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Fig. 3.2. Decay of a radioactive parent isotope and the corresponding accumulation of
its daughter isotope. In a closed system, the sum of the parent and daughter isotopes at
any time equals the original amount of the parent isotope.
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Figure 2-13. Chart of the nuclides: Shown in this series of diagrams are
all the nuclides present in nature. The black squares represent radioactive t:l /
isotopes. p
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Figure 5.2, Production of 14C from nitro

and its decay. After Cloud (1988, p. 84).
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Figure 5.3. Relationship between actual age of a samp1e (cal yr before present; B.r) and the age
from carban-14 dating [*4C yr 8.r). Both exes are in units of thousands of years, and so, the figure
goes back to 22,000 years ago. From Bartlein et al. (1995) by permission of Academic Press.
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F1c. 10. Willard Libby’s check of the basic soundness of the radiocarbon
method. Observed radioactivities of historically dated samples are plotted

confirmation of the validity of the method. (After W. F. Libby)
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Figure 3.7. A mass spectrometer is a iube

with a bend in the middle between the opposite
poles of a magnel. Alomic or molecular ions
accelerated downtube by a voltage drop
experience a constant force while passing
through the magnet and are lhus separated
into different beams according to mass.
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Fig. 7.1. Areas of contrasting seismic behaviour along the San Andreas fault zone,

in California. (After Allen, 1968.)

be seen in the photograph of a cross section of an

old California stream beal thar was rockald by a gquake
around 1700, Sandblows occur, as illustrated in

the drawing at bottom, when a Layer of subsoil takes
on liquid characreristics during tremors. Pressure
drives the watery sand and sile up through a fissure,
leaving & mound of sediment on the surface that

gevlogists can use to ideneify and dare the earchouake.
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Figure 8-58. These idealized cross sections across strike-slip faults show various kinds of evidence for pa-
leoseismic events. Top of solid black bed is the event horizon. Shaded horizontal bars are 1 meter long. Lines
with arrows on location map indicate crests of anticlinal folds. Mismatches of strata across some of the faulls

is an indication of strike-slip motion,
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Figure 8-60. Map of trench wall shows evidence for eight earthquakes on San Andreas fault between A

about A.p. 750 and 1857. Grid spacing is one meter. For large-scale reproduction, see Sieh (1978a).
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Figure 8-65. This history of large ruptures along the San Andreas fault is based upon data from several
paleoseismic sites. Thick horizontal lines represent rupture lengths, based upon proposed correlations between
sites. Dextral offsets are indicated (in meters) where available. Offsets in parentheses represent broad-aperture
values, whereas others represent offsets measured in 3D excavations only within the fault zone. Values queried
where more speculative. Though woefully incomplete, the currently available record demonstrates the clus-
tered nature of earthquake occurrence along the fault and the inappropriateness of the characteristic- or uni-
form-earthquake model for the San Andreas fault. Modified from Grant and Sieh (1994), with additions from
Sieh (1984), Salyards et al. (1992) and other sources.
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FIGURE 11.B3.2 The conditional probability of major earthquakes along different segments
of the San Andreas fault. The probability illustrated is for the time interval 1988-2018.
(From Agnew et al., 1988).



