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Orders of
Size Magnitude Significant Distances
(km) Larger Than
Earth
104 19 Diameter of Universe
1022 18
10°! 17
1020 16 %
10" 15 Distance to Nearest Galaxy Like Ours =‘/ )
Y )
1018 14 e ‘?}
10" 13 Diameter of Our Galaxy —— 5
10'6 12
105 11 = ”
1o+ 10 Alpha
° ;
Centauri
1083 9 Distance to Nearest Star -—ﬁ-—--/v
1012 8 ".-O“:Sun
10! 7
1010 6 Diameter of Solar System > @
10° 5
-

108 4 Astronomical Unit ——— » m

Earth
107 3
10° 2 Diameter of Sun
108 1 Diameter of Jupiter =
104 0 Diameter of Earth ——» .

-
1073 7 Child
10-8 12 Cell

=70
10713 17 Atom atsre A 1o %
—14

1016 20 Nucleus MC/(Q&(B Y //O -
10-20 24 £2  Electron

Figure 2.1. Sizes of various objects over the enormous range that the natural world encompasses.
From Robbins and Jeffreys (1888) by permission of John Wiley and Sons.
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Figure 2-13. Chart of the nuclides: Shown in this series of diagrams are
all the nuclides present in nature. The black squares represent radioactive
isotopes. Some of these are long-lived remnants of element production in stars.
Others are being produced in very small quantities by cosmic rays bombard-
ing our atmosphere. To avoid confusion, the decay chains of long-lived thorium
and uranium isotopes are shown separately.

¥

|16
LS
|4
I3
|12
I

10

NUMBER OF PROTONS
0

— N W s N @

o_

CHLORINE (Cl) |35 |36]37

SULFUR (S) 32|33 |34 26
PHOSPHORUS (P) 31
SILICON (S) 28|29 |20

26{27| ALUMINUM (Al)
24 |25 |26 MAGNESIUM (Mg)
23| SODIUM (Na)

20|21 |22 NEON (Ne)

19| FLUORINE (F)

6| 17|18] OXYGEN (O)

14 15| NITROGEN (N)

12|13{14| CARBON (C)

0| 11| BORON (B)

9 [(lo] BERYLLIUM (Be)

6|7 | LITHIUM (Li)

314 HELIUM (He)

2 1°’31 HYDROGEN (H)

2345678 9I1001121314151617 181920
NUMBER OF NEUTRONS



BETA DECAY

46 s o1 14N

% |4N “ 3 .
(n°—>-e "+ p")

/t/"/Z st ’;‘F(LSO &V’S

NO. OF PROTONS

£
NO. OF NEUTRONS

ELECTRON CAPTURE

w
= 40 +.¢™ > 40
o (p*+¢e —n°)
Ty = 425 b &
T2 ) 5s 40,
S
21 22

NO. OF NEUTRONS

ALPHA DECAY

gz

9l

NO. OF PROTONS

238 )., 234y 4 41 1“1{?/: 44}?62/

144 145 146
NO. OF NEUTRONS.

Figure 2-3.. Examples of the three most common modes of spon-
taneous radioactive decay: Two of these, beta decay and electron cap-
ture, are isobaric—i.e., the number of nucleons remains the same. The third,
alpha decay, involves the ejection from the nucleus of four particles in the
form of a “He nucleus.
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Figure 2-1. Relative abundances of the elements in our Sun: As the
abundances range over 13 orders of magnitude, they must be displayed on
a power-of-10 scale. The abundance of each element is expressed as the
number of atoms per million (i.e., 105) atoms of the element silicon. The gaps
in the sequence represent elements that have only radioactive isotopes and
are, therefore, absent in the Sun. While most of the abundances are based
on spectral data, use is made also of chemical measurements on a special
class of meteorites called carbonaceous chondrites.



oz Vv 7 O..Ww”ma..w_

"(Z861) rIRYIQE put s1opuy

69€0°0 ] I 62570 9\ LY S6T A €T
€20 qA 0L 6¢°1 Pd 9t 00T 1L a4

98€0°0 wy, 69 ¥E0 A St 8€¢ o8 1T

€5Z°0 g 89 981 ny tp 01 X 1179 €D 0T

GL80°0 OH L9 Fd ol O W 0LLE N 61

86£°0 % 99 1L°0 aN 1§ 01 X $0°1 1y 81

6850°0 qL 9 L0l 17 o ovzs D L1

1€€°0 PO ) ¥9'v A 6€ 01 X SI°S S 91

L6070 ng €9 €T 18 8¢ 201 X $0°1 d GI.

