Gravity, Topography, Magnetics Geoscience Data Analysis

 in Spherical and Planar Geometry
Frederik J Simons

Princeton University

Christopher Harig
Princeton University

Kevin W. Lewis
Johns Hopkins University

Alain M. Plattner
Cal State Fresno

Theme

"If we are to make progress in data analysis, as it is important that we should, we need to pay attention to our tools and our attitudes. If these are adequate, our goals will take care of themselves."

Theme

"The greatest value of a picture is when it forces us to notice what we never expected to see."

- Fast and flexible programming for exploratory data analysis
- Fast and flexible programming for exploratory data analysis
- Partially and noisily observed scalar and vector fields
- Fast and flexible programming for exploratory data analysis
- Partially and noisily observed scalar and vector fields
- Suitable for time series, in the plane, on the sphere, and in the ball

Goals

- Fast and flexible programming for exploratory data analysis
- Partially and noisily observed scalar and vector fields
- Suitable for time series, in the plane, on the sphere, and in the ball

Inverse problems, and spectral-estimation problems

Goals

- Fast and flexible programming for exploratory data analysis
- Partially and noisily observed scalar and vector fields
- Suitable for time series, in the plane, on the sphere, and in the ball

Inverse problems, and spectral-estimation problems

1. Linear problems: given the data, what is their source?

Goals

- Fast and flexible programming for exploratory data analysis
- Partially and noisily observed scalar and vector fields
- Suitable for time series, in the plane, on the sphere, and in the ball

Inverse problems, and spectral-estimation problems

1. Linear problems: given the data, what is their source?

$$
\mathbf{d}=\mathcal{G}(\mathbf{m})+\mathbf{n} \quad \rightarrow \quad \text { what is } \mathbf{m} ?
$$

Goals

- Fast and flexible programming for exploratory data analysis
- Partially and noisily observed scalar and vector fields
- Suitable for time series, in the plane, on the sphere, and in the ball

Inverse problems, and spectral-estimation problems

1. Linear problems: given the data, what is their source?

$$
\mathbf{d}=\mathcal{G}(\mathbf{m})+\mathbf{n} \quad \rightarrow \quad \text { what is } \mathbf{m} ?
$$

2. Quadratic problems: what is the correlation structure of the source?

Goals

- Fast and flexible programming for exploratory data analysis
- Partially and noisily observed scalar and vector fields
- Suitable for time series, in the plane, on the sphere, and in the ball

Inverse problems, and spectral-estimation problems

1. Linear problems: given the data, what is their source?

$$
\mathbf{d}=\mathcal{G}(\mathbf{m})+\mathbf{n} \quad \rightarrow \quad \text { what is } \mathbf{m} ?
$$

2. Quadratic problems: what is the correlation structure of the source?

$$
\mathbf{d}=\mathcal{G}(\mathbf{m})+\mathbf{n} \quad \rightarrow \quad \text { what is }\left\langle\mathbf{m}^{\mathrm{T}} \mathbf{m}\right\rangle ?
$$

- Researchers, from students to experts, demand and deserve total control
- Researchers, from students to experts, demand and deserve total control
- Readers, from colleagues to the layperson, require reproducible research
- Researchers, from students to experts, demand and deserve total control
- Readers, from colleagues to the layperson, require reproducible research
- Skeptics need the ability to question any and all assumptions
- Researchers, from students to experts, demand and deserve total control
- Readers, from colleagues to the layperson, require reproducible research
- Skeptics need the ability to question any and all assumptions
- Coders need modularity, flexibility, scalability, and transparency
- Researchers, from students to experts, demand and deserve total control
- Readers, from colleagues to the layperson, require reproducible research
- Skeptics need the ability to question any and all assumptions
- Coders need modularity, flexibility, scalability, and transparency
- When data change, so must the model, and the interpretation - fast!
- Researchers, from students to experts, demand and deserve total control
- Readers, from colleagues to the layperson, require reproducible research
- Skeptics need the ability to question any and all assumptions
- Coders need modularity, flexibility, scalability, and transparency
- When data change, so must the model, and the interpretation - fast!

An article about [...] science in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship. The actual scholarship is the complete software development environment and the complete set of instructions which generated the figures.

Computational algorithms are used to communicate precisely [...]. Expressing the methods [...] in a computer language forces them to be unambiguous and computationally effective. [...] Once formalized as a procedure, a mathematical idea becomes a tool that can be used directly to compute results.

Computational algorithms are used to communicate precisely [...]. Expressing the methods [...] in a computer language forces them to be unambiguous and computationally effective. [...] Once formalized as a procedure, a mathematical idea becomes a tool that can be used directly to compute results.

