April 2015

A Suite of Soft
Analyzes Data 
on the Sphere

(background) Scientists examine a canyon cut by meltwa-

ter on Greenland’s ice sheet. Studies show that Green-

land’s ice sheet is melting at a rapid rate, but how fast and 

where exactly? A newly released software suite that 

improves data analysis over small portions of a spherical 

planetary surface provides analytic and numerical tools to 

find out. Credit: Ian Joughin, APL/UWA. (right) Earth’s free-

air gravity anomaly (complete to spherical harmonic 

degree 90). Blue areas experience stronger gravitational 

attraction than red areas.

By Christopher Harig , Kevin W. Lewis, Alain Plattner,  

and Frederik J. Simons

18  //  Eos 1 April 2015 Earth & Space Science News Eos.org  //  19

t ware 
a 

Eos.org  //  19Earth & Space Science News

E
arth and planetary scientists frequently deal 

with data distributed over a spherical sur-

face, including measurements from orbiting 

satellites. Often, however, the area of interest 

is some specific region rather than the entire sphere. 

Scientists might have data that only cover parts of 

the sphere, or they may seek to extract a local signal 

from a global data set.

If an area is very small, it can be approximated as 

a flat surface. When the region under study is not

Harig et al., EOS 2015
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Spherical-harmonic synthesis and analysis: (inversion)

d(r) =
∑
lm

[slm + nlm]Ylm(r) ← estimate slm

Here, r can be a discrete collection of scattered points. Estimate is linear.

Linear combinations of spherical harmonics that
maximize energy in a region: Slepian functions: (optimization)

gα(r) =
∑
lm

gαlmYlm(r) ← find gαlm, maximize
R
R g

2
α dΩR

Ω g
2
α dΩ

Here, R can be a region of arbitrary geographical description.

Harig et al., EOS 2015
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Spherical-harmonic power-spectral density estimation:

d(r) =
∑
lm

[slm + nlm]Ylm(r) ← estimate var{slm} = Sl

Here, r is a densely sampled set of points locally available within R.

The low-variance, low-bias quadratic spectral estimate
is of the Thomson-Slepian-multitaper variety:

ŜMT
l =

∑
α

λα

(
1

2l + 1

∑
m

∣∣∣∣∫
Ω

gα(r) d(r)Ylm(r) dΩ

∣∣∣∣2
)
.

Harig et al., EOS 2015
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Time-dependent potential-field estimation
from noisy and incomplete data:

s(r, t) =
∑
lm

[slm + nlm](t)Ylm(r) ← estimate s(r, t)

The “data” from the GRACE satellites (at altitude), are a non-local

mixture [slm + nlm](t) from which, using the Slepian basis we ex-

tract the spatio-temporal signature of the source —

the time-dependent ice mass loss function (at the surface).

Harig et al., EOS 2015
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Harig & Simons, EPSL 2015
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Harig & Simons, EPSL 2015
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• Hello Earth! We are raising the next generation of geoscientists for

whom reproducible research and computer programming are a must

• Matlab is a tool to grow with students from their freshmen days to their profes-

sional academic environment — not the only language, but an excellent one

• We have embarked on a series of official GitHub releases of packages to

perform spatio-(temporal)-spectral estimation of spherical data:

• SLEPIAN Alpha: Spherical harmonics, Slepian functions

• SLEPIAN Bravo: Linear inverse problems

• SLEPIAN Charlie: Quadratic spectral estimation

• SLEPIAN Delta: Time-dependent estimation for GRACE satellite data
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A global basis, bad for local problems.

Simons et al., SPIE 2009
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