0600°0 n 6 192°0 wg 79 60°L QA LE 501 X 0071 1S 1
SE£0°0 yL 06 9¢8°0 PN 09 €6h i) 9¢ +01 X 6¥°8 v €1
P10 1q €8 ZAN0 1 65 811 1g c¢ 001 X SLO'T 3N zl
SI°¢ qd 78 911 29 8¢ 1°29 SIS ¥€ (01 X 0L°S eN I
¥8I1°0 1L 18 890 e 1§ 6L°9 SY €€ o0l X 9L°¢ oN 01
Z5°0 DH 08 9¢' ¥ s 9g 811 20 Z€ €h8 d 6
981°0 ay 6L TLEO 55 S¢S 8LE 59 g 01 X 10°T 0 8
LE'1 d 8L S¢'y ox S 0921 uz 0¢ 001 X 81T N L
099°0 1 Lt 06°0 I €¢ 2k nD 6T 01 X 1271 D 9
LILO SO 9L 16" 9L i ;01 X €6'% IN 14 vT q S
L0S0°0 eH| SL 75€°0 qas IS 052T 0D LT 8L°0 og t
LETO M YL 78°¢€ ug 0S <01 X 0076 o] 9z L 6S I €
9220°0 el €L $81°0 uy 3% 0156 Uy ST s01 X 81°T oH Z
9L1°0 JH L 69°1 PD 8P ,01 X $€°1 15 ¥ o0l X TL'T H I

(ISg0 1 /SWONY) S Y} JO SIIULPUNQY DIWSOD)
LT ATAVL

Gy e =9V, = H/ N



® ;]\(/\ m&-\w éq ﬁ m@ (e

f: 3-00° o 3o0o *x Sy
: 9 .
feo - 210 % 2,000 1 K

He/H = /16, ’ re. 1€ ~+7une s
RS /W\Mcj H ar ,4@

B«T san onlawl; w%’f’ j #c /; -

etz 2§ ok

® WC-/Q' oAz b\n—f—E— A
® ﬁowu% oj} B,Q.’ LA ; B

Oﬁt«kﬂ%/mﬁ'\-

6 ta — oo ﬂ—*@‘éﬂ/\/v\aﬂ)‘;(}v\- C 2
MNAANA o—Ln/\V\Aﬁv:b y 4‘MC/£&\J-4‘1~9
Fe , O D



va\ b Dt L{ /MAMLWQQ Wé\/& I

Exomple e —  posT  abwdloan  ssodpe
J /réfél‘mrv\) ~ 100 %,

2(1.0v7-C)
+ 2(1.6096 )

Bhding _amyy. o b
0.637) arvun .
(4'.0'34-—' t.003 mhnu\,—) (1(,,?— =10 /L}/mw\mﬁ
¢ 3. lo® ‘M/u.cwl
E = 4.7 107" Jowbs

Gwvﬁ{b e IINTY I} z;- MQ\/:: ’]Dé bé‘b'h}?



-yurod 3ut
-[10q a3 03 a1njerodwa} WOOI WOIJ PIILIY 2q P[NOD I93eM JO SIS UOI[IHL
noqe 'A31ous Jo Junowre STy} YIIM ‘paonpoid a1e AZ19U3 JO SAUIO[RD 10T X
'] JNOQE USY} 'WNI[2Y 0} PI}ISAUOD ST UZ0IPAY JO weid auo J "A313U9 JO
SOLIOTED 77T X T INOQE S9}BISUDZ SSO SSBUW STY} ‘wotienba s,urejsury SuIs()

w3 4z-0T X 8%0°0 | SSOT SSeN
w8 4701 X 8¥9°9— woje wni[Ry T JO SSeN
w8 4z_0T X 9699 swoje us80IpAy ¢ JO SSB]N

:SMO[[OJ SE SI SSO]
SSBUI 91} 'WOJE WNI[QY U0 0} P3}ISAUOD 1B SWOje uo801pAy IN0J I “IYSI|

JO AJIO0[2A 23 SI O 213YyMm ‘oW = Y :uonyenba s1y 10] snowrey ST UIS)SULY

:(g) AS1oua 0} (u1) ssewr JO UOISISAUOY) "I-Z I[GBL



LMLV = 1.¢  146"” T

n WP‘Q . Sﬁ 1 amw x CZ: 937 /Vlﬂ.‘/?