A growing number of tools lends itself to our goals.

Tools

Computational algorithms are used to communicate precisely [...]. Expressing the methods [...] in a computer language forces them to be unambiguous and computationally effective. [...] Once formalized as a procedure, a mathematical idea becomes a tool that can be used directly to compute results.

A growing number of tools lends itself to our goals.

\$50 book, free code

Computational algorithms are used to communicate precisely [...]. Expressing the methods [...] in a computer language forces them to be unambiguous and computationally effective. [...] Once formalized as a procedure, a mathematical idea becomes a tool that can be used directly to compute results.

A growing number of tools lends itself to our goals.

\$50 code, free book

Pictures - 1a

Pictures - 1b

The original kernel

A suite of software: on GitHub and CSDMS

SLEPIAN_Alpha

Spherical-harmonic synthesis and analysis:

SLEPIAN_Alpha

Spherical-harmonic synthesis and analysis:
(inversion)

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r})
$$

SLEPIAN_Alpha

Spherical-harmonic synthesis and analysis:
(inversion)

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } s_{l m}
$$

SLEPIAN_Alpha

Spherical-harmonic synthesis and analysis:
(inversion)

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } s_{l m}
$$

Here, \mathbf{r} can be a discrete collection of scattered points. Estimate is linear.

SLEPIAN_Alpha

Spherical-harmonic synthesis and analysis:
(inversion)

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } s_{l m}
$$

Here, \mathbf{r} can be a discrete collection of scattered points. Estimate is linear.
Linear combinations of spherical harmonics that maximize energy in a region: Slepian functions:

SLEPIAN_Alpha

Spherical-harmonic synthesis and analysis:
(inversion)

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } s_{l m}
$$

Here, \mathbf{r} can be a discrete collection of scattered points. Estimate is linear.

Linear combinations of spherical harmonics that maximize energy in a region: Slepian functions:

$$
g_{\alpha}(\mathbf{r})=\sum_{l m} g_{\alpha l m} Y_{l m}(\mathbf{r})
$$

SLEPIAN_Alpha

Spherical-harmonic synthesis and analysis:
(inversion)

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } s_{l m}
$$

Here, \mathbf{r} can be a discrete collection of scattered points. Estimate is linear.

Linear combinations of spherical harmonics that maximize energy in a region: Slepian functions:

$$
g_{\alpha}(\mathbf{r})=\sum_{l m} g_{\alpha l m} Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { find } g_{\alpha l m}, \text { maximize } \frac{\int_{R} g_{\alpha}^{2} d \Omega}{\int_{\Omega} g_{\alpha}^{2} d \Omega}
$$

SLEPIAN_Alpha

Spherical-harmonic synthesis and analysis:
(inversion)

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } s_{l m}
$$

Here, \mathbf{r} can be a discrete collection of scattered points. Estimate is linear.
Linear combinations of spherical harmonics that maximize energy in a region: Slepian functions:

$$
g_{\alpha}(\mathbf{r})=\sum_{l m} g_{\alpha l m} Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { find } g_{\alpha l m}, \text { maximize } \frac{\int_{R} g_{\alpha}^{2} d \Omega}{\int_{\Omega} g_{\alpha}^{2} d \Omega}
$$

Here, R can be a region of arbitrary geographical description.

SLEPIAN_Bravo

A global basis, good for global problems.

SLEPIAN_Bravo

A global basis, bad for local problems.

SLEPIAN_Bravo

A local basis, good for local problems. Sparsity!

SLEPIAN_Charlie

Spherical-harmonic power-spectral density estimation:

SLEPIAN_Charlie

Spherical-harmonic power-spectral density estimation:

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r})
$$

SLEPIAN_Charlie

Spherical-harmonic power-spectral density estimation:

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } \operatorname{var}\left\{s_{l m}\right\}=S_{l}
$$

SLEPIAN_Charlie

Spherical-harmonic power-spectral density estimation:

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } \operatorname{var}\left\{s_{l m}\right\}=S_{l}
$$

Here, \mathbf{r} is a densely sampled set of points locally available within R.

SLEPIAN_Charlie

Spherical-harmonic power-spectral density estimation:

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } \operatorname{var}\left\{s_{l m}\right\}=S_{l}
$$

Here, \mathbf{r} is a densely sampled set of points locally available within R.

The low-variance, low-bias quadratic spectral estimate is of the Thomson-Slepian-multitaper variety:

SLEPIAN_Charlie

Spherical-harmonic power-spectral density estimation:

$$
d(\mathbf{r})=\sum_{l m}\left[s_{l m}+n_{l m}\right] Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } \operatorname{var}\left\{s_{l m}\right\}=S_{l}
$$

Here, \mathbf{r} is a densely sampled set of points locally available within R.