)

(o_o317C°)313: 29 MV

m

Sl /Lvao) 4.3F — /.S’Ihabwa vt g /il

wws frsf anmhae T Cunve o F
Lol W pecks LT
BQJZK'\N' J¢ (Z—é- l:(L .J‘ Wg}_j) Ca. é %mffcz_ do\

s ﬁ}—ﬁ monhos  ondd /)’% s
/yu/xcjtu\ ) f,e,- TLD %UL %A«,\ %f

COM— (o Z{

/;Wz.a& Ay%—v J‘l’m ey L L
ONSA- LV~ >y CUMWL /V/T)/mzf/lov\- — "iZWHf

/U\Urcy /&\5/2- W.Po\w)*} S ?AK /2/’}«9-14-«»7

ey Gy oo

G Vs s 1295 — BECEY ZLW; 7.9

F‘"’Ex.ﬁ



18|oNU
a|gels 10} ty laquinu ssew a8yl snsiaA uos|onu iad ABisus Bulpulg /&' @inbig

VvV lequwnu ssep
0Gc Gc¢ 00¢ GZI OSL G2L 0oL 62 0S8 G2 O

| | | | | | | | |
g
Imﬂ“

(A@) uosjonu Jad ABisue Buipulg




"9|qissod uoijoeal
Jo sadA}l sy} ssjeodlpul (o) ‘jussaud Jspew JO SWIO) 8|gels syl SMOoys
(q) ‘sainieiaduwia) Jualayip YlIM SJUSWUOIIAUS [BOIdA] SMOUS (B) uwin|o)
Juasald sejoiied syl Jo) ABisus |ewusyy abeiaAe syl sajedipui 1ybu
a3y} uo 1leyy pue ‘aineiadws) SMOUS Y3| 8yl uo ojeds ayj 'sessasoud
ies|onu  pue |eolwWaYd 10} sa|eds aunmessdwsl pue Abilsuj gL bBig

- aoeds| 4
SPI[OS pu® Ie[[218101U1
-0 suonoeal SO[NIJON pue syouepg | 01
[ednway)
= .
w b SWOIE [ERNON _ sasejuns repoig| +U!
) - -
- SWOole pazIuo] ~
2 .0IF 4,01 2
arm siels <
B = &
B 21qe1s s
= - suonoeal SUOIIII[D siouul 1e(g| 401 @
g O s Jeoon ug 199N HOMAEIS) T 2
2 187 PN pue 1[ONN -
= - s1els - (\
= Suipordxg
< 01 ; 4,01
SuoIdBal (98 1>1)
B apnied bﬁwm%m%nm ) ow_u»z:: .
> 1ed K19
O1F Arejuowolg A \ I Ay 01
A
siqissod suonoeay | 1opeWw JO SwiIo) I[qRIS SIUSLUOIIAUT
() | () (®)




Although the very early stages are still uncertain, the picture becomes
much clearer after the point where matter as we know it could form.
After 1 second, the universe was composed of more familiar particles—
protons, neutrons, electrons, neutrinos, and photons. Free neuftrons
would still be present in equilibrium at these temperatures, although they
would soon start to undergo B~ decay into protons, electrons, and
antineutrinos:

n=p*+e +7. (3.3)

As the temperature fell to around 10° K, more complex nuclei could
start building up, by processes of fusion and neutron capture. The most
important reactions, which were completed in a few minutes, were:

ptn=2H+y (3.4)
2H+2H='H+p (3.5)
H+2H='He+n (3.6)
3He+n="He+y (3.7)
‘H+p="*He+y (3.8)

Under the conditions present, it was certainly the first of these
reactions—the formation of deuterons (*H)—that constituted the rate-
limiting step. This is because of the rather low binding energy of
deuterons (2.2 MeV), so that they would be dissociated almost as rapidly
as they formed. The remaining reactions occurred rapidly, and *He was
by far the major product. The proportions of deuterium and *He
remaining from this early stage of nucleosynthesis are very sensitive
functions of the density of matter and so are a useful indicator of the
conditions present at that time. On the other hand, the amount of helium
produced depends less strongly on the density, and is largely determined
by the equilibrium ratio of neutrons to protons at the temperature when
the nuclear reactions can begin. Calculations predict a He/H atomic
ratio of nearly%or about 25 per cent helium by weight. This is the
abundance oberved in stars, and is one of the strongest pieces of
evidence that the big bang theory is correct.
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Although the very early stages are still uncertain, the picture becomes
much clearer after the point where matter as we know it could form.
After 1 second, the universe was composed of more familiar particles—
protons, neutrons, electrons, neutrinos, and photons. Free neutrons
would still be present in equilibrium at these temperatures, although they
would soon start to undergo B~ decay into protons, electrons, and
antineutrinos:

n=p*t+e” +7. (3.3)
As the temperature fell to around 10” K, more complex nuclei could

start building up, by processes of fusion and neutron capture. The most
important reactions, which were completed in a few minutes, were:

p+tn=*H+y (3.4)
2H+2H=*H+p (3.5)
2H+?H="He+n (3.6)
3He+n=*He+y (3.7)
‘H+p="%He+vy (3.8)

Under the conditions present, it was certainly the first of these
reactions—the formation of deuterons (*H)—that constituted the rate-
limiting step. This is because of the rather low binding energy of
deuterons (2.2 MeV), so that they would be dissociated almost as rapidly
as they formed. The remaining reactions occurred rapidly, and *He was
by far the major product. The proportions of deuterium and *He
remaining from this early stage of nucleosynthesis are very sensitive
functions of the density of matter and so are a useful indicator of the
conditions present at that time. On the other hand, the amount of helium
produced depends less strongly on the density, and is largely determined
by the equilibrium ratio of neutrons to protons at the temperature when
the nuclear reactions can begin. Calculations predict a He/H atomic
ratio of nearly?ﬂ?or about 25 per cent helium by weight. This is the
abundance oberved in stars, and is one of the strongest pieces of
evidence that the big bang theory is correct.
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Figure 2-4. Stable nuclides with a particle number in the 1-to-11
range: Note that no stable nuclide exists with neutron-plus-proton number
totaling 5 or 8. It is these two gaps in the chain that prevented element for-
mation during the big bang from continuing beyond helium.
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HYDROGEN
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HYDROGEN He-BURNING
BURNING C -BURNING
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HELIUM
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HYDROGEN UNBURNED
HEL UM
Name of Process Fuel Products Temperature
Hydrogen-Burning H He 60 x 10 °K
Helium-Burning He . O 200 x 108 °K
Carbon-Burning C O, Ne, Na, Mg 800 x 108 °K
Neon-Burning Ne O, Mg 1500 x 10% °K
Oxygen-Burning O Mg to S 2000 x 108 °K
Silicon-Burning Mg to S  Elements near FE 3000 x 10°® °K

Figure 2-5. Three stars with progressively hotter nuclear fires: Like
our Sun, the star at the left burns hydrogen to form helium in its core; this
core is surrounded by unburned fuel. The middle star is burning helium to
form carbon and oxygen in its core. This core is surrounded by a layer of
unburned helium. Outside of this is a layer in which hydrogen burns to pro-
duce helium. Finally there is an outer layer of unburned hydrogen. The star
on the right has a multilayered fire. The successive nuclear fires are separated
by layers in which no reaction occurs. These layers contain the same fuel
as 1s being consumed in the underlying fire. These layers are depleted in the
ingredient being consumed in the overlying fire. The approximate
temperatures required to ignite the successive fuels are also given.
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Figure 2-8. Details of the s-process path: Each time neutron capture pro-
duces a radioactive isotope, radiodecay occurs changing either a neutron into
a proton or a proton into a neutron. Not all of the stable isotopes found in
solar-system matter can be produced in this way. Those stable isotopes ly-
ing below the s-path are produced by the r-process. Those stable isotopes
lying above the s-path are produced by proton bombardment.
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Figure 2-6. The elements heavier than iron were built by neutron ir-
radiation: Two quite different processes contributed to this production.
One, the s-process [i.e., slow process), occurs concurrently with the produc-
tion of iron in the stellar core. As in a nuclear reactor, the reaction proceeds
in a controlled way. Neutron hits are spaced out in such a way that the
nuclides have time to achieve stability through beta decay. Thus, the buildup
path follows the belt of stability shown in Figure 2-2. For the same reason
it terminates at 299Bi, the heaviest stable nuclide.