The low-variance, low-bias quadratic spectral estimate is of the Thomson-Slepian-multitaper variety:

$$
\hat{S}_{l}^{\mathrm{MT}}=\sum_{\alpha} \lambda_{\alpha}\left(\frac{1}{2 l+1} \sum_{m}\left|\int_{\Omega} g_{\alpha}(\mathbf{r}) d(\mathbf{r}) Y_{l m}(\mathbf{r}) d \Omega\right|^{2}\right) .
$$

SLEPIAN_Charlie

"Whole-sphere"

power spectral density

SLEPIAN_Charlie

"Continents-only"

power spectral density

SLEPIAN_Charlie

"Oceans-only"

power spectral density

Time-dependent potential-field estimation from noisy and incomplete data:

SLEPIAN_Delta

Time-dependent potential-field estimation from noisy and incomplete data:

$$
s(\mathbf{r}, t)=\sum_{l m}\left[s_{l m}+n_{l m}\right](t) Y_{l m}(\mathbf{r})
$$

SLEPIAN_Delta

Time-dependent potential-field estimation from noisy and incomplete data:

$$
s(\mathbf{r}, t)=\sum_{l m}\left[s_{l m}+n_{l m}\right](t) Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } s(\mathbf{r}, t)
$$

SLEPIAN_Delta

Time-dependent potential-field estimation from noisy and incomplete data:

$$
s(\mathbf{r}, t)=\sum_{l m}\left[s_{l m}+n_{l m}\right](t) Y_{l m}(\mathbf{r}) \quad \leftarrow \quad \text { estimate } s(\mathbf{r}, t)
$$

The "data" from the GRACE satellites (at altitude), are a non-local mixture $\left[s_{l m}+n_{l m}\right](t)$ from which, using the Slepian basis we extract the spatio-temporal signature of the source the time-dependent ice mass loss function (at the surface).

SLEPIAN_Delta

- Hello Earth! We are raising the next generation of geoscientists for whom reproducible research and computer programming are a must
- Matlab is a tool to grow with students from their freshmen days to their professional academic environment - not the only language, but an excellent one
- We have embarked on a series of official GitHub releases of packages to perform spatio-(temporal)-spectral estimation of spherical data:
- Hello Earth! We are raising the next generation of geoscientists for whom reproducible research and computer programming are a must
- Matlab is a tool to grow with students from their freshmen days to their professional academic environment - not the only language, but an excellent one
- We have embarked on a series of official GitHub releases of packages to perform spatio-(temporal)-spectral estimation of spherical data:
- SLEPIAN_Alpha: Spherical harmonics, Slepian functions
- Hello Earth! We are raising the next generation of geoscientists for whom reproducible research and computer programming are a must
- Matlab is a tool to grow with students from their freshmen days to their professional academic environment - not the only language, but an excellent one
- We have embarked on a series of official GitHub releases of packages to perform spatio-(temporal)-spectral estimation of spherical data:
- SLEPIAN_Alpha: Spherical harmonics, Slepian functions
- SLEP IAN_ Bravo: Linear inverse problems
- Hello Earth! We are raising the next generation of geoscientists for whom reproducible research and computer programming are a must
- Matlab is a tool to grow with students from their freshmen days to their professional academic environment - not the only language, but an excellent one
- We have embarked on a series of official GitHub releases of packages to perform spatio-(temporal)-spectral estimation of spherical data:
- SLEPIAN_Alpha: Spherical harmonics, Slepian functions
- SLEP IAN_ Bravo: Linear inverse problems
- SLEPIAN_ Charlie: Quadratic spectral estimation
- Hello Earth! We are raising the next generation of geoscientists for whom reproducible research and computer programming are a must
- Matlab is a tool to grow with students from their freshmen days to their professional academic environment - not the only language, but an excellent one
- We have embarked on a series of official GitHub releases of packages to perform spatio-(temporal)-spectral estimation of spherical data:
- SLEPIAN_Alpha: Spherical harmonics, Slepian functions
- SLEPIAN_Bravo: Linear inverse problems
- SLEPIAN_Charlie: Quadratic spectral estimation
- SLEPIAN_ Delta: Time-dependent estimation for GRACE satellite data

Basis I: spherical harmonics

5329 (4181) spherical harmonic coefficients

A global basis, bad for local problems.

Basis II: Slepian functions

Basis III: cubed-spherical orthogonal wavelets

Basis IV: cubed-spherical biorthogonal wavelets $30 / 26$