The r-process (ie., the rapid process) occurs during the supernova explo-
sion. Thus, it is akin to an atomic bomb. No sooner has a nuclide absorbed
one neutron than it is hit by another. No time exists between hits for
radiodecay. Rather, radiodecay occurs only when the nuclide becomes so
neutron-rich that it cannot absorb any more. This leads to a buildup path
displaced from the stability belt as shown. It also allows the buildup to pro-
ceed beyond particle number 209. Instead, the buildup goes just beyond par-
ticle number 300. At this point the colliding neutrons cause the nuclides to
fission. The jogs in the r-process pathway occur at the so-called magic neutron
numbers, 82, 126, and 184. They are "magic"” in the sense they give the
nuclide unusual stability.
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Figure 2-7. A segment of the r-process pathway: Rapid-fire neutron bom-
bardment adds neutrons until a nuclide cannot hold any more. Only then
does the nuclide undergo beta decay to become the next heavier element.
This process—neutron capture to saturation followed by beta decay—is
repeated over and over again, producing successively heavier elements. The
r-process buildup occurs during the explosion that destroys the red giant.
Hence it ends abruptly. The neutron flux stops and the highly radioactive
isotopes on the r-process pathway emit beta particles one after another until
stability is achieved. Note that in the case of those isobars for which two
stable nuclides exist, only the neutron-rich nuclide of the pair is produced
by the r-process.
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Figure 3.5 shows the results of a recent calculation on the elements
liberated in a supernova. The relative amount of each nuclide produced
from a star of 25 solar masses has been compared with the observed
solar system abundanges. Many common elements such as iron and

100 =T 1 - ° 1

C 25M. final nucleosynthesis o dominant isotope
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Fig. 3.56. Calculation of the elements produced by a supernova in a star of
25 solar masses. (From Woosley and Weaver 1986.) The predicted
concentration of each nuclide has been compared with its observed
solar system abundance. The calculation suggests that about one part
in nine of the material forming the solar system has been produced by
such supernovae.

oxygen are predicted to have a concentration nine times that found in the
solar system. This means that their observed abundances can be
accounted for if one part in nine of the material in the solar system was
generated in a supernova, the remaining eight-ninths being unprocessed
hydrogen and helium. There is a fair amount of scatter in the figure, but
the overall agreement is impressive, especially when it is remembered
that the absolute abundances of the nuclides plotted span a factor of
more than 107. In fact, there is no reason to think that a calculation on a
single star could explain perfectly the abundances of elements in the
solar system. Stars of different masses burn at different rates, and the
various reaction stages occur to different extents. For example, stars
rather lighter than the one calculated will probably produce more carbon
and less oxygen. The composition of the gas released will reflect these
differences, and one ought to take some kind of average over the yields
of stars with a range of mass. It is also important to note that supernovae
are hot the only way in which elements are released into space. Stars at
some stages in their evolution may throw off part of their outer layers,
either gradually over millions of years, or in a more rapid process. These
oute? layers will be enriched in rather different elements, for example, in
nitrogen and *C produced in the CNO cycle. There is every reason to
think that the gas from which the solar system formed was made up of a
mixture from many different sources. No single event, therefore, can
account for the abundances of the elements. In spite of these problems,
the calculation illustrated in Fig. 3.5 is very encouraging and does
suggest that present theories explain these abundances quite well.
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Figure 2-1. Relative abundances of the elements in our Sun: As the
abundances range over 13 orders of magnitude, they must be displayed on
a power-of-10 scale. The abundance of each element is expressed as the
number of atoms per million (i.e., 10%) atoms of the element silicon. The gaps
in the sequence represent elements that have only radioactive isotopes and
are, therefore, absent in the Sun. While most of the abundances are based
on spectral data, use is made also of chemical measurements on a special
class of meteorites called carbonaceous chondrites.
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Figure 2-10. Relative abundances of individual nuclides: In the mass
range 10 to 50, nuclides with particle numbers divisible by 4 (ie., 12, 16, 20,
24, 28, 32 ... ) have abundances far above those of their neighbors. They
are referred to as the a-particle nuclides. In the particle number range 50
to 100 the abundances of nuclides with an even particle number stand about
a factor of 3 above those for their odd-numbered neighbors. Where more than
one point is shown at a given mass number, two different nuclides with the
same neutron-plus-proton number exist.
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Figure 2-14. Odd-even particle number systematics: Shown here are the
masses for two sets of nuclides. On the left are shown nuclides of particle
number 102 (an even number). On the right are shown nuclides of particle
number 103 (an odd number). The smaller the mass the more strongly the
nuclide is bound together. For odd isobars, of the various possible neutron-
proton combinations, one always has a lower mass than both its adjacent
neighbors. For even isobars, there are usually two such nuclides. The reason
for this difference is that odd-odd neturon-proton combinations are less tightly
bound than even-even combinations.
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Figure 2-12. The raw material for planet formation: The upper diagram
shows the relative abundances of the elements. Up to bismuth there are only
two elements not found in nature; technetium [element 43) and promethium
(element 61). The lower diagram shows the relative abundance, of the isobars.
Only two isobars of nuclear number less than 208 are not represented in
nature, those of mass 5 and of mass 8. :
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Figure 2-11. The relationship between neutron-capture cross sections
and abundance: In the upper panel is shown the neutron-capture cross sec-
tions of nuclides produced by the s-process as a function of mass of the
nuclide. Note the smoothness of the trend; note also that nuclides with an
even number of nuclear particles have lower cross sections than those of their
odd-numbered neighbors. Finally, note the minimum in the cross sections
for both the even and odd nuclides near mass 138. Nuclides with this and
neighboring masses have 82 neutrons, one of the magic numbers (see Fig.
2-6). As can be seen there is an inverse correlation between abundance and
cross section. Nuclides with low capture cross section are higher in

abundance.
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Figure 2-10. Relative abundances of individual nuclides: In the mass
range 10 to 50, nuclides with particle numbers divisible by 4 (i.e., 12, 16, 20,
24, 28, 32 ...) have abundances far above those of their neighbors. They
are referred to as the a-particle nuclides. In the particle number range 50
to 100 the abundances of nuclides with an even particle number stand about
a factor of 3 above those for their odd-numbered neighbors. Where more than
one point is shown at a given mass number, two different nuclides with the
same neutron-plus-proton number exist.
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Table 3-7. Relative abundance of the first 28 elements and their fates

during the formation of the terrestrial planets:

Element Element Compound Rel. Abundance Rel. Abundance
Number Name Solid Gas In Sun® Fatet In Chondrites®

1 HYDROGEN H, 40,000,000,000 (1) —

2 HELIUM He 3,000,000,000 (1) trace

3  LITHIUM Li,O 60 (3 50

4 BERYLLIUM BeO 1 (3 1

5 BORON B,0; 43  (2) 6

6 CARBON + CHq 15,000,000 (1) 2,000

7  NITROGEN NH, 4,900,000 (1) 50,000

8 OXYGEN H,0** 18,000,000 (2] 3,700,000

© 9 FLUORINE HF 2,800 (1) 700

PR ,-, 10 NEON Ne 7,600,000 (1) trace
\}r\. )Wy ‘@ 11 SODIUM Na,O 67,000  (2) 46,000
p s)‘“\;& 12 MAGNESIUM MgO 1,200,000  (3) 940,000
o AeEPIS ALUMINUM - ALO; wﬁbq => 100,000 (3) 60,000
/Vw‘(}% 14  SILICON SiO; 1,000,000 (3 1,000,000
¢4 ) 15 PHOSPHORUS P,Os 15,000 (3 13,000
AP s 16 SULFUR FeS H,S 580,000 (2] 110,000
5 \g. 17 CHLORINE HCl 8,900 (1) 700
,\]_w; 18 ARGON Ar 150,000 (1) trace

N 19 POTASSIUM K;O 4,400 (2 3,500
> 20 CALCIUM CaO 73,000 (3] 49,000
21 SCANDIUM  Sc;0; 41 (3) 30

22 TITANIUM  TiO, 3,200 (3) 2,600

23 VANADIUM VO, 310 (3) 200

24 CHROMIUM CrO, 15,000 (3 13,000

25 ~MANGANESE MnO 11,000 (3 9,300

26 IRON FeO,FeS,Fe 1,000,000 (3 690,000

27 COBAL CoO 2,700 (3 2,200

28  NICKEL NiO 58,000 (3 49,000

*Relative to 1,000,000 silicon atoms.
(1) Highly volatile; mainly lost;
(2) Moderately volatile; partly captured;
(3) Very low volatility; largely captured.
**Plus metal oxides.



Let us run through the list of elements in Table 3-7 and see
why planets might be dominated by as few as four elements.
The first element on the list is hydrogen. In the cloud of gas plus
dust from which the planets formed, hydrogen atoms were pre-
sent either as hydrogen gas (H,) or as gases of carbon (CH,), of
nitrogen (NHj), or of oxygen (H,O). The Earth and its fellow ter-
restrial planets trapped only a tiny fraction of these gases; the
rest was lost.

Helium exists only as a gas. Like the other noble gases, it
seldom makes chemical unions with other elements. Hence vir-
tually all the helium was lost. Even the very small amount of
helium we do find today in the Earth's atmosphere and in gases
escaping from the Earth's interior was not captured by the Earth;
rather, it was produced within the Earth by the radioactive decay
of the elements uranium and thorium.

The next three elements—lithium, beryllium, and boron—
were produced in very small abundance by the synthesis
mechanisms in stars. Their abundance relative to other solid-
prone elements like magnesium, silicon, and iron is too small
to permit them to be major constituents of the planets.

Carbon and nitrogen, in the presence of the large amounts of
hydrogen gas in the planetary nebula, would have been in the
form of methane (CH,) and ammonia (NHj). These gaseous com-
pounds were largely lost,

While also attracted to chemical unions with hydrogen, the
element oxygen is even more strongly attracted to chemical
unions with the elements chemists refer to as metals. In the
cloud from which the Sun and the planets formed there were
five times as many oxygen atoms as all metal atoms taken to-
gether; hence, only about 20 percent of the available oxygen
atoms were able to get the metal atoms that would be their first
choice as chemical mates. The remainder had to take their sec-
ond chemical choice—hydrogen atoms. The gascous water mole-
cules thus formed were largely swept away. Only those oxygens
with metal-atom mates were incorporated into solid phases.
~ATter oxygen on the list in Table 3-7 come fluorine and neon.
Fluorine atoms have a strong tendency to combine with
hydrogen in the form of hydrofluoric acid (HF). Under the con-
ditions that prevailed when the planets formed, HF was likely
to be a gas. Like helium, neon shuns chemical unions. Hence,
both elements were largely driven away.

So far we have gone through ten elements. Of these, six (hydro-
gen, helium, carbon, nitrogen, fluorine, and neon) formed gases
and were largely lost. Three others (lithium, boron, and berylli-
um)| had such small abundances as to be unimportant to the bulk
composition of planetary material. Only oxygen was sufficiently
abundant and sufficiently prone toward the formation of solid
phases to become a major contributor to the terrestrial planets.

The next five elements on the list are all metals that prefer
chemical unions with oxygen. Four of them (magnesium,
aluminum, silicon, and phosphorus) were efficiently trapped in
the solid material. The fifth (sodium) is moderately volatile;
hence, some was lost. As can be seen in Table 3-8, silicon and
magnesium both have isotopes that have nuclear-particle num-
bers divisible by four (Mg and 28Si). These so-called alpha-
particle nuclides were produced in stars in greater abundance
than were neighboring nuclides. For this reason, magnesium and
silicon are more abundant than sodium, aluminum, and
phosphorus, which have no isotopes of the alpha-particle variety.




Next on the list is sulfur. Its situation is akin to that for ox-
ygen. On one hand, it could form the hydrogen-bearing gas HaS.
On the other, it could combine with iron to form a solid, FeS.
Our evidence from meteorites suggests that a significant frac-
tion of the available sulfur was captured (as FeS).

The next two elements on the list, chlorine and argon, were
largely lost as gases. Chlorine was in the form of hydrochloric
acid (HCI), a gas. Argon, like helium and neon, is a noble gas
which' shuns chemical unions.

Next on the list are two more metallic elements, potassium
and calcium. Calcium in the oxide form has a very low volatili-
ty. Like sodium, potassium is moderately volatile and hence was
not captured with the same efficiency as were metals of low
volatility. Despite its low abundance, potassium has an impor-
tant role in Earth studies. In part because one of its isotopes (*K|
is radioactive and in part because it is a very important consti-
tuent of the Earth's crust.

So we see that in the second group of ten elements, five
(magnesium, aluminum, silicon, phosphorus, and calcium) were
largely captured. Three (sodium, potassium, and sulfur) were
partly captured. Two (chlorine and argon) were largely lost.

Between calcium and iron there is a big sag in the abundance
curve. Thus, although most of the elements in this interval are
metals of low volatility, none is sufficiently abundant to
challenge silicon or magnesium.

The abundance of iron, the ultimate product of nuclear fires,
stands well above that of its neighboring elements. Also, none
of its chemical forms in the early solar system was particularly
volatile. As its abundance is similar to that of magnesium and
silicon, it became one of the "big four” elements in the terrestrial
planets.

Beyond iron, the abundance of the elements drops rapidly
with increasing proton number. Only nickel is sufficiently abun-
dant to be important. As shown in Table 3-5, nickel along with
aluminum, calcium, and sodium make up the second abundance
group.

Thus we see that a combination of nuclear physics (which sets
the relative abundances of the elements) and inorganic
chemistry (which sets the chemical form of the elements in the
planetary nebula) dictated that rocky planets like Earth consist
primarily of the elements oxygen, magnesium, silicon, and iron.
One might then ask why the ratio of Mg to Si to Fe is not iden-
tical in the terrestrial planets. The answer must be that at some
stage in the planet-formation process, the material must have
been so hot that even iron, magnesium, and silicon were at least
in part in volatile form and hence lost from the solar nebula
along with the other gases. This partial loss separated these
elements from one another. The chemical differences among the
planets tell us that the nature and extent of this separation must
have varied from place to place in the solar nebula.
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(A) A slowly rotating portion of a large nebula be-
comes a distinct globule as a mostly gaseous cloud
collapses by gravitational attraction.

(B) Rotation of the cloud prevents collapse of the
equatorial disk while a dense central mass forms.

(C) A protostar “ignites” and warms the inner part of
the nebula, possibly vaporizing preexisting dust. As the
nebula cools, condensation produces solid grains that
settle to the central plane of the nebula.

(D) The dusty nebula clears either by dust aggregation
into larger particles (planets or planetesimals) or by
ejection during a T-Tauri stage of the star’s evolution. A
star energized by fusion and a system of cold bodies
remains. Gravitational accretion of these small bodies
eventually leads to the development of a small number of
major planets.

Figure 2.6

The evolution of a dusty nebula with a surrounding
system of orbiting planets is shown in this schematic
diagram.
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Venus

Jupiter

Figure 1.3 :

The relative sizes of the planetary bodies in the solar
system are illustrated in these scale drawings. The terres-
trial planets along with the asteroids and Jupiter’s satel-
lite Io are much smaller and composed mostly of rocky
silicate materials. The giant planets (Jupiter, Saturn,
Uranus, and Neptune) ha\\re deep atmospheres of hydro-



gen and helium and no solid surfaces. Pluto and the
satellites of the outer solar system have a variety of
sizes and bulk compositions. Most are made largely
of water ice, but some also have atmospheres
(Titan, Triton), and others are so cold that they
have methane ice or nitrogen ice at their surfaces.
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Figure 3-6. Depletion of volatile elements in ordinary chondrites: For
each element the ratio of its concentration in ordinary chondrites to that in
carbonaceous chondrites is shown. While the exact order of the elements
with regard to volatility is subject to interpretation to a large extent, the
greater the volatility of an element, the greater the degree to which it was

lost during the baking process.
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(A) The interior of a small star (less than about 4 times
the Sun’s mass) changes as it evolves from a small
hydrogen-burning star to a large hydrogen- and helium-
burning star.

(B) Small stars burning hydrogen and helium become
cooler at their surfaces and redder and consequently are
called red giants. These giants may be 10 to 20 times the
diameter of their precursor. Note how the hydrogen-
burning shell (shaded) has expanded outward, leaving in
its wake a helium-rich shell; eventually hydrogen-burning
may extend to the surface causing the disruption of the
star’s swrface and produce a planetary nebula.

(C) The internal structure of a massive star which has
evolved past a helium-burning stage. Concentrically ar-
ranged shells where burning takes place (shaded) at
progressively higher temperatures are separated by unre-
active shells (light) where the material is depleted in the
fuel being burned in the outer shell and is too cool to
participate in the burning reaction of the next inner shell.
The “death” of such a massive star is marked by the
production of a nova or supernova.

Figure 2.3

The internal structures of stars change with their age and size or mass.



Charon

Figure 1.14

Pluto, the smallest planet, and its satellite, Charon, form
a double-planet system on the extreme outer edge of the
solar system. Charon may be as large as one-half the
diameter of Pluto. Both bodies have considerable
amounts of methane ice at their surfaces and are more
like the icy moons of the outer planets than they are like
the gas giants.
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Figure 15.2

The internal structures of the planets and moons are dominated by concentric layers
of diverse compositions and mechanical properties. The inner planets and lo probably have
dense cores of iron metal and thick mantles and crusts of silicates. In contrast, the other
moons of the outer planets and Pluto may have cores of silicates surrounded by mantles of
water ice, Although internal differentiation was an important result of accretionary heating
in many planets, moons, and asteroids, some small icy satellites of Saturn, Uranus, and
Neptune may not be differentiated. The interiors of these small objects may consist of
more-or-less homogeneous mixtures of ice and silicate rock.



Atmosphere

Figure 2.12

The thermal evolution of a terrestrial planet shows
the changing temperature inside the planet. The time
Scale is relative, (Compare this diagram to those in
Ché}pters 4, 5, 6, and 7, which include absolute time
€stimates.) The occurrences, timing, and relative impor-
tance of these processes are unique to each planet and
are determined by the planet’s composition, mass, heat
bUdget, and other characteristics.